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Abstract

Background: Signaling networks are designed to sense an environmental stimulus and adapt to it. We propose and study a
minimal model of signaling network that can sense and respond to external stimuli of varying strength in an adaptive
manner. The structure of this minimal network is derived based on some simple assumptions on its differential response to
external stimuli.

Methodology: We employ stochastic differential equations and probability distributions obtained from stochastic
simulations to characterize differential signaling response in our minimal network model. Gillespie’s stochastic simulation
algorithm (SSA) is used in this study.

Conclusions/Significance: We show that the proposed minimal signaling network displays two distinct types of response as
the strength of the stimulus is decreased. The signaling network has a deterministic part that undergoes rapid activation by
a strong stimulus in which case cell-to-cell fluctuations can be ignored. As the strength of the stimulus decreases, the
stochastic part of the network begins dominating the signaling response where slow activation is observed with
characteristic large cell-to-cell stochastic variability. Interestingly, this proposed stochastic signaling network can capture
some of the essential signaling behaviors of a complex apoptotic cell death signaling network that has been studied
through experiments and large-scale computer simulations. Thus we claim that the proposed signaling network is an
appropriate minimal model of apoptosis signaling. Elucidating the fundamental design principles of complex cellular
signaling pathways such as apoptosis signaling remains a challenging task. We demonstrate how our proposed minimal
model can help elucidate the effect of a specific apoptotic inhibitor Bcl-2 on apoptotic signaling in a cell-type independent
manner. We also discuss the implications of our study in elucidating the adaptive strategy of cell death signaling pathways.
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Introduction

Cellular signaling networks are designed to sense an environ-

mental stimulus and respond in a strength dependent manner. In

this manuscript, we develop and study a minimal model of a

signaling network that can respond to an external stimulus in a

manner such that the activation is fast under a strong stimulus but

slow if the stimulus is weak. We derive the minimal network by

assuming that the cell-to-cell variability dominates the slow

signaling activation, under weak stimuli, in order to adapt to a

fluctuating environment. In such a scenario, population average

over many cells cannot capture cell-to-cell variability in signaling.

We employ stochastic differential equations and stochastic

simulations to study the signaling response in our proposed

minimal signaling network. We carry out a sensitivity analysis of

the minimal model with respect to parameter variations that also

provides simple quantitative relations connecting different param-

eter values. We further use probability distributions of signaling

molecules to characterize differential signaling response in the

minimal network and such distributions show very distinct types of

behavior depending on the strength of the stimulus. Specifically,

for the case of a weak stimulus, a characteristic bimodal

distribution is obtained for the activation of a downstream

signaling molecule indicating large cell-to-cell fluctuations.

Interestingly, the results from our minimal stochastic signaling

model capture the essential stochastic signaling behavior observed

in simulations of complex apoptotic cell death signaling pathways

[1]. Details of the apoptotic signaling response vary depending on

the cell type under consideration and also on the type of apoptotic

stimulus applied [2–7]. Our developed minimal signaling network

demonstrates that large cell-to-cell stochastic variability increases

as the strength of the stimulus is decreased, a feature also observed

in large scale simulations and experiments of apoptosis, irrespec-

tive of cell types and the stimulus types used in those studies

[1,2,7]. Hence, the minimal signaling network developed here

captures cell-type independent features of apoptosis signaling and

thus can serve as a general signaling model of apoptosis. We also

discuss how the study of such a minimal network can provide

crucial insights into the process of biological evolution of apoptosis

signaling pathways.
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Results

The minimal signaling network
We designed our proposed minimal signaling network to

respond to an external stimulus in a manner dependent on the

strength of the stimulus.

(i) Under a strong stimulus, activation of the signaling network

is fast and there is no need for cell-to-cell stochastic

fluctuations;

(ii) whereas under a weak stimulus, activation of the signaling

network is slow with large cell-to-cell variability so that it can

adapt to a fluctuating environment.

