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Abstract: A disorder in pears that is known as ‘hard-end’ fruit affects the appearance, edible quality,
and market value of pear fruit. RNA-Seq was carried out on the calyx end of ‘Whangkeumbae’ pear
fruit with and without the hard-end symptom to explore the mechanism underlying the formation of
hard-end. The results indicated that the genes in the phenylpropanoid pathway affecting lignification
were up-regulated in hard-end fruit. An analysis of differentially expressed genes (DEGs) identified
three NAC transcription factors, and RT-qPCR analysis of PpNAC138, PpNAC186, and PpNAC187
confirmed that PpNAC187 gene expression was correlated with the hard-end disorder in pear fruit.
A transient increase in PpNAC187 was observed in the calyx end of ‘Whangkeumbae’ fruit when
they began to exhibit hard-end symptom. Concomitantly, the higher level of PpCCR and PpCOMT
transcripts was observed, which are the key genes in lignin biosynthesis. Notably, lignin content in the
stem and leaf tissues of transgenic tobacco overexpressing PpNAC187 was significantly higher than
in the control plants that were transformed with an empty vector. Furthermore, transgenic tobacco
overexpressing PpNAC187 had a larger number of xylem vessel elements. The results of this study
confirmed that PpNAC187 functions in inducing lignification in pear fruit during the development of
the hard-end disorder.
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1. Introduction

The hard-end disorder in pear fruit occurs in many pear-growing regions [1,2]. The disease
is frequently found in the United States of America (USA) in pear varieties, such as ‘Anjou’ (Pyrus
communis L), ‘Winter Nelis’ (P. dimorphophylla), and ‘Comice’ (P. communis) [3,4]. In recent years, the
hard-end disorder also appeared in some Asian pear varieties, including ‘Whangkeumbae’ (P. pyrifolia)
and ‘Xueqing’ (P. nivalis), and other varieties may also be affected [5,6]. Hard-end of pear is a
physiological disorder. Pear varieties that are grafted on Japanese pear (P. serotina Rehd) rootstocks
often exhibit this disorder due to scion-rootstock compatibility problems that cause water imbalance
problems and low Ca content and a low Ca/K ratio [6–8]. Fruits with a hard-end are culled out during
grading and packing, and severely misshaped fruits are deemed as unmarketable. The first symptom
of hard-end disorder is observed as an abnormally green or yellow color at the blossom end when
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the fruits have grown to one-third or half of their full size. A readily apparent protrusion of the calyx
forms due to the delayed development of the surrounding tissues. The epidermis over the calyx-end
of the fruit appears to be tight and shiny, and the flesh near the calyx turns dry and hard due to an
accumulation of lignin [5].

We previously reported that lignin content and the number of stone cells significantly increases
during hard-end development in ‘Whangkeumbae’ fruit [5]. These hard-end pear fruit also contain
high levels of enzymes that are involved in lignin synthesis, including phenylalanine ammonia lyase
(PAL), 4-coumarate: coenzyme A ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase
(POD). As a result, the development of hard-end in pear fruit is correlated with lignin accumulation.
Lignin is a phenylpropanoid-derived polymer that is deposited in secondary cell walls to increase
the mechanical strength of xylem tissues in vascular plants and provide defense against attacks from
pathogens [9]. Several genes and transcription factors are known to be involved in lignin biosynthesis,
including PAL, 4CL, CAD, cinnamoyl CoA reductase (CCR), and caffeic acid 3-O-methyltransferase
(COMT) [10,11]. In pear fruit, the transcript levels of Pp4CL1, PpCAD1, and PpCAD2 were elevated in
hard-end pear, relative to normal fruit [5].

