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Abstract
Fish are critical ecologically and socioeconomically for subsistence economies in the 
Arctic, an ecosystem undergoing unprecedented environmental change. Our under-
standing of the responses of nearshore Arctic fishes to environmental change is in-
adequate because of limited research on the physicochemical drivers of abundance 
occurring at a fine scale. Here, high-frequency in situ measurements of pH, tempera-
ture, salinity, and dissolved oxygen were paired with daily fish catches in nearshore 
Alaskan waters of the Beaufort Sea. Due to the threat that climate change poses to 
high-latitude marine ecosystems, our main objective was to characterize the abiotic 
drivers of abundance and elucidate how nearshore fish communities may change in 
the future. We used generalized additive models (GAMs) to describe responses to the 
nearshore environment for 18 fish species. Relationships between abundance and 
the physicochemical environment were variable between species and reflected life 
history. Each abiotic covariate was significant in at least one GAM, exhibiting both 
nonlinear and linear associations with abundance. Temperature was the most impor-
tant predictor of abundance and was significant in GAMs for 11 species. Notably, pH 
was a significant predictor of abundance for six species: Arctic cod (Boreogadus saida), 
broad whitefish (Coregonus nasus), Dolly Varden (Salvelinus malma), ninespine stick-
leback (Pungitius pungitius), saffron cod (Eleginus gracilis), and whitespotted greenling 
(Hexagrammos stelleri). Broad whitefish and whitespotted greenling abundance was 
positively associated with pH, while Arctic cod and saffron cod abundance was nega-
tively associated with pH. These results may be a bellwether for future nearshore 
Arctic fish community change by providing a foundational characterization of the 
relationships between abundance and the abiotic environment, particularly in regard 
to pH, and demonstrate the importance of including a wider range of physicochemi-
cal habitat covariates in future research.
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1  | INTRODUC TION

Unprecedented environmental change is occurring faster in the 
Arctic than the global average and is characterized by warming wa-
ters (Chan et al., 2019), ocean acidification (Qi et al., 2017), sea ice 
retreat (Bonsell & Dunton, 2018), deoxygenation (Bopp et al., 2013), 
and ocean freshening (Shu et al., 2018). Such changes threaten the 
ability for fishes to function optimally and, ultimately, may act to 
destabilize coastal marine ecosystems (Chan et al., 2019; Overland 
et al., 2014; Qi et al., 2017; Reist et al., 2006; Wassmann et al., 2011). 
Notably, nearshore Arctic fishes support socioeconomically vital 
subsistence fisheries (Zeller et al., 2011) and play roles as keystone 
species in marine ecosystems (Reist et al., 2006). As changes to the 
physicochemical environment continue to occur, nearshore Arctic 
fishes will need to adapt, evolve, or migrate, to mitigate deleterious 
impacts to physiology and behavior, potentially leading to shifts in 
distribution and abundance, which may result in fish community re-
structuring (Beever et al., 2017; Reist et al., 2006). Indeed, mount-
ing evidence shows that ongoing nearshore Arctic fish community 
change is correlated with a warming environment (Gatt et al., 2019; 
Priest, 2020; Priest et al., 2018).

Arctic fishes are particularly susceptible to environmental change 
because their environmental niche is attenuated due to the direct 
and indirect effects of lower seawater temperature when compared 
to fishes from southern latitudes (Reist et al., 2006). Specific tem-
perature ranges (the difference between lower and upper tempera-
ture tolerance thresholds) decrease toward high and low latitudes, 
with the most resilient fishes occupying temperate freshwater eco-
systems (Dahlke et al., 2020). Potential impacts of climate change to 
key life-history aspects, such as reproduction and growth rate, could 
significantly hamper the ability for species to persist under climate 
change (Dahlke et al., 2020). Indeed, it is imperative to understand 
the response of Arctic fishes to their physicochemical environments 
in order to assess the potential consequences of climate change.

Describing how the physicochemical environment influences the 
abundance and habitat use of Arctic fishes is important for estab-
lishing a baseline record of nearshore assemblages so that future im-
pacts of climate change can be determined. In their review of climate 
change impacts on Arctic fishes, Reist et al.  (2006) stated: “Other 
than logical extrapolations, most responses to climate change are 
impossible to quantify due to the absence of basic physiological in-
formation for most Arctic fish species and the incomplete under-
standing of the overall associations of ecological processes with 
present-day climate parameters.” Despite the dire need for research 
understanding physiological and ecological impacts of climate 
change on Arctic fishes, there is still a paucity of data regarding 
these relationships in the nearshore Arctic, particularly with respect 
to carbonate chemistry.