We attempted to find a minimal set of signaling reactions that

can achieve the above response, with the nature of signaling

reactions being that of irreversible chemical reactions of the type

X?X �.
Rapid deterministic activation under a strong stimulus can be

achieved through a one-step direct activation of downstream

signaling molecules (Figure 1a (i)). However, this one-step pathway

would generate a slow deterministic activation of the signaling

network under weak stimuli. Hence, for the case of a weak

stimulus, we need a minimum of two separate rate constants to

generate slow activation with large cell-to-cell variability. First, a

low-rate constant step is required to generate slow stochastic

activation of signaling molecules as the low kinetic rate constant

will lead to a low probability of signaling activation with enhanced

stochastic effects. However, one slow step cannot generate large

cell-to-cell stochastic fluctuations and therefore it is essential to add

a second fast step. This fast reaction will activate the signaling

network rapidly once a few molecules have been activated by the

low-probability event of a slow step (Figure 1a (ii)). This slow-fast

combination will presumably lead to the slow stochastic response

in a manner such that large cell-to-cell variability with all-or-none

type activation of the signaling network is achieved. The same

external stimulus activates both pathways of the minimal network.

Hence, we need to combine the two pathways in such a manner

that, under a strong stimulus the one-step deterministic (denoted

by type A) pathway wins, and,s under a weak stimulus the

stochastic (denoted by type B) pathway dominates. This is

achieved by adding a fast step to the second stochastic pathway

that connects the second pathway to the external stimulus before

the slow-fast steps. The rate constant for that fast step is chosen to

be greater than that of the deterministic reaction of the first

pathway to ensure that the stochastic pathway dominates under

weak stimuli.The final downstream signaling molecule in the two

pathways are considered to be the same molecule so that the two

pathways are joined in a loop structure (Figure 1b). We used a

combination of stochastic differential equations and stochastic

simulations to study the behavior of the signaling network as the

strength of an external stimulus is varied.

Signaling in the minimal network: stochastic differential
equations

We derive a stochastic differential equation for the one-step

irreversible reaction X?X � by equating the corresponding

Fokker-Planck equation with the continuum limit of the Master

equation for that activation reaction [8]. The stochastic equation is

given by

dx&{kxdt{
ffiffiffiffiffiffi
kx
p

dW ð1Þ

x denotes the number of molecules of the signaling species X
that are activated to X �. k is the reaction rate constant and dW
denotes the differential white noise (W (t) is a Brownian process).

The equation that governs the number of activated species is given

by dx�~{dx~kxdtz
ffiffiffiffiffiffi
kx
p

dW , which shows that the total

number xzx� of a signaling species remains conserved. Eq. (1)

is a nonlinear stochastic differential equation (SDE) with

interesting structure of the noise term: for a low rate constant

(k%1), the noise term may not vanish even in the presence of a

large number of molecules, which is in contrast to earlier

considerations where stochastic effects were thought to be

important only when a small number of signaling molecules were

involved [9,10]. We are now able to write the set of stochastic

differential equations that describes all four reactions in type A and

type B pathways:

dx1~{k1x1dt{
ffiffiffiffiffiffiffiffiffiffi
k1x1

p
dW ,

dx2~{k2x2dt{
ffiffiffiffiffiffiffiffiffiffi
k2x2

p
dW ,

dx3~{k31x3dt{
ffiffiffiffiffiffiffiffiffiffiffi
k31x3

p
dW{k32x3dt{

ffiffiffiffiffiffiffiffiffiffiffi
k32x3

p
dW

ð2Þ

The number of molecules of the activated species corresponding to

xi is denoted by x�i and obeys the equation dx�i ~{dxi. The reaction

rates in Eq. (2) are given by k1~k0
1x0, k2~k0

2x�1, k31~k0
31x0 and

k32~k0
32x�2. Thus the reaction rates depend on the numbers of

activated signaling molecules from the previous reaction step. x0 is

taken as the external stimulus that activates the signaling network

under consideration. We denote the initial concentrations of all

the inactivated signaling species by x1(0)~x0
1, and x2(0)~x0

2,

x3(0)~x0
3, and the initial number of activated molecules for all three

species are set to zero. Hence, the total number of molecules for the i
th signaling species is taken to be x0

i . Same variables are used in our

Monte Carlo study of the signaling network. We first consider the

Figure 1. Schematics of minimal signaling networks. (a)
Schematics of a minimal deterministic signaling network (i), and the
same for a two-step signaling network with slow stochastic activation
(ii). (b) Schematics of the minimal signaling network.
doi:10.1371/journal.pone.0011930.g001
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solutions of the above set of equations for the type A and type B

pathways separately and then study their combined behavior.