Several transcription factors that are involved in lignin biosynthesis, such as MYB (myeloblastosis),
NAC (NAM, ATAF, and CUC), bHLH (basic helix-loop-helix), and others, have been identified
and characterized in Arabidopsis thaliana, tobacco (Nicotiana tabacum), and loquat (Eriobotrya japonica)
fruit [12–15]. The NAC transcription factor family is one of the largest families of plant-specific
transcription factors and they participate in several physiological processes [16]. Most proteins that
contain a NAC domain are located at the upstream end of a regulatory network. In Arabidopsis thaliana,
AtNST1 and AtNST2 promote secondary wall thickening in the endothecium of anthers, and knock-out
mutants of NST1 and NST3 lose secondary-wall deposition in stems [17]. Several studies have reported
that the NAC genes function as master switches in the biosynthetic pathways for cellulose, xylan, and
lignin by initiating a transcriptional signaling network that either affects MYB transcription factors or
regulates the expression of structural genes [18,19]. A study on loquat chilling-induced lignification
demonstrated that EjNAC3-regulated the expression of the EjCAD-like gene, which is a key gene in
lignification [20].

‘Whangkeumbae’ pear fruit was previously reported to accumulate lignin during the development
of hard-end fruit. In the present study, DEGs were identified during hard-end disorder in comparison to
the normal fruits in pears. RNA-seq was performed and it led to the identification of NAC transcription
factors that potentially control secondary cell wall and lignin deposition during hard-end disorder,
and then continue with the characterization of such gene(s).

2. Results

2.1. RNA-Seq Analysis

A total of 545 DEGs were identified in the comparison between hard-end and normal fruit in
samples that were collected on the day of harvest (120 d after anthesis). A KEGG pathway enrichment
analysis placed these DEGs into six pathways, which include protein processing in endoplasmic
reticulum; ribosome; glycine, serine, and threonine metabolism; phenylalanine metabolism;
phenylpropanoid biosynthesis; and, starch and sucrose metabolism (Figure 1). The phenylpropanoid
biosynthesis and ribosome were enriched in seven genes, which was the highest among all of the
identified pathways. The DEGs in the phenylpropanoid biosynthesis pathway were annotated
as PpCCR, PpC3H, PpF5H, Pp4CL, PpCOMT, PpPOD (GDR accession No., PCP040222, PCP022543,
PCP016311, PCP044725, PCP024172, PCP007841, PCP013947, and PCP030808). In our previous
research, we found that the sclereid content of hard end fruit was greater with critical lignification
when compared to that of the control fruit during the fruit development (from 60 days before harvest
to the day at harvest) [5]. We conducted qPCR at 60, 90, and 120 days after anthesis to evaluate the
expression patterns of these genes related to lignin during fruit development. Lignin-related genes
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PpCCR, Pp4CL, PpCOMT, PpCAD1, and PpCAD2 also exhibited significantly higher levels of expression
in hard-end fruit, relative to normal pear fruit (Figure 2).
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Figure 1. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and the annotation 
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Figure 1. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and the annotation
of DEGs in control vs. hard-end fruit. The yellow columns indicate cellular processes, the red columns
indicate genetic information processing, the blue columns indicate organismal systems, the green
columns indicate metabolism, and the purple columns indicate environmental information processing.
The figure displays the number of annotated genes in each category.
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Figure 2. The relative expression of lignification-related genes during the period of fruit development.
a–e, the different letters indicate significant differences between control and hard end fruit (p < 0.05;
Duncan’s multiple-range test).

2.2. The Phylogenetic Analysis of PpNACs and Their Expression Pattern

Transcription factor family genes were among the genes that were represented in the transcriptome
data. NAC transcription factor genes were selected from the identified transcription factors for further
analysis. Three PpNAC genes of PCP044783, PCP012487, and PCP013078 were named as PpNAC138,
PpNAC186, and PpNAC187, according to the reference (Figure 3) [21]. The three NAC genes that were
identified as DEGs, PpNAC187 was up-regulated, PpNAC138 and PpNAC186 were down-regulated
(Log2FC > 2 or Log2FC < −2) in hard-end fruit, relative to normal pear fruit.
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Figure 3. Phylogenetic analysis of pear NAC genes based on deduced amino acid sequences. PpNAC138,
PpNAC186, and PpNAC187 are framed in a red box. Genes listed with the same color indicate genes
that are highly homologous.