The majority of the published literature relating the physico-
chemical environment to the abundance of Arctic fishes in order 
to understand the impacts of climate change is limited spatially, 
temporally, and taxonomically. Studies rely almost exclusively 
on data collected from long-term trawl surveys conducted in 

offshore waters (Iken et al., 2019; Logerwell et al., 2018; Mueter & 
Litzow, 2008). Trawl surveys collect point source data at a coarse 
temporal resolution (as opposed to high-frequency oceanographic 
measurements); thus, they cannot account for changes in the 
nearshore environment transpiring on fine temporal scales. Even 
so, these studies are important for understanding long-term eco-
logical changes occurring offshore. What is more, trawl surveys 
are, by the nature of the collection method, biased toward epiben-
thic fishes and often do not capture highly migratory nearshore 
fishes such as whitefishes of the genus Coregonus, which consti-
tute a major portion of coastal fish taxa (Gatt et al., 2019; Griffiths 
et  al.,  1998; Priest,  2020; Zeller et  al.,  2011). Utilizing gears de-
ployable in the nearshore that can be sampled at higher frequen-
cies and capture highly mobile species (e.g., fyke nets) can address 
these data gaps. Several Arctic fish studies have begun to close 
these knowledge gaps by sampling in the nearshore; nonetheless, 
they are primarily focused on species deemed most important for 
subsistence fisheries such as Arctic cisco (Coregonus autumnalis), 
broad whitefish (Coregonus nasus), Dolly Varden (Salvelinus malma), 
and least cisco (Coregonus sardinella) (Gatt et  al.,  2019; Griffiths 
et al., 1992, 1998; Priest, 2020; Priest et al., 2018) and are tem-
porally limited by focusing on environmental correlates of inter-
annual changes in fish abundance (Griffiths et  al.,  1992). Lastly, 
studies thus far have concentrated almost exclusively on the im-
pacts of temperature and salinity on the distribution and abun-
dance of Arctic fishes, with none, to our knowledge, incorporating 
pH as a potential habitat covariate.

The measure of pH is seldom included in ecological studies of 
fishes as it is believed that fishes are resilient to ocean acidifica-
tion due to active ion transport systems which act to buffer against 
mild acidosis (Cattano et  al.,  2018; Munday et  al.,  2013). It is also 
logistically difficult, expensive, and requires specialized equipment 
and skills to accurately measure pH, which are barriers only exac-
erbated by working in the Arctic (Miller et  al.,  2018). Despite the 
common conjecture that ocean acidification will have little effect 
on fishes relative to other climate change impacts, emerging work 
suggests that significant long-term physiological and behavioral 
impacts will ensue, particularly in regions already experiencing pH 
levels projected for the year 2100 (Heuer & Grosell, 2014; Kelley & 
Lunden, 2017). As such, it is important to incorporate pH data into 
baseline ecological studies and begin characterizing the response 
of Arctic fishes to ocean acidification for understanding the conse-
quences of climate change, holistically.

Here, we couple high-frequency in situ time-series of pH, tem-
perature, salinity, and dissolved oxygen with abundance data for 
18 nearshore Arctic fish species with the goals of: (a) characteriz-
ing how the abiotic environment influences fish abundance in the 
nearshore Arctic at a fine temporal scale and (b) evaluating the im-
portance of expanding Arctic fish ecological studies to incorporate a 
wider range of habitat covariates. We intend for this study to be the 
first link in a longer chain of understanding about the responses of 
nearshore fishes to the abiotic environment to elucidate implications 
of a changing Arctic.
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2  | METHODS

2.1 | Study site and oceanographic sampling

This study took place at two nearshore sites in the Beaufort Sea, 
Alaska (Figure  1), during the ice-free period of the summer of 
2019. Research was undertaken in conjunction with the Beaufort 
Sea Nearshore Long-Term Fish Monitoring Program (BSNLTFMP) 
(Gatt et  al.,  2019; Priest et  al.,  2018), with our sites located at 
Endicott and West Dock. This study was temporally constrained 
by the presence of ice at the beginning and the occurrence of 
adverse weather at the end which truncated the sampling sea-
son. Endicott is situated at the mouth of the Sagavanirktok River 
and has considerable freshwater influence, while West Dock is a 
primarily marine site, experiencing less freshwater flux relative 
to Endicott. Endicott and West Dock are separated by approxi-
mately 23-km straight line distance. Nearshore oceanography in 
the region is known to be driven by wind, freshwater input, and 
ice formation, notably, processes identified as major contributors 
to nearshore carbonate chemistry variability (Craig et  al.,  1982; 
Miller et al., 2021; Priest et al., 2018). Sites were stationed roughly 
100-m offshore and at a depth of 1–2 m throughout the summer, 

only reaching peak depths during periods of sustained westerly 
winds. Westerly winds drive water levels up and retain brackish 
water inshore, while easterly winds favor offshore upwelling and 
bring marine water nearshore (Gatt et al., 2019). These sites were 
chosen because they span the breadth of physicochemical con-
ditions fishes experience in the region—freshwater to marine—
which would ensure that our nets would capture both marine and 
freshwater fishes.