(a) Deterministic signaling through type A pathway. This

is the one step signaling reaction described by the dx3 reaction

in Eq. (2) with k32 for the type B pathway being set to zero.

This equation has the generic form of the Eq. (1):

dx~{kxdt{
ffiffiffiffiffiffi
kx
p

dW and is amenable to analytical solution.

We make a change of variable z~
ffiffiffiffiffiffi
kx
p

. The solution to the

equation in terms of our new variable z is given as

z(t)~z(0)e
{k

2
t
{

k

2

ðt

0

e
{k

2
(t{s)

dW ð3Þ

s is a variable that is integrated over and dW is a stochastic

differential (W (s) is a Brownian process). The number of signaling

molecules of x3 is calculated from the above solution using

x3~z2=k. The number of activated molecules is then estimated

simply by using x�3~x0
3{x3. The solution, using parameter values

of k~1 and x0
3~100, is plotted in Figure 2a. The rate constant k

sets the time-scale of deterministic activation.

(b) Stochastic signaling through type B pathway. Here

we use the three steps signaling reactions described by the

equation set (2) with k31 for the type A pathway set to zero in the

last equation. The signaling reactions in each step again have the

generic form of Eq. (1) which is amenable to an analytical solution.

However, such a scheme with step-by-step solutions where the

solution in one step is fed into the reaction constant of the next

step quickly leads to complicated expressions that are not easy to

analyze. Hence we numerically solved the set of stochastic

differential equations given for the type B pathway. In Figure 2b,

we show the activation of the end point of the signaling network,

namely the activated x3 molecules, as obtained from the numerical

solution of the type B reactions. Clearly, in the type B signaling,

the average behavior does not capture cell-to-cell stochastic

fluctuations. We also probe the robustness of such a behavior in

terms of parameter variations. The upper bound of the rate

constant for the intermediate step k0
2 is constrained by two factors:

(a) it has to be small (k2x2v1) to generate stochastic fluctuations in

the type B pathway, and (b) it also has to be significantly smaller

than the rate constant for the final activation step (k0
32&k0

2 ) to

generate all-or-none type activation with large cell-to-cell

variability. Even though there is no lower bound needed to be

defined for the constant k0
2 , it sets the time-scale of the signaling

activation. In addition, lower the value of k0
2, lower the amount of

stimulus needed for the type B pathway to get activated (or

equivalently longer the time to switch to the type B pathway).

Hence the slowness of the stochastic pathway under weak stimuli

also determines the relative dominance between type A and type B

pathways.

(c) Transition from deterministic to stochastic signaling

in a combined network of type A and type B pathways. By

comparing the two coefficients in the equation for the x3

activation, we can derive a condition for which the deterministic

type A pathway will dominate over the stochastic type B pathway

(over the entire time-course of activation). The relevant coefficient

for the type A pathway is *k31~k0
31x0 and the same for the type

B pathway is *k32~k0
32x�2. We approximate the intermediate

reaction step of the type B pathway by the stochastic activation

term such that dx2&{
ffiffiffiffiffiffiffiffiffiffi
k2x2

p
dW&{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0

2x�1x0
2

q
dW . Activation

of the first step of the type B pathway occurs in a rapid manner

and we could approximate x�1&x0
1, and k0

32x�2*k0
32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0

2x0
1x0

2

q
.

Thus comparing the coefficients k0
31x0*k0

32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0

2x0
1x0

2

q
, we derive a

condition for which the deterministic type A pathway will

dominate over the stochastic type B pathway: x0w

k0
32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0

2x0
1x0

2

q

k0
31

(Figure S1). Hence, below a certain threshold value of the stimulus

x0, the stochastic type B pathway plays a role and above that value

the deterministic type A signaling leads to rapid activation of x3.