In our previous work, we found that the firmness in the hard end fruit increased from 60 days
after harvest and then reduced at 120 days after harvest [5]. RT-qPCR analyzed the expression patterns
of PpNAC138, PpNAC186, and PpNAC187 in hard-end and normal fruit during fruit development
and postharvest storage. The results indicated that the relative transcript abundance of PpNAC187
exhibited a significant increase of expression in hard-end fruit at 90 and 120 d after anthesis, while
PpNAC138 and PpNAC186 were all down-regulated in hard-end fruits during fruit development
(Figure 4). The relative transcript abundance of PpNAC187 gradually increased in hard-end fruit
during postharvest storage, while no significant changes in expression were detected in normal fruit.
The transcript abundance of PpNAC187 was consistently higher in the hard-end fruit than in normal
fruit. The relative abundance of PpNAC138 exhibited some greater level of expression in hard-end
fruit than in normal fruit at 60 d, while PpNAC186 only exhibited a higher level of expression at 120 d
after harvest in the hard-end pear fruits (Figure 4). PpNAC187 was selected for further analysis, as it
exhibited the greatest difference in expression in hard-end vs. normal fruit.
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Figure 4. The relative expression of NAC transcription factors during fruit development and postharvest
storage. a-f, the different letters indicate significant differences between control and hard end fruit
(p < 0.05; Duncan’s multiple-range test).

2.3. Subcellular Localization of PpNAC187

A pCambia1300-PpNAC187 vector, carrying a Green Fluorescent Protein (GFP) reporter protein,
was constructed and then inoculated into onion scales to determine the subcellular localization of
PpNAC187. An empty vector was used as a control. When viewed under a fluorescent microscope, the
cytomembrane and nucleus in living onion epidermal cells that were infected with the pCambia1300
empty vector exhibited green fluorescence. In contrast, only the nucleus exhibited green fluorescence
in onion epidermal cells that were infected with the pCambia1300-PpNAC187. These results indicate
that the PpNAC187 transcription factor is expressed and localized in the nucleus of onion epidermal
cells (Figure 5).
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Figure 5. Subcellular localization of a PpNAC187-GFP fusion protein in onion epidermal cells. The
Green Fluorescent Protein (GFP) protein was C-terminal to PpNAC187. The laser-scanning confocal
microscopy was used to obtain light, fluorescent, and merged images. Dark images represent fluorescent
images, bright represent light images, and merged represent merged dark and light images.

2.4. Transient Expression of PpNAC187 in ‘Whangkeumbae’ Pear Flesh

Transient expression analysis of PpNAC187 was conducted in ‘Whangkeumbae’ pear flesh by
injecting pSuper1300-PpNAC187 into fruit flesh, while the injection of an empty vector served as a
control (Figure 6a). No obvious changes in the pear fruit surface were observed over a three-day
period following injection with empty vector of all the fruit. However, subsequently, the color around
the inoculation site of fruit injected with Agrobacterium harboring the pSuper1300-PpNAC187 vector
changed to dark green at 5 d after inoculation, and the green color progressively deepened by the 10th
d after inoculation. In contrast, the control fruit that was inoculated with the empty vector exhibited
no significant change in color over the ten-day post-injection period. The results of the lignin staining
indicated no obvious differences between fruit inoculated with empty vector vs. pSuper1300-PpNAC187
after 3 d, but the level of staining was noticeably higher in pSuper1300-PpNAC187 inoculated
fruit than control fruit at 5 d and 10 d post-injection (Figure 6b). The results on the transient
expression of PpNAC187 are in agreement with the increased lignin accumulation that was observed in
‘Whangkeumbae’ hard-end fruit.
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Figure 6. Transient expression of PpNAC187 in ‘Whangkeumbae’ pear fruit. (a) Infiltration of the
pSuper1300-PpNAC187 or pSuper1300 empty vector into ‘Whangkeumbae’ pear fruit. (b) Fruit
phenotype (left) and Wiesner staining of fruit sections (right) at 1 d, 3 d, 5 d, and 10 d after infiltration of
the vectors. EV represents images of fruit infiltrated with the pSuper1300 empty vector, and PpNAC187
represents images of fruit infiltrated with the pSuper1300-PpNAC187 vector.