Oceanographic sensor arrays, which included a Sea-Bird 
Scientific SeaFET™ pH sensor, PME miniDOT optical oxygen logger, 
and an Onset HOBO conductivity logger were deployed at each site 
between 2 July and 21 August 2019. Sensor arrays were secured 
approximately 0.5 m from the benthos at a depth of roughly 1 m to 
fyke net anchor poles used for fish sampling. Oceanographic mea-
surements of pH, temperature, salinity, and dissolved oxygen were 
sampled hourly (UTC). Temperature, salinity, and dissolved oxygen 
were measured with an average of one sample per frame (a single 
averaged measurement) and one frame per burst (time interval over 
which samples are taken), while pH was measured with an average of 
one sample per frame and 10 frames per burst. Temperature was re-
corded using the pH sensor's onboard thermistor. We calibrated the 
SeaFET™ sensors, propagated their error (see Miller & Kelley, 2021), 

F I G U R E  1   Overview map of our study sites along the coastal Beaufort Sea, Alaska
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and calibrated the pH, salinity, and dissolved oxygen data according 
to the best practices in chemical oceanography (for details, see the 
supplementary file: Environmental Data Processing). Measurements 
of pH are in total hydrogen ion concentration, and salinity is unitless 
throughout the manuscript.

2.2 | Fish sampling

Weather and safe sampling conditions permitting, fish were sam-
pled at each site using paired fyke nets with 1.8 × 1.7 m openings, 
set side by side. Net openings were oriented toward the shore, and 
a 60-m blocker net led to the shore. Blocker wings extended 15 m 
from each side of the cod-end net openings. This net setup allowed 
the capture of fish swimming bidirectionally along the shore. Mesh 
sizes of 2.5 cm were used for the blocker nets and wings, and the 
mesh size was 1.27 cm for the fyke nets. Each fyke net had three 
consecutive throats extending from behind the frames. Fish were 
identified to species and enumerated (including mortalities) daily 
at both Endicott and West Dock. Fish were not separated by age 
or size for this study, although length and supplementary biologi-
cal samples were collected on select species for unrelated projects. 
Post-identification fish were released away from the net openings 
to reduce the chance of recapture. Fish identification was based on 
Mecklenberg et  al.  (2002), George et  al.  (2009), and Thorsteinson 
and Love (2016). Endicott was fished from 1 July to 22 August 2019, 
and West Dock was fished from 6 July to 22 August 2019. All fish 
collection and handling procedures were approved by the Alaska 
Department of Fish and Game through Aquatic Resource Permit No. 
CF-19-021(2) and by the UAF Animal Care and Use Committee as 
assurance 1054743.

Daily fish catch at each site for each species was converted to 
a catch-per-unit-effort (CPUE) index of abundance to account for 
potential differences in how long the nets were out. Relative fish 
abundance data were calculated as the total catch at each sampling 
site by species. Total catch was then standardized by sampling effort 
to determine the daily CPUE (fish/hr).

2.3 | Statistical analyses

To explore the influence of the physicochemical environment 
on daily fish catch, we used generalized additive models (GAMs) 
with a Tweedie error family and log link (Wood,  2017). Thin 
plate regression spline smoothers were used to model relation-
ships between CPUE and the physicochemical covariates (pH, 
temperature, salinity, and dissolved oxygen). Smooth terms were 
restricted to three degrees of freedom to limit the models to fit-
ting biologically realistic nonlinear relationships. A fixed-factor 
variable for site was included to account for potential site-specific 
differences in catch that were not captured by the physicochemi-
cal variables. Site was not included in the model if fish were only 
caught at one site over the sampling period. The GAMs were fit 

using restricted maximum likelihood within the mgcv R package 
(Wood, 2017). Catch-per-unit-effort data were overdispersed and 
in some cases zero inflated, which is why a Tweedie error family 
was chosen. Daily CPUE and daily averages for each environmen-
tal covariate were temporally aligned prior to modeling, and data 
from both sites were pooled. Despite the possibility for hierar-
chical structure in our data as a consequence of pooling multiple 
sites, site was not modeled as a random effect because there were 
less than five sites, which could lead to weak estimates of variance 
(Harrison et al., 2018). Any days when sampling did not occur due 
to weather conditions were omitted from modeling. Only values 
after the first sensor calibration on 4 July 2019 were included in 
statistical analyses. All environmental covariates were retained for 
modeling because Pearson's correlations were <0.7 within and be-
tween sites and the VIF was <3 (Dormann et al., 2013; Harrison 
et al., 2018). A variable selection procedure was not carried out. 
Instead, one holistic model was developed for each species and 
p-values (α  =  0.05) were used to assess the relative importance 
of each covariate. Residual plots were reviewed using the gam.
check function within the mgcv package to assess whether model 
assumptions were met. Plots were generated using the ggplot2 
(Wickham, 2016) and visreg (Breheny & Burchett, 2017) packages. 
All statistical analyses were conducted in R version 4.0.2 (R Core 
Team, 2018).

3  | RESULTS

3.1 | Environmental characterization

Endicott was more acidic, fresher, warmer, and more oxygen rich 
than West Dock (Figure 2; Table 1). Strong significant negative corre-
lations between environmental covariates were observed between 
pH and salinity (R2 = 0.69) and temperature and oxygen (R2 = 0.67) 
at Endicott. At West Dock, strong significant negative correlations 
were observed between pH and salinity (R2 = 0.63) and temperature 
and oxygen (R2 = 0.56). Notable environmental observations for the 
study included a high temperature of 17.2°C and pH low of 6.9 re-
corded at Endicott (Table 1).