Note, the observed transition from deterministic to stochastic

behavior in signaling, depending on the strength of an external

stimulus, confirms that the signaling network under consideration

has a suitable minimal structure. However, several simplifying

assumptions were made in the calculations based on stochastic

differential equations. We use Monte Carlo simulations for a

detailed study and also to corroborate the results obtained from

our theoretical analysis.

Signaling in the minimal network: Monte Carlo
simulations

We use Gillespies Monte Carlo sampling technique [11] to

simulate the Master equations that describe the set of chemical

reactions given in the equation Eq. (2). The initial condition is

Figure 2. Differential signaling through type A and type B pathways. (a) Plots obtained from the exact solution of the stochastic differential
equation for type A signaling. (b) Plots obtained from the numerical solution of the stochastic differential equations for type B signaling. Each colored
line corresponds to a solution for a single realization of the randomness i.e. a single cell (for both (a) and (b)). Note the disparate time-scales of
signaling activation in (a) and (b).
doi:10.1371/journal.pone.0011930.g002

A Minimal Signaling Network

PLoS ONE | www.plosone.org 3 August 2010 | Volume 5 | Issue 8 | e11930



set as x0
1~100, x0

2~50, x0
3~50. We consider activation of the

downstream signaling molecule x�3 (for k0
31%k0

1 ) as we vary the

external stimulus x0.

Slow stochastic activation under a weak stimulus. For a

weak external stimulus (x0v10), large cell-to-cell fluctuations

dominate the signaling behavior, where x3 activation at the single

cell level is rapid compared to the time-scale range for x3 activation

for all cells (Figure 3: left panel). The plot was generated for x0~1
and with reaction constants set to: k0

31~10{5 (for the type A

pathway), and k0
1~1:0, k0

2~10{7, and k0
32~1:0 (for the type B

pathway) in suitable units. We derive a condition for which the

signaling will be entirely dominated by the type B pathway by

comparing k0
31x0x0

3*k0
2x0

1x0
2. For the given parameter values, we

obtain x0*1 (or less) for pure type B signaling, which agrees well

with our numerical simulation results (Figure 3). Decreasing k0
2

would demand increasingly lower x0 for the type B pathway to

dominate at early times of signaling (Figure S1). The small rate

constant in the intermediate step of the type B pathway leads to slow

activation of the pathway where different cells initiate activation at

very different time-points and then a subsequent fast rate constant

leads to a spike in x3 activation. We call this phenomenon all-or-

none type activation with large cell-to-cell variability. Decreasing

stimulus slows down the downstream signaling and increases cell-to-

cell stochastic variability. We can estimate the variance of x3

activation at the single cell level using a sharp-rising approximation

scheme for x3 activation (ignoring the spread along the time axis for

a single cell). Suppose, m(t) is the number of cells, out of a

population N cells, in which x3 got activated within a given time

period t. Assuming rapid activation of x3, the average of x3 is given

by vx3w~x0
3(1{m(t)=N) and the average of x3 square is

vx2
3w~(x0

3)2(1{m(t)=N). The variance can then be estimated as

vx3w
2{vx2

3w~(x0
3)2(1{m(t)=N)(m(t)=N). Hence a simple

scaling relation is obeyed by the Fano factor, i.e. variance(t)/

average(t), ~x0
3(m(t)=N), which remains &1 and increases with

time implying presence of large cell-to-cell stochastic fluctuations.

Calculation of the Fano factor from actual simulation data (such as

in Figure 3: left panel) also shows that Fano factor at a given time

increases with increasing x0
3 and remains larger than one as

predicted by the scaling relation. However, the scaling relation is

obtained only within a sharp-rising approximation and thus

slightly deviates from the variance/average ratio obtained from

simulations.

The stochastic signaling observed in response to a weak external

stimulus is essentially dominated by the type B pathway, as a

similar signaling response is generated if the kinetic constant for

the type A pathway is set equal to zero. This result is also

consistent with our theoretical analyses of the minimal network

that showed the presence of large stochastic fluctuations under a

weak stimulus. Stochastic signaling behavior through the type B

pathway in response to a weak stimulus is maintained as long as

the fast-slow-fast kinetics of signaling reactions is also maintained

in the type B pathway (Figure S1). For a stimulus of intermediate

strength (x0^10{1000), a mixed signaling behavior is observed

with a sudden change from type A to type B at the level of single

cells (Figure 3: middle panel). Also note, for pure type B signaling (when the

kinetic constant for type A is set to zero), presence of a large number of

molecules of an initial stimulus (x0&1) does not change the observed

stochastic signaling behavior.