The expression of PpNAC187 and lignin-synthesis-related genes was also analyzed in fruit
tissues surrounding the injection site. In comparison to fruit that were injected with the empty
vector control, the relative expression level of PpNAC187 was higher in the fruit injected with the
pSuper1300-PpNAC187 vector. The expression pattern of PpCCR was analogous to PpNAC187, which
exhibited an increase in expression at 3 d post-injection. The expression levels of Pp4CL and PpCOMT
increased after 10 d and 5 d post-injection, respectively. There was a significant increase in both
PpCAD1 and PpCAD2 expression of fruit that were injected with the pSuper1300-PpNAC187 vector
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when compared to empty vector after 3 d post-injection (Figure 7). Thus, it was concluded that the
expression of PpNAC187 (TF) and PpCCR, PpCOMT, PpCAD1, and PpCAD2 (lignin biosynthesis genes)
was correlated with the lignification of flesh tissues in pears and reflected what occurred during the
normal development of hard-end pear fruit.Molecules 2019, 24, x FOR PEER REVIEW 9 of 17 
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Figure 7. The relative expression of lignification-related genes in pear fruit surrounding the site of
infiltration. 35S:PpNAC187 represent ‘Whangkeumbae’ pear fruit in which PpNAC187 was transiently
expressed. Empty vector represent fruit that were infiltrated with the pSuper1300 empty vector.
The x-axis represents time after infiltration, and the y-axis represents relative expression. Asterisks
indicate significant differences between empty vector and 35S:PpNAC187 fruit (*, p < 0.05; **, p < 0.01;
two-tailed t-test).

2.5. Functional Verification of PpNAC187 in Transgenic Tobacco

Transgenic tobacco plants overexpressing PpNAC187 were generated while using an
Agrobacterium-mediated transformation method. Insertion of PpNAC187 into the tobacco genome was
confirmed by PCR analysis. Two independent PpNAC187 transgenic lines (#1 and #3) were selected.
PpNAC187 was highly-expressed in #1 and #3 PpNAC187-overexpressing transgenic plants and it
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was not expressed at the empty vector line (Figure 8a,b). The level of stem’s lignin staining was
higher in PpNAC187-overexpressing lines than that in empty vector plants (Figure 8c). The lignin
content in stem tissues of PpNAC187-overexpressing lines was notably higher than in empty vector
line (Figure 8d). The autofluorescence within the stem sections in PpNAC187-overexpressing plants
was also more pronounced when compared to the control tobacco plants that were transformed with
an empty vector (Figure 8e). The autofluorescence within the leaf veins in PpNAC187-overexpressing
plants was more pronounced than the empty vector line (Figure 9a). Meanwhile, the lignin content
in leaf tissues of PpNAC187-overexpressing lines was also higher than that in empty vector line
(Figure 9b). PpNAC187-overexpressing plants also grew more fibrous roots relative to the empty
vector line (Figure S1a). There was no apparent difference in the lignin content in root tissues between
PpNAC187-overexpressing and empty vector plants (Figure S1b).
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Figure 8. PpNAC187 increase the lignin content in the stem of transgenic tobacco plant. (a) The
relative expression level of PpNAC187 in transgenic tobacco. (b) Phenotype of empty vector and
PpNAC187-overexpressing (PpNAC187-ox) transgenic tobacco lines. (c) Transverse sections of stem
were stained with phloroglucinol–HCl for detection of lignin. (d) Lignin content in transgenic tobacco
stem tissues. (e) Autofluorescence of the stem transverse slice. Bright: bright field images, Blue: blue
autofluorescence. #1 and #3 means two independent PpNAC187 transgenic lines. Significant differences
between the empty vector and PpNAC187-ox plants are indicated (**, p < 0.01; two-tailed t-test).
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Figure 9. PpNAC187 increase the lignin content in the leaves of transgenic tobacco plants. (a)
Autofluorescence of transverse slice in the leaf veins. Bright: bright field images, Blue: blue
autofluorescence. (b) Lignin content of leaves in the empty vector and PpNAC187-ox plants. #1
and #3 means two independent PpNAC187 transgenic lines. Significant differences between the empty
vector and PpNAC187-ox plants are indicated (**, p < 0.01; two-tailed t-test).