3.2 | Catch description

Eighteen fish species were identified between 4 July and 21 August 
2019. Species identified during the study represented diadromous, 
freshwater, and marine life histories. Five species were amphidro-
mous, four were anadromous, three were freshwater, and six were 
marine (Table 2). Catches at Endicott were dominated by Arctic cisco 
and broad whitefish, while catch at West Dock was predominately 
comprised of Arctic flounder (Pleuronectes glacialis) and least cisco 
(Figure 3). Differences in species composition between sites were 
evident in the appearance of Arctic grayling (Thymallus arcticus), 
burbot (Lota lota), and ninespine stickleback (Pungitius pungitius) 
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in much greater numbers at Endicott than West Dock (Figure  3). 
Similarly, West Dock accounted for a much higher proportion of the 
catch for Pacific herring (Clupea pallasii) and whitespotted greenling 
(Hexagrammos stelleri) (Figure 3).

3.3 | Amphidromous fish GAMs

All covariates were significantly associated with CPUE for amphidro-
mous fish (Figure 4; Table 3). The GAM for broad whitefish explained 

F I G U R E  2   Hourly measurements of pH, temperature, salinity, and dissolved oxygen recorded at Endicott and West Dock between 4 July 
and 21 August 2019
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65% of the variance in CPUE (Table 3). Broad whitefish CPUE was 
significantly associated nonlinearly with pH, linearly with tempera-
ture, and nonlinearly with dissolved oxygen (Figure  4). Catch-per-
unit-effort increased with pH and temperature and decreased with 
dissolved oxygen until reaching an inflection point at ~10.5  mg/L, 
at which point the relationship became positive (Figure 4). Site sig-
nificantly influenced catch, as indicated by higher CPUE at Endicott 
for broad whitefish (Figure  4). Fifty-six percent of the variance in 
CPUE for humpback whitefish (Coregonus pidschian) was explained 
by the GAM (Table 3). Humpback whitefish CPUE was significantly 
associated linearly with temperature and nonlinearly with salinity 
(Figure  4). Catch-per-unit-effort increased with temperature and 
decreased with salinity until ~11, when CPUE began increasing 
with salinity (Figure 4). Humpback whitefish CPUE was significantly 
higher at West Dock than Endicott (Figure 4). For least cisco, 42% 
of the variance in CPUE was explained by the GAM (Table 3). Least 
cisco CPUE increased significantly in a linear manner with tempera-
ture (Figure 4). The GAM indicated that least cisco CPUE was sig-
nificantly greater at West Dock than Endicott (Figure 4). Forty-three 
percent of the variance in ninespine stickleback CPUE was explained 
by the GAM (Table 3). Ninespine stickleback CPUE was significantly 
associated nonlinearly with pH and linearly with temperature and 
salinity (Figure 4; Table 3). Catch-per-unit-effort decreased with pH 
until reaching an inflection point at ~7.6, at which point CPUE in-
creased with pH (Figure 4). Ninespine stickleback CPUE decreased 
with temperature and salinity (Figure 4). The GAM explained 27% of 

the variance in CPUE for threespine stickleback (Gasterosteus aculea-
tus) (Table 3). Threespine stickleback CPUE was significantly associ-
ated nonlinearly with temperature and dissolved oxygen (Figure 4). 
Temperature had a positive relationship with CPUE until ~10°C, 
when CPUE decreased (Figure 4). Threespine stickleback CPUE de-
creased weakly with dissolved oxygen until ~10.5 mg/L, above which 
CPUE increased (Figure  4). Catch-per-unit-effort was significantly 
higher at West Dock for threespine stickleback (Figure 4).

3.4 | Anadromous fish GAMs

Anadromous fish abundance was significantly associated with all co-
variates (Figure 5; Table 3). Variance in Arctic cisco CPUE (57%) was 
explained by the GAM (Table 3). Arctic cisco CPUE was significantly 
associated linearly with temperature and nonlinearly with dissolved 
oxygen (Figure  5). Catch-per-unit-effort increased with tempera-
ture and decreased with dissolved oxygen until reaching ~10.8 mg/L 
when CPUE began increasing with dissolved oxygen (Figure 5). The 
GAM for Dolly Varden explained 34% of the variance in CPUE. Dolly 
Varden CPUE was significantly associated nonlinearly with pH, line-
arly with temperature, and nonlinearly with salinity (Figure 5). Catch-
per-unit-effort decreased with pH until reaching an inflection point 
at ~7.6 when CPUE began increasing with pH (Figure 5). Temperature 
and CPUE were positively related (Figure 5). Dolly Varden CPUE de-
creased with salinity until ~11 when it began increasing with salinity 

TA B L E  1   Summary statistics for hourly measurements of pH, temperature, salinity, and dissolved oxygen recorded at Endicott and West 
Dock