Rapid deterministic activation under a strong stimulus: Under a strong

external stimulus, i.e. for large values of x0 (w1000), the type A

pathway dominates the signaling behavior (Figure 3: right panel), as

also observed in the theoretical study using stochastic equations.

The plot was generated for x0~1000 and with reaction constants

set to: k0
31~10{5 (for the type A pathway), and k0

1~1:0,

k0
2~10{7, and k0

32~1:0 (for the type B pathway) in suitable

units. For these given parameter values, our theoretical estimate of

the threshold stimulus x0w

k0
32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0

2x0
1x0

2

q

k0
31

results in x0w1000

(order of magnitude approximation), which matches well with our

stochastic simulation results. Similar deterministic signaling is

observed when the kinetic constant for the type B pathway is set to

zero to assure a pure type A response. As mentioned earlier,

characteristics of such type A signaling is small cell-to-cell

fluctuations where the average (over a population of cells) behavior

dominates the signaling. As we decrease the strength of an external

stimulus increased cell-to-cell stochastic fluctuations are observed

with a gradual switch to the type B activation.

Probability distribution approach to characterize

stochastic signaling. Large (w1) variance/average ratio for

weak stimuli indicates large stochastic variations in signaling. To

characterize such stochastic fluctuations in the minimal network

we determine the probability distribution of activated x�3. A

histogram of activated x�3 is generated from many runs (i.e. many

cells) of our simulations that defines the probability distribution of

Figure 3. Switch from type B to type A signaling with increasing stimuli. Activation of x3 molecules at the single cell level for weak: x0~1
(left), intermediate: x0~10 (middle), and strong: x0~1000 (right) stimuli. x3 activation is normalized by its maximum. Different colors correspond to
different individual cells.
doi:10.1371/journal.pone.0011930.g003
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x�3. In the case of a strong stimulus x0~1000, i.e. when the type A

pathway dominates the signaling, the probability distribution

shows a gradual shift (along the x axis) over time. Thus the average

behavior is representative of the entire cell population and cell-to-

cell stochastic fluctuations are not significant when compared to

the average (Figure 4, top panel). The plot was generated for

x0~1000 and with reaction constants set to: k0
31~10{5 (for the

type A pathway), and k0
1~1:0, k0

2~10{7, and k0
32~1:0 (for the

type B pathway) in suitable units. The initial condition is set as

x0
1~100, x0

2~50, x0
3~100. On the contrary, if the stimulus is

weak (x0~1), large cell-to-cell stochastic fluctuations lead to a

bimodal distribution (Figure 4, bottom panel) for activated x�3
molecules where one peak gets taller while the other peak gets

shorter. Such bimodal distribution arises because activation of x�3
in an individual cell is completed in a period of time that is orders

of magnitude smaller than the time over which activation occurs

for a large population of cells. We define such signaling response as

all-or-none type activation with large cell-to-cell variability.

Hence, such a bimodal probability distribution can be

considered as a characteristic of signaling through the type B

pathway with large stochastic variations. For intermediate stimuli,

the probability distribution shows characteristics of both type A

and type B activation (Figure 4, middle panel).

The minimal network elucidates signaling mechanisms in
apoptosis

Apoptotic cell death signaling pathway is one of the most

complex intracellular signaling networks and consists of a large

number of components [12,13]. Large number of signaling

components, molecules, and complicated network structure all

contribute to the enormous complexity of the apoptotic cell death

signaling pathways, and thus mask the essential design principles

of apoptosis signaling. However, one may want to know if there

exists a minimal signaling network structure that can capture the

essential qualitative features of the cell death signaling through the

apoptotic pathways.