3. Discussion

The hard-end disorder of ‘Whangkeumbae’ fruit is a major problem in the pear industry. Hard-end
fruits contain significantly more and larger sclerotic cells in the calyx-end of the fruit when compared
to normal pear fruit, as well as a higher level of synthesis and deposition of lignin [5]. Several genes,
including PAL, 4CL, CCR, COMT, and CAD, are components of the phenylpropanoid pathway that are
associated with lignin synthesis [22–26]. Among these genes, PpCAD1 and PpCAD2 are continuously
expressed at high levels during fruit development in fruit exhibiting hard-end symptoms [5]. The CCR
and CAD family genes are also responsible for the regulation of lignin synthesis and stone cell
development in pear fruit [10]. In the present study, KEGG analysis of transcriptome data from hard-end
and normal ‘Whangkeumbae’ pears revealed several DEGs that are part of the phenylpropanoid
biosynthesis pathway. Based on RPKM values, the expression level of these genes was notably higher
in the hard-end fruit than in normal fruit. These results indicate that the lignin synthesis pathway
is more highly-activated in hard-end fruit than in normal ‘Whangkeumbae’ pear fruit, which is in
accordance with our previous research showing lignin accumulation during the development of
hard-end symptoms [5].

Many physiological activities of plants are regulated by the activity of transcription factors [27].
Previous studies have reported that NAC transcription factors are involved in lignin synthesis in fruits.
In loquat fruits, EjNAC1 expression was induced in response to low temperature, but it was inhibited
by a heat treatment (HT), the latter of which also inhibited lignification [15]. In the present study, the
conducted RNA-seq analysis revealed that three pear NAC genes are expressed at significantly different
levels in hard-end ‘Whangkeumbae’ pear fruit, relative to normal pear fruit. In particular, the expression
level of PpNAC187 in hard-end fruit was significantly higher than that in normal fruit during the
development, as well as postharvest storage. PpNAC187 was localized in nuclei, which suggested that
PpNAC187 is a functional transcription factor. These results suggest that PpNAC187 might be involved
hard-end syndrome in pear fruit. When a vector containing PpNAC187 was injected into pear flesh
tissues, the relative expression level of PpNAC187 was significantly enhanced, being concurrent with the
lignin biosynthesis-related genes (PpCCR, PpCOMT, PpCAD1, and PpCAD2, Figure 7). We suggest that
lignin synthesis is potentially influenced by the NAC transcription factor. Several NAC genes, including
AtVND and AtNST, have been previously reported to be involved in the regulation of phenylpropanoid
biosynthesis and these NAC TFs also play a role in secondary xylem development and/or secondary wall
formation in A. thaliana [7,28,29]. Our previous studies demonstrated that lignin biosynthesis-related
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gene PpCAD2 was involved in regulating the formation of the xylem vessel. Moreover, lignin content
was significantly higher in the stem and leaf tissues of PpNAC187-overexpressing transgenic tobacco.
Collectively, the data indicate that PpNAC187 plays a role in enhancing lignin accumulation by inducing
the expression of PpCCR and PpCOMT in ‘Whangkeumbae’ pear fruit during the development of
hard-end symptoms. The ectopic expression of NACs in PpNAC187-overexpressing transgenic tobacco
activated biochemical and metabolic processes, which resulted in a greater number of vessel elements,
sclereids, and a higher level of lignin accumulation.