Measured variable

Endicott West Dock

Mean ± SD Median Range Mean ± SD Median Range

pH 7.4 ± 0.1 7.4 6.9–7.6 7.8 ± 0.1 7.8 7.5–8.1

Temperature (°C) 9.9 ± 2.2 9.8 5.9–17.2 8.7 ± 1.7 8.7 1.2–
13.3

Salinity 6.6 ± 8.0 1.7 0.2–25.8 15.1 ± 6.7 17.1 0.7–
30.6

Dissolved oxygen (mg/L) 10.7 ± 0.7 10.6 9.0–14.0 10.5 ± 0.6 10.4 9.2–
13.4

Life history Amphidromous Anadromous Freshwater Marine

Species Broad whitefish Arctic cisco Arctic 
grayling

Arctic cod

Humpback whitefish Dolly Varden Burbot Arctic flounder

Least cisco Pink salmon Round 
whitefish

Fourhorn sculpin

Ninespine stickleback Rainbow 
smelt

Pacific herring

Threespine 
stickleback

Saffron cod

Whitespotted 
greenling

TA B L E  2   Species identified during 
the study period and their associated life 
history
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(Figure  5). The variance in pink salmon (Oncorhynchus gorbuscha) 
CPUE (34%) was explained by the GAM (Table 3). Pink salmon CPUE 
was significantly associated linearly with temperature and nonlin-
early with salinity (Figure 5). Catch-per-unit-effort decreased with 
temperature and salinity until it reached an inflection point at a salin-
ity of ~11 and the relationship became positive (Figure 5). The GAM 
for rainbow smelt (Osmerus mordax) explained 46% of the variance 
in CPUE (Table 3). Rainbow smelt CPUE was significantly associated 
nonlinearly with temperature, linearly with salinity, and nonlinearly 
with dissolved oxygen (Figure 5). Temperature and CPUE were posi-
tively related until reaching an inflection point at ~10°C after which 
the relationship was negative (Figure  5). Rainbow smelt CPUE in-
creased with salinity (Figure 5). Catch-per-unit-effort was negatively 
related to dissolved oxygen until ~10.8 mg/L when the relationship 
became positive (Figure 5). Endicott had significantly higher rainbow 
smelt CPUE than West Dock (Figure 5).

3.5 | Freshwater fish GAMs

Abundance of freshwater fish was associated with salinity, dissolved 
oxygen, and site (Figure  6; Table  3). Variance in Arctic grayling 
CPUE (55%) was explained by the GAM. Arctic grayling CPUE was 

significantly nonlinearly associated with dissolved oxygen, exhibiting 
a negative association until ~10.8 mg/L, above which the relation-
ship became positive (Figure 6). The GAM for burbot explained 66% 
of the variance in CPUE, but none of the covariates were significant 
in the model (Table 3). The variance in round whitefish (Prosopium cy-
lindraceum) CPUE (70%) was explained by the GAM (Table 3). Round 
whitefish CPUE was significantly associated nonlinearly with salinity 
and dissolved oxygen (Figure 6). Salinity and CPUE were positively 
related until ~10 when the relationship became negative (Figure 6). 
Round whitefish CPUE decreased with dissolved oxygen until reach-
ing an inflection point at ~10.8 mg/L, above which it increased with 
dissolved oxygen (Figure 6). Catch-per-unit-effort was significantly 
greater at Endicott than West Dock for round whitefish (Figure 6).

3.6 | Marine fish GAMs

Marine fish abundance was associated with all covariates (Figure 7; 
Table 3). The GAM for Arctic cod (Boreogadus saida) explained 61% 
of the variance in CPUE (Table 3). Arctic cod CPUE was significantly 
associated linearly with pH and dissolved oxygen (Figure  7). pH 
was negatively associated with CPUE while dissolved oxygen was 
positively associated with CPUE (Figure  7). Arctic cod CPUE was 

F I G U R E  3   Total CPUE for each species recorded at Endicott and West Dock. Note that these were the total CPUE for the entire 
sampling period at these sites during 2019, which included sampling prior to and after oceanographic data were being recorded
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higher at West Dock than Endicott (Figure 7). The variance in Arctic 
flounder CPUE (28%) was explained by the GAM (Table  3). Arctic 
flounder CPUE was significantly associated linearly with tempera-
ture and nonlinearly with salinity (Figure  7). CPUE increased with 
temperature and salinity (Figure 7). The GAM explained 51% of the 
variance in CPUE for fourhorn sculpin (Myoxocephalus quadricornis) 
(Table  3). Fourhorn sculpin CPUE was significantly associated lin-
early with temperature and salinity and nonlinearly with dissolved 
oxygen (Figure  7). Catch-per-unit-effort was positively associated 
with all three significant covariates (Figure  7). Variance in Pacific 
herring CPUE (23%) was explained by the GAM (Table  3). Pacific 
herring CPUE increased significantly with salinity in a linear manner 

(Figure 7). For saffron cod (Eleginus gracilis), the GAM explained 42% 
of the variance in CPUE (Table 3). Saffron cod CPUE was significantly 
associated nonlinearly with pH and dissolved oxygen (Figure  7). 
Catch-per-unit-effort decreased with pH and dissolved oxygen until 
~10.8 mg/L, above which CPUE began to increase (Figure 7). Catch-
per-unit-effort was significantly higher at West Dock than Endicott 
for saffron cod (Figure 7). Seventy-nine percent of the variance in 
whitespotted greenling CPUE was explained by the GAM (Table 3). 
Whitespotted greenling CPUE was significantly associated linearly 
with pH and nonlinearly with dissolved oxygen (Figure 7). Catch-per-
unit-effort increased with pH and decreased with dissolved oxygen 
until ~10.8 mg/L when the relationship became positive (Figure 7).