Apoptotic cell death signaling is generally mediated by two

distinct pathways that are connected in a unique loop structure

through the final downstream activation of caspase-3 molecules

[13]. Activation of the apoptotic cell death signaling pathway has

been shown to have two disparate time scales: (a) fast (minutes)

activation in some cases such as ([14]), and (b) orders of magnitude

slower (w10 hrs) activation under certain conditions [5,14].

However, the presence of a specific signaling molecule and its

concentrations are often cell-type specific [15], calling into question

the robustness of the results obtained from experiments studying

apoptosis signaling. Our proposed minimal model of stochastic

signaling network can capture the experimentally observed slow

activation of the apoptotic signaling pathway in a cell-type

independent and robust manner. The slow intermediate step in

the type B pathway of the minimal network captures the slow

reaction of Bax activation or apoptosome formation (or both of

those) in apoptosis signaling. The time-to-death and its cell-to-cell

variability in apoptosis signaling is limited by stochastic Bax

activation induced cytochrome c release and apoptosome formation

induced caspase-9 activation [1,6,7]. The relative contribution of

those two slow stochastic events in apoptosis can vary significantly

depending on the cell type and apoptoptic stimuli used. We could

effectively simulate the effect of both slow steps in apoptosis, and

their stochastic variations, by varying the rate constant of the

intermediate slow step in the type B pathway of the minimal model

(Figure 5). Thus the proposed minimal network with stochastic

signaling behavior seems to be an appropriate minimal model for

the apoptosis signaling where large cell-to-cell fluctuations cause

slow cell death. This minimal network could also be derived from

the full apoptotic signaling network by (i) grouping functionally

redundant proteins and (ii) replacing a set of reactions by a single

effective reaction with modified rate constants. However, the

approach taken in this work has the advantage that prior knowledge

Figure 4. Probability distribution as a measure of cell-to-cell stochastic variability. Probability distribution of activated x3 molecules under
strong x0~1000 (top) , intermediate x0~10 (middle), and weak x0~1 (bottom) stimuli. Histograms were obtained using single cell X3 activation
data from a population of 100 cells. For the strong stimulus (top) probability distributions are shown for three time points T = 100, T = 500, and
T = 1000. For the intermediate stimulus (middle), probability distributions are shown for three time points T = 500, T = 2000, and T = 4000. For the
weak stimulus (bottom), probability distributions are shown for three time points T = 500, T = 2000, and T = 4000.
doi:10.1371/journal.pone.0011930.g004
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of the apoptotic pathway is not needed, instead, a simple set of

assumptions on the response of the signaling network is sufficient to

generate the minimal network structure.

Results of our minimal model indicate that a slow rate constant

followed by a faster kinetics in our minimal model is enough to

generate large cell-to-cell stochastic variations as observed in the

large scale simulations, as well as in single cell experiments of

apoptosis signaling [1–3,6,7]. Variations in the initial number of

signaling molecules in the type B pathway will enhance the cell-to-

cell stochastic variability, a feature also observed in apoptosis

signaling [7]. We have further connected our minimal model of

stochastic signaling with a specific model of apoptosis inhibition

mediated by anti-apoptotic Bcl-2 protein. The loop structure of

tBid-Bcl-2-Bax along with the Bcl-2 level determine the time

course of Bax2 activation and thus apoptotic activation through

the mitochondrial pathway of apoptosis [7,13]. The rate constants

for the tBid-Bcl-2, tBid-Bax and Bax-Bcl-2 reactions are not small

and the number of molecules initially present are also large.

However, inhibition by Bcl-2 molecules reduces the effective rate

for Bax conversion to activated Bax and subsequent Bax-2

complex formation. In cancer cells, Bcl-2 inhibits over-expressed

BH3 molecule such as Bid, which can directly activate Bax with a

very small rate constant [7,16], and thus through the Bid-Bcl-2-

Bax loop stochastic Bax activation is generated. Such Bcl-2

inhibition of Bax activation dynamically generates stochastic

variability in apoptosis even when the initial number of molecules

present are not small [9,10]. In our minimal model, we have an

effective X?X � reaction with a slow reaction rate constant which

can be decreased to simulate an increase in Bcl-2 levels. Recent

experimental and theoretical studies elucidated that increase in

Bcl-2 levels increases time-to-death and its cell-to-cell variability in

apoptosis signaling [7]. For very high Bcl-2 levels, as observed in

some cancer cells, apoptotic activation is strongly inhibited with

rare stochastic activations of a few cells [7]. In our minimal model,

reduction in the rate constant of the slow intermediate step of

stochastic pathway generates slower activation with increased cell-

to-cell variability and thus captures the signaling behavior in

apoptosis with over-expressed Bcl-2 levels (Figure 5).