4. Materials and Methods

4.1. Plant Material

‘Whangkeumbae’ pear fruit were picked in orchards that were located in Wulong village of
Laiyang city, Shandong province, People’s Republic of China. Hard-end fruit were picked from
ten-year-old ‘Whangkeumbae’ pear trees in one orchard, and normal pears were harvested from
healthy trees in another orchard. The normal and hard-end fruit were sampled at 60, 90, and 120
days after anthesis, and then sampled again at 0, 60, and 120 days after harvest when stored under
0 ◦C. Three biological replicates comprised of ten fruits each was used for each condition (normal vs.
hard-end) and at each sampling timepoint. The fruit tissues that were near the bottom third of the
calyx end were taken. After the removal of the peel and/or seed, fleshy tissues were sliced into small
pieces (approximately 1 cm3) and then immediately frozen in liquid nitrogen. Samples were stored at
−70 ◦C until further analysis.

4.2. RNA-Seq Analysis

The calyx pulp of normal and hard-end fruit at 120 days after anthesis were RNA-seq analysis.
Total RNA was extracted while using an RNA extraction kit (Omega, Doraville, GA, USA) according
to the manufacturer’s instructions. The integrity and quality of the total RNA was evaluated while
using a 2100 Bioanalyzer RNA Nano chip device (Agilent, Santa Clara, CA, USA). The poly A-mRNA
fraction was enriched by treatment of the extracted RNA with oligo (dT) beads and it was then
reverse-transcribed into first strand cDNA for use in the preparation of the sequencing libraries.

The cDNA libraries were sequenced while using an Illumina HiSeq 2500 system at the Biomarker
Technologies Corporation (Beijing, China). The raw reads were first filtered to remove adaptors and
low quality sequences and then mapped to the pear reference genome (https://www.rosaceae.org/

species/pyrus/pyrus_communis/genome_v1.0) while using TopHat software [30]. A false discovery rate
(FDR) < 0.01 and a fold change of ≥2 were used to identify the differentially expressed genes (DEGs).
The predicted product of each unigene sequence was aligned to a set of proteins that were retrieved
from the NCBI Nr, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Cluster of
Orthologous Groups of proteins (COG) databases. The Reads Per Kb per Million Fragments (RPKM)
was used to determine the expression level of genes. RPKM normalized the total number of reads
for each unigene and gene length. The formula used to calculate was as follows: RPKM = total exon
reads/(mapped reads (millions)× exon length (KB)). KEGG pathway enrichment analysis was performed
while using KOBAS software and utilized an adjusted p-value of <0.05. The transcription factors were
identified and classified into different families by reference to the NCBI Nr, Swiss-Prot, and COG
databases. The raw sequences that were generated for ‘Whangkeumbae’ in this study were deposited in
NCBI (NCBI BioProject Accession: SRP063324, http://www.ncbi.nlm.nih.gov/bioproject/PRJNA294723).

4.3. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)

Total RNA was extracted from pear flesh tissue while using RNA plant Reagent (TianGen, Shanghai,
China), according to the manufacturer’s instructions. Tobacco leaf RNA was extracted while using an
EASYspin Plant RNA Kit (Yuanpinghao, Beijing, China) and genomic DNA was removed by treatments
with DNase (Fermentas, Vilnius, Lithuania). The cDNA was synthesized by reverse transcription using

https://www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0
https://www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA294723
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the Prime Script™ RT reagent Kit (Takara, Dalian, China), according to the manufacturer’s instructions
and it was subsequently used as template in the RT-qPCR analyses. RT-qPCR was performed on a
Light Cycler® 480 instrument (Roche, Basel, Switzerland). The protocol included annealing at 94 ◦C
for 5 min., followed by 40 cycles of 94 ◦C for 15 s, and 60 ◦C for 1 min. Actin genes from pear and
tobacco were used for the normalization of transcript levels [31,32]. The gene-specific primers that
were used in the RT-qPCR analyses were designed with Primer 3 (http://bioinfo.ut.ee/primer3-0.4.0/)
software and they are listed in Table S1. Mean expression level was calculated while using the 2−∆∆Ct

method [33]. The expression level in normal fruit at 60 days after anthesis was set as 1 in the RT-qPCR
analyses that were conducted on samples collected during fruit development, and the day of harvest
was set as 1 in the post-harvest analyses. Three biological and three technical replicates were used in
the RT-qPCR analysis of each gene at each timepoint.