F I G U R E  4   Fits of GAM covariates including 95% confidence bounds for amphidromous species. Note that the environmental covariates 
were smooth terms while site is parametric
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TA B L E  3   GAM models for all species

Species

Smooth terms Parametric term

pH Temperature (°C) Salinity
Dissolved oxygen 
(mg/L) Site (ref = West Dock)

Deviance 
explained

Arctic cisco

df 0.54 0.96 0.00 0.00 — 0.57

Coefficient ± SE — — — — −0.40 ± 0.36

p-value 0.23 0.00 0.84 0.00 0.27

Arctic cod

df 0.89 0.00 0.72 0.95 — 0.61

Coefficient ± SE — — — — 4.84 ± 1.74

p-value 0.00 0.56 0.06 0.00 0.01

Arctic flounder

df 0.00 0.97 1.54 0.00 — 0.28

Coefficient ± SE — — — — 0.16 ± 0.23

p-value 0.99 0.00 0.01 0.38 0.49

Arctic grayling

df 0.00 0.00 0.69 0.89 — 0.55

Coefficient ± SE — — — — 0.08 ± 1.37

p-value 0.60 0.49 0.10 0.00 0.95

Broad whitefish

df 1.39 0.95 0.00 0.93 — 0.65

Coefficient ± SE — — — — −1.76 ± 0.62

p-value 0.03 0.00 0.54 0.00 0.01

Burbot

df 0.58 1.61 0.00 0.70 — 0.66

Coefficient ± SE — — — — —

p-value 0.21 0.20 0.95 0.18 —

Dolly Varden

df 0.90 0.92 0.91 0.00 — 0.34

Coefficient ± SE — — — — 0.17 ± 0.37

p-value 0.00 0.00 0.00 0.59 0.65

Fourhorn sculpin

df 0.00 0.98 0.81 1.29 — 0.51

Coefficient ± SE — — — — −0.31 ± 0.21

p-value 0.65 0.00 0.02 0.00 0.15

Humpback whitefish

df 0.22 0.99 0.87 0.01 — 0.56

Coefficient ± SE — — — — 1.82 ± 0.29

p-value 0.26 0.00 0.01 0.28 0.00

Least cisco

df 0.00 0.98 0.62 0.00 — 0.42

Coefficient ± SE — — — — 1.14 ± 0.23

p-value 0.96 0.00 0.13 0.32 0.00

(Continues)
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4  | DISCUSSION

Spatiotemporally and taxonomically narrow characterization of the 
abiotic drivers of the abundance of nearshore Arctic fishes limits 
the ability of scientists and managers to assess the potential con-
sequences of climate change holistically in a region that is rapidly 
being reshaped by environmental change. This research advances 
knowledge of the drivers of abundance at a fine temporal resolu-
tion for a suite of nearshore Arctic fishes of varying life histories 
(e.g., freshwater vs. marine). Despite its novelty, our data set is 

limited spatially and temporally because we only sampled during a 
short period of the ice-free season at two sites, which hampers the 
ability to completely quantify habitat preferences. Nonetheless, 
we found that the abiotic environment influences the abundance 
of nearshore Arctic fish at a fine temporal resolution. Notably, pH 
was a significant predictor of abundance for six species. Further, 
results indicated potential affinities for different abiotic habitats 
displayed by Arctic fish in the nearshore. Our results suggested 
that fine resolution observations of the physicochemical environ-
ment should be paired with fish catch records to augment current 

Species

Smooth terms Parametric term

pH Temperature (°C) Salinity
Dissolved oxygen 
(mg/L) Site (ref = West Dock)