Discussion

In this article, we proposed a minimal signaling network that is

capable of sensing an environmental stimulus and generating an

appropriate signaling response in accordance with the strength of

the stimulus. We derived this network structure starting with a

simple set of assumptions related to the differential response of this

signaling network to varying external stimuli. Specifically, under a

weak stimulus, the minimal network is designed to use slow

stochastic signaling to adapt to a fluctuating environment. We

think the proposed minimal network can serve as a minimal

signaling model for the complex cell death signaling pathway.

Having large cell-to-cell stochastic fluctuations could be a strategy

which cells use to respond to a weak environmental stimulus and

thus diversify their options for adapting to a fluctuating

environment. We hope our results can be tested using synthetic

networks and will guide the engineering of biosynthetic mimics

designed to sense the environment in the proposed manner. We

also used a probability distribution based approach for the

characterization of stochastic signaling that shows non-trivial

bimodal distribution under weak stimuli.

Large-scale complex signaling pathways, such as cell growth,

cell death or immune response signaling pathways, were thought

to behave in a deterministic fashion due to the presence of a large

numbers of molecules [9,10,17,18]. In this work, we show that

stochastic fluctuations can persist even in the presence of a large

number of molecules. This result becomes even more important in

light of our recent simulations of the apoptotic cell death pathway,

where stochastic signaling behavior is also observed. The study of

minimal models prove the robustness (cell-type independence) of

the results obtained from our Monte Carlo simulation of the

apoptosis signaling network and thus can elucidate the essential

design principles of apoptotic cell death signaling in normal and

diseased cells.

In addition, the proposed minimal signaling network can

provide crucial insights into the adaptive evolutionary strategy of

complex cell death signaling network. The CED3–CED4 death

pathway found in C. Elegans resembles the type B pathway of the

proposed minimal signaling network [19]. The large-scale type 2

apoptotic network could have evolved such complexity in response

to the needs of increasingly complex and higher level species.

Also note, the type 1 apoptotic pathway, which induces fast

deterministic activation under strong apoptotic stimuli, first

appeared in vertebrates concurrent with the first appearance of

adaptive immunity. This type 1 apoptotic pathway resembles the

deterministic type A pathway of our minimal network and could

have first appeared in order to control adaptive immune response

Figure 5. The slow step in the type B pathway modulates cell-to-cell stochastic variability. Activation of x3 molecules at the single cell
level for various values of the rate constant for the slow intermediate step (type B pathway): 10{6 (left) , 10{7 (middle), and 10{8 (right) stimuli.
Different colors correspond to different individual cells.
doi:10.1371/journal.pone.0011930.g005
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through rapid activation of the apoptotic programmed cell death.

Thus the proposed minimal stochastic signaling network could be

an evolutionarily conserved network motif and thus could serve as

a general model for signaling during apoptosis. Such a minimal

model based approach to elucidate design principles of cell

signaling pathways is very general and can also be applied to study

other large-scale signaling systems.

Supporting Information

Figure S1 Differential signaling response of the minimal

network as k2
0 and x0 are varied. This phase diagram is generated

using two relations obtained from a parameter sensitivity analysis

of the minimal model: (i) type A signaling dominates for all times

when x0.k32
0 !k2

0x1
0x2

0/k31
0, (ii) type B signaling dominates

from the beginning when x0,k2
0x1

0x2
0/k31

0x3
0. Parameter values

used here are x1
0 = 100, x2

0 = 100, x3
0 = 100, k31

0 = 1025, and

k32
0 = 1.0.

Found at: doi:10.1371/journal.pone.0011930.s001 (0.04 MB TIF)
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