4.4. Cloning of PpNAC187

Total RNA isolation and cDNA synthesis followed the same protocol that was used in the RT-qPCR
analyses. Table S2 shows the PCR primers used to clone PpNAC187. The PCR program was: 94 ◦C for
5 min, 35 cycles of 94 ◦C for 30 s, 60 ◦C for 1 min., and 72 ◦C for 1 min., followed by an extension cycle
at 72 ◦C for 10 min. and a final cycle at 4 ◦C. The PCR products were cloned into PMD19-T vectors
(Takara, Dalian, China). The open reading frame (ORF) of PpNAC187 was amplified and cloned while
using Phusion® High-Fidelity DNA Polymerase (New England Biolabs, Beijing, China).

4.5. Sequence Alignment and Phylogenetic Analysis

The amino acid sequence alignment analysis of NACs was conducted while using Observed
Divergency algorithm with DNAMAN software (version 4.0, Lynnon Biosoft Company, Foster, RI,
USA). A phylogenetic tree was reconstructed with Figtree (http://tree.bio.ed.ac.uk/software/figtree/)
online software (version 1.4.4, University of Edinburgh, Edinburgh, United Kingdom). The amino acid
sequence alignment analysis of pear NACs were referred to Ahmad [21].

4.6. Construction of the Expression Vector

The ORF of PpNAC187 was ligated into the expression vector, pCambia1300, under the control of a
35S promoter. The ORF fragment that was isolated by digestion with KpnI and HindIII was inserted into
the expression vector, pSuper1300. The vectors, pCambia1300-PpNAC187 and pSuper1300-PpNAC187,
were transferred into Agrobacterium tumefaciens EHA105 while using the freeze-thaw method [34].
Table S2 lists the sequences of primers used to construct the expression vector.

4.7. Subcellular Localization of the PpNAC187 Transcription Factor

The subcellular localization of gene expression was determined while using the method that
was described by Sun, with some modifications [35]. After incubation for 24 h at 28 ◦C in the dark,
fresh onion scales (1.5 × 1 cm) were placed on a 9 cm plate with their inner surface submerged in
a 10 mL Agrobacterium solution (OD600 = 0.6–0.8) supplemented with 20 mg acetosyringone/L for
15–20 min. The onion scales were then transferred to a 1/2 MS solid medium that was amended with
20 mg acetosyringone/L and cultured for 16–24 days at 28 ◦C. The onion scales were subsequently
rinsed with water and the epidermal cell layers were peeled and directly transferred to glass slides.
Agrobacterium harboring the pCambia1300-PpNAC187 or the empty pCambia1300 vector were used in
the analysis of subcellular localization. The GFP of onion scales that were inoculated with these vectors
were observed under a confocal laser scanning microscope (TCSSP5II, Leica, Weztlar, Germany).

4.8. Transient Expression of PpNAC187 in ‘Whangkeumbae’ Pear

The method of transient expression of PpNAC187 in pear ‘Whangkeumbae’ followed the method
that was described by Spolaore, with some modifications [36]. Holes were punched on the calyx end

http://bioinfo.ut.ee/primer3-0.4.0/
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of hard-end fruits on the harvest day while using a sterile syringe needle. One ml of Agrobacterium
solution (OD600 = 0.6–0.8) was then injected into the fruit via the holes using a syringe without a needle
and the injected fruit was stored in the dark. Fruits that were inoculated with pSuper1300-PpNAC187
(treated) or the empty pSuper1300 vector (control) were photographed at the sampled timepoints.
Samples were taken at 1, 3, 5, and 10 days after the injection, and they were immediately frozen in
liquid nitrogen and then stored at −70 ◦C until further processing. Fifty fruits were used for each
vector. Ten fruit for each vectors were randomly collected for the measurements at each time point.