Deviance 
explained

Ninespine stickleback

df 0.79 0.82 0.93 0.64 — 0.43

Coefficient ± SE — — — — −0.47 ± 0.53

p-value 0.03 0.02 0.00 0.15 0.39

Pacific herring

df 0.00 0.23 0.84 0.68 — 0.23

Coefficient ± SE — — — — 0.65 ± 0.63

p-value 0.88 0.29 0.02 0.12 0.30

Pink salmon

df 0.00 0.86 0.85 0.00 — 0.34

Coefficient ± SE — — — — 0.54 ± 0.58

p-value 0.99 0.01 0.01 0.82 0.36

Rainbow smelt

df 0.00 1.40 0.98 0.84 — 0.46

Coefficient ± SE — — — — −2.21 ± 0.34

p-value 0.76 0.00 0.01 0.01 0.00

Round whitefish

df 0.60 0.00 0.85 1.25 — 0.70

Coefficient ± SE — — — — −5.10 ± 0.98

p-value 0.12 0.46 0.01 0.00 0.00

Saffron cod

df 1.40 0.69 0.31 0.92 — 0.42

Coefficient ± SE — — — — 2.61 ± 0.89

p-value 0.00 0.07 0.20 0.00 0.00

Threespine stickleback

df 0.00 0.93 0.00 1.26 — 0.27

Coefficient ± SE — — — — 1.02 ± 0.23

p-value 0.96 0.00 0.57 0.04 0.00

Whitespotted greenling

df 0.94 0.00 0.40 0.84 — 0.79

Coefficient ± SE — — — — —

p-value 0.00 0.74 0.24 0.01 —

Note: Degrees of freedom are for the smooth terms, and coefficients are for the parametric term. Significance levels for each parameter and the 
model deviance explained are presented.

TA B L E  3   (Continued)
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data in order to better understand nearshore Arctic fish ecology in 
a changing environment.

The findings of this study indicated possible preferences for 
certain physicochemical conditions which could influence the abun-
dance of species in select habitats, although it is impossible to de-
finitively attribute these findings to habitat preference due to the 
limitations of our data set. Two anadromous species, Dolly Varden 
and pink salmon, were more abundant at low and high salinities, 
as indicated by the GAMs (Figure 5), which is consistent with their 
propensity to move between freshwater and marine environments. 
Arctic flounder, a stenohaline marine species which prefer high salin-
ity (Griffiths et al., 1998), were caught in greater abundance at West 
Dock (Figure  3), the high salinity site, and the GAM found CPUE 
to increase with salinity (Figure  7). These examples highlight how 
the physicochemical environment can lead to differences in spatial 
manifestations of species occurrences and abundance in the coastal 
Arctic, even over short time scales. However, there are caveats 
which should be contemplated when considering abundance. For in-
stance, migratory behavior and prey availability, which our study did 

not examine, could influence the timing of fish presence at sampling 
locations. Additionally, site-specific conditions, such as currents and 
proximity to rivers occupied by diadromous and freshwater fishes, 
may influence these results. Despite these caveats, it is well estab-
lished that climate envelopes and habitat preferences play a major 
role in influencing fish distributions and abundances in the coastal 
Arctic (Griffiths et al., 1998; Priest et al., 2018; Reist et al., 2006). 
Although we found that abundance data and GAMs reflected known 
associations between fish and the abiotic environment based on life 
history and previously described habitat preferences, these data 
need to be expanded to include more sites and years to fully charac-
terize habitat preference.

Our findings indicate that Arctic fish species display disparate 
responses to the nearshore environment on short time scales, which 
may have implications for future fish community structure. Records 
from the BSNLTFMP sites indicated that the maximum temperatures 
observed during 2019 were among some of the highest observed, 
and are consistent with increasing average temperatures in the re-
gion since 1985. A maximum temperature of 22.1°C was observed 

F I G U R E  5   Fits of GAM covariates including 95% confidence bounds for anadromous species. Note that the environmental covariates 
were smooth terms while site is parametric
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in 2009 (Gatt et  al.,  2019), which is higher than the 17.2°C maxi-
mum temperature observed in 2019. Nonetheless, 2019 was the 
sixth warmest year on record for the BSNLTFMP (Gatt et al., 2019). 
These patterns of temperature maxima suggest that although 2019 
was not anomalously warm, fishes in the coastal Arctic are likely 
experiencing extreme temperature events periodically during sum-
mer months, which could challenge their thermal tolerance, ulti-
mately resulting in thermal stress (Somero, 2005, 2010). The 1985 
and 2017 average temperatures were 6.6 and 9.5°C, respectively, 
for an average yearly temperature increase of 0.08°C/year (Griffiths 
et al., 1998; Priest et al., 2018). During our 2019 study, we recorded 
average temperatures of 9.4°C at Endicott and 8.7°C at West Dock, 
which are consistent with records of rising temperatures since the 
early 1980s. Concomitant changes to nearshore fish communities 
at the BSNLTFMP sites have been observed alongside increases in 
ocean temperature.

Priest et al.  (2018) showed that sockeye salmon (Oncorhynchus 
nerka) and whitespotted greenling were captured by the monitoring 
program for the first time since its inception (in 1981) during 2017, 
including repeated occurrence of whitespotted greenling during 
2019 (Gatt et al., 2019), which is indicative of environmental con-
ditions supporting the persistence of emergent species after their 
original occurrence (Arvedlund, 2009; Fogarty et al., 2017). Annual 
CPUE of least cisco has decreased over time, while CPUE of saffron 
cod, known by previous work to be a warm tolerant species, has in-
creased (Gatt et al., 2019; Hamman et al., 2020; Priest et al., 2018). 
In contrast, we found that least cisco abundance was highest at 

warm temperatures and saffron cod abundance was not significantly 
associated with temperature. These examples highlight the impor-
tance of expanding on and coupling coarse and fine scale studies 
to tease apart what processes are shaping fish communities in the 
short term and long term. Priest (2020) found that annual species 
richness in the nearshore Beaufort Sea, driven by temperature and 
salinity changes, has significantly increased by an average of one ad-
ditional species per decade since 2001. These composition changes 
were found to benefit generalist eurythermal and euryhaline spe-
cies, such as saffron cod (Priest,  2020). Signs of environmentally 
driven fish community restructuring can also be attributed to an in-
crease in nonindigenous fishes in the Arctic since the 1960s (Chan 
et  al.,  2019). Indeed, these examples highlight how rapid Arctic 
change is altering nearshore fish assemblages and suggests that abi-
otic habitat preferences play a pivotal role in reshaping nearshore 
Arctic fish communities.