4.9. Agrobacterium-Mediated Transformation of Tobacco with PpNAC187

The empty pSuper1300 vector and pSuper1300-PpNAC187 were independently transformed into
tobacco plants while using the Agrobacterium-mediated transformation method, as described by Zheng
with some modifications [37]. Portions of tobacco leaves without veins were cut into discs (1 × 1 cm)
and pre-cultured on MS solid medium for two days at 28 ◦C in the dark. The leaf discs were then
submerged in 15 mL of Agrobacterium solution (OD600 = 0.6–0.8) that was supplemented with 20 mg
acetosyringone/L for 15–20 min. Transgenic tobacco plants were generated on selection media after a
24 h light treatment following Wang’s method [22].

4.10. PCR Verification of Transformed PpNAC187 Tobacco

DNA was extracted from tobacco leaf tissue while using DNAplant Reagent (TianGen, Shanghai,
China), according to the manufacturer’s instructions. PpNAC187 primers listed in Table S2 were used
to verify the presence of PpNAC187. The PCR program utilized was: 94 ◦C for 5 min., 35 cycles of
94 ◦C for 30 s, 60 ◦C for 1 min, and 72 ◦C for 1 min, followed by a 10 min. extension at 72 ◦C and a final
cycle at 4 ◦C.

4.11. Wiesner Staining and Microscopy

Wiesner reagent (phloroglucinol/HCl) staining of plant tissue for 5 min was used to visualize
lignification [5]. Two grams of phloroglucinol were dissolved in 100 mL of 95% alcohol and then
filtered into 40 mL of concentrated hydrochloric acid. A razor blade was used to dissect the leaf tissue
prior to observation. Lignified structures appeared pink or fuchsia in color. Auto-fluorescence within
the stem sections was observed with the aid of an EVOS smart fluorescence microscope (Thermo Fisher,
Waltham, MA, USA).

4.12. Lignin Assay

Lignin content was assayed while using the method that was described by Bruce, with
some modifications [38]. The samples were washed three times in a 10 mL solution (100 mM
K2HPO4/KH2PO4, 0.5%Triton X-100, 0.5% PVP, PH 7.8), followed by an additional three washes in
100% methanol. The samples of fruit tissues were then dried overnight and the tissue samples were
then transferred into 1 mL of solution that was composed of 2 M HCl and 0.1 mL thioglycolic acid.
Lignin was extracted in this solution by placing the samples in a boiling water bath for 4 h. Pellets
that were obtained by centrifugation were resuspended 2 mL 1M NaOH, followed by agitation for
18 h. The mixture was incubated for 4 h at 4 ◦C after the addition of 0.2 mL HCl. The end product was
dissolved in 1 mL 1M NaOH and absorbance at 280 nm was recorded to estimate the lignin content.
All of the measurements were performed in triplicate.

4.13. Statistical Analyses

Two-tailed t-test and Duncan’s multiple-range test were performed to determine the statistical
significance of differences between the samples. Figures were drawn while using Origin 6.0 (Microcal
Software Inc. Northampton, MA, USA).
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5. Conclusions

In the present study, we demonstrated that the expression of lignin biosynthesis-related genes,
including 4CL, CCR, COMT, and CAD, exhibited significantly increased in ‘Whangkeumbae’ pear
‘hard-end’ fruit. Furthermore, the transient overexpression of PpNAC187 in ‘Whangkeumbae’ pear
flesh induced the expression of lignin synthesis related genes PpCCR and PpCOMT and the degree
of lignification. The lignin content in both stem and leaf of PpNAC187-overexpressing transgenic
tobacco was increased. These results suggest that PpNAC187 enhances lignin synthesis by regulating
the expression of lignin synthesis related genes in ‘Whangkeumbae’ pear ‘hard-end’ fruit.

Supplementary Materials: The following are available online. Figure S1: The morphology and lignin content of
roots in PpNAC187-overexpressing transgenic tobacco plants. Table S1: Gene-specific primer sequences used
in the RT-qPCR analysis of gene expression. Table S2: Primer sequences used in the cloning of PpNAC187 and
transgenic plant validation.
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