Fishes without a significant response to temperature such as 
Arctic cod, Arctic grayling, burbot, Pacific herring, round whitefish, 
saffron cod, and whitespotted greenling may also be more resilient 
under warming conditions. The lack of a significant response to 
temperature may be indicative of the acclimation of Arctic fishes to 
warming. For instance, Arctic cod are known to tolerate tempera-
tures up to 13.5°C (Marsh & Mueter, 2020), yet maximum tempera-
tures at BSNLTFMP sampling sites have been consistently warmer 
(Gatt et  al.,  2019), as was the case during this study. As climate 
change progresses, fishes tolerant of a wide range of physicochem-
ical habitat conditions are more likely to persist (Ofori et al., 2017; 

F I G U R E  6   Fits of GAM covariates including 95% confidence bounds for freshwater species. Note that the environmental covariates were 
smooth terms while site is parametric
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Reist et al., 2006). Models indicate that thermal safety margins (the 
difference between the upper thermal tolerance limit and the max-
imum habitat temperature during summer) for upwards of 60% of 
marine and freshwater fish species could be exceeded under future 

climate change scenarios (Dahlke et al., 2020). In short, fishes iden-
tified in this study demonstrated disparate responses to the abiotic 
environment, which likely has implications for future nearshore 
Arctic fish assemblage composition.

F I G U R E  7   Fits of GAM covariates including 95% confidence bounds for marine species. Note that the environmental covariates were 
smooth terms while site is parametric
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To truly understand the incipient impacts a changing Arctic 
will have on nearshore fish communities, it is imperative that the 
relationships between fish and the abiotic environment are fully 
characterized. This study is a foundational link in understanding 
how the abundance of fish is driven by physicochemical habitat 
characteristics on a day-to-day basis. Expanding on these data and 
previously conducted coarse-scale studies with fine resolution 
multivariate environmental and fish catch data collected across 
more sites and years is a logical next step. This would allow for 
interannual comparisons of fish assemblages and the potential to 
capture the emergence of new species in the region in relation to 
multivariate oceanographic data. Collecting data from a larger geo-
graphic area and across more years would provide a better char-
acterization of habitat preference ranges by catching fish across 
a wider range of their preferred habitats. Further, physicochem-
ically influenced day-to-day fluctuations in abundance which are 
truly indicative of habitat preference that may act as indicators 
for long-term ecological change would become disentangled from 
other processes. Baseline work to characterize habitat preference 
ranges of nearshore Arctic fishes should also be expanded to other 
regions of the Arctic, as our work is limited to only a small subset of 
the taxa present in the coastal Arctic (Reist et al., 2006). Although 
it would be advantageous to extend monitoring beyond the sum-
mer field season, allowing for a longer SeaFET™ conditioning pe-
riod and the capture of year-long carbonate chemistry dynamics, 
ice conditions in the shallow nearshore environment currently 
prohibit such operations. Deploying oceanographic instrumenta-
tion in deeper regions and utilizing sampling methodologies with a 
demonstrated efficacy under ice, which can be deployed at a high 
frequency, such as environmental DNA (Khalsa et  al.,  2020), gill 
nets (Svenning et al., 2007), long lines (Cott et al., 2013), video cam-
eras (Mueller et al., 2006), and acoustics (Mueller et al., 2006), may 
be a way to expand monitoring efforts.

5  | CONCLUSION

We coupled high-frequency in situ measurements of pH, tempera-
ture, salinity, and dissolved oxygen with daily fish catches in the 
nearshore Arctic to characterize the abiotic drivers of abundance 
occurring on a fine scale. The results of this study demonstrated 
that species show a varying affinity to different environmen-
tal conditions, which are consistent with life-history and previ-
ous studies. These results indicated potential restructuring of 
nearshore fish communities driven by environmental change and 
habitat preference. We demonstrated that although certain pa-
rameters are easier to measure than others, it is worthwhile to 
include a wider variety of potential covariates in ecological moni-
toring studies as drivers of species abundance, that is, pH (a signif-
icant predictor of abundance for six species) in order to establish a 
comprehensive baseline understanding of the nearshore environ-
ment. Lastly, this work highlights the value of sampling fishes at 
a high frequency to better understand Arctic fish ecology, which 

has historically been informed by trawl survey, permitting a more 
holistic picture of potential fish community restructuring as a re-
sult of Arctic change.
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