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Abstract

We investigated the neural mechanism of the processing of three-dimensional (3D) shapes defined

by disparity and perspective. We measured blood oxygenation level-dependent signals as partic-

ipants viewed and classified 3D images of convex–concave shapes. According to the cue (disparity

or perspective) and element type (random dots or black and white dotted lines), three types of

stimuli were used: random dot stereogram, black and white dotted lines with perspective, and

black and white dotted lines with binocular disparity. The blood oxygenation level-dependent

images were then classified by multivoxel pattern analysis. To identify areas selective to shape, we

assessed convex–concave classification accuracy with classifiers trained and tested using signals

evoked by the same stimulus type (same cue and element type). To identify cortical regions with

similar neural activity patterns regardless of stimulus type, we assessed the convex–concave

classification accuracy of transfer classification in which classifiers were trained and tested using

different stimulus types (different cues or element types). Classification accuracy using the same

stimulus type was high in the early visual areas and subregions of the intraparietal sulcus (IPS),

whereas transfer classification accuracy was high in the dorsal subregions of the IPS. These results
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indicate that the early visual areas process the specific features of stimuli, whereas the IPS regions

perform more generalized processing of 3D shapes, independent of a specific stimulus type.
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analysis
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Introduction

The ability to perceive the visual world in three dimensions is critical for survival. In humans,
most activities of daily life depend on the ability to manipulate objects and the self in a three-
dimensional (3D) space. However, the images projected onto the retina are two-dimensional
and so must be reconstructed into an accurate 3D representation by the visual system. The
information (cues) used for 3D reconstructions are termed depth cues. Depth cues can be
classified into two types: binocular cues that depend on the difference in visual information
acquired by the two retinas (binocular disparities) and monocular cues that can be acquired
by only one eye and include perspective, texture, motion parallax, retinal image size, and
interposition.

This 3D reconstruction involves a series of processing steps from the retina to higher order
visual cortices. According to the two-stream theory, visual information is processed progres-
sively through the retina, thalamus, and primary visual cortex (V1) in the occipital lobe and
then divided into two anatomically and functionally separate streams—a dorsal stream from
V1 to the parietal cortex and a ventral stream from V1 to the temporal cortex. Each stream
processes visual information in a hierarchical manner, with each cortical region processing
information based on the results (output) of lower order regions (Zeki, 1978). Meanwhile,
visual information processing is not strictly hierarchical: there is feedback from higher to
lower areas and lateral interactions within areas (Lamme et al., 1998; Ramalingam et al.,
2013). Mishkin and Ungerleider (1982) first conceptualized the two-stream theory based on
lesion research in non-human primates. The ventral stream has been termed the “what”
stream as it processes information related to an object’s identity (e.g., shape, size, color,
texture), whereas the dorsal stream has been termed the “where” stream as it processes visual
information related to an object’s location, movement, and spatial relationships. According
to this perspective, 3D shape information should be processed by the ventral stream.

A revised two-stream theory was formulated by Goodale and Milner (1992). Rather than
viewing both streams as contributing to conscious visual awareness, they argued that only
the ventral stream contributes to conscious vision (known as the “perception” stream), while
information in the dorsal pathway is used for the unconscious control of action, such as the
movement of the body guided by visual input (and is therefore known as the “action”
stream). According to this view, 3D shape information can also be processed in the dorsal
stream for visually guided action. In fact, there is evidence that 3D shape information is
processed in both the dorsal and the ventral streams. In a macaque monkey study, Janssen
et al. (1999) found that neurons in a subregion of the inferior temporal cortex in the ventral
stream were selective to 3D shape defined by disparity, while a human functional magnetic
resonance imaging (fMRI) study by Taira et al. (2001) found that the intraparietal area in the
dorsal stream contributes to the perception of 3D surface structure based on shading.
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Furthermore, an fMRI study by Freud et al. (2017) of patients with visual object agnosia due
to ventral cortex injury revealed that the intact dorsal cortex can produce 3D object repre-
sentations without input from the ventral stream.

Studies have been conducted to discover how 3D information is processed from a single
cue, such as disparity (Orban et al., 2006) and pictorial cues (Cauquil et al., 2005; Todd,
2010). There have also been studies that have investigated 3D shape perception when dif-
ferent cues work together (D€ovencio�glu et al., 2013; Murphy et al., 2013; Saunders & Chen,
2015; Yamane et al., 2008). However, the understanding of 3D shape processing is still not
complete. The first aim of this study is to investigate which visual areas are responsive to the
specific 3D shape used. To this end, we measured the blood oxygenation level-dependent
(BOLD) signal in visual pathways using fMRI (Logothetis et al., 2001) while subjects viewed
3D images of two simple shapes (convex or concave) composed of different visual elements
and with distinct depth cues. Then, multivoxel pattern analysis (MVPA) was performed to
classify the shapes using the BOLD signal patterns in various regions of interest (ROIs),
including the retinotopic visual cortices (V1, V2, V3d, V3v, V3A, and V7), the higher ventral
cortex (lateral occipital complex [LOC]), the higher dorsal area (the human middle temporal
complex [hMTþ] and kinetic occipital area [KO]), and the intraparietal sulcus (IPS) areas
(the ventral intraparietal sulcus [VIPS]; the parieto-occipital intraparietal sulcus [POIPS];
and the dorsal intraparietal sulcus [DIPS]). The classifier was trained and tested using activ-
ity patterns in response to the images (convex or concave) with the same type of stimuli
(same depth cue and visual element), a condition which is termed “same-type stimuli convex
versus concave classification.” If the classification accuracy using the signal from a given
ROI is higher than the statistical significance level, we can conclude that the neural activity
pattern in the ROI includes information, which correlates to the 3D shapes from a specific
type of stimuli, and this information may be used to differentiate 3D shapes from a specific
type of stimuli by the human visual system; however, we are unable to test whether it is
actually used in this study (Schalk et al., 2017; Williams et al., 2007).

A variety of depth cues contribute to 3D shape perception, and many models have been
proposed to explain how different depth cues contribute to 3D shape processing at the neural
level. Maloney and Landy (1989) proposed a simple statistical framework for combining
depth estimates from consistent depth cues in which information from different cues is
processed independently by different modules and then fused into a single depth estimate
about each point of the scene. They also proposed that the assigned weights of different
estimates are variable and that the combination is linear (additive). In contrast, Clark and
Yuille (1990) distinguished between “strong fusion” and “weak fusion.” In strong fusion,
information from different cues interacts and is processed cooperatively to yield a single
depth estimate, whereas in weak fusion, information from different cues is independent and
the final estimate is obtained by combining the individual information. Regarding the func-
tions of specific cortical structures in the processing of different depth cues and their poten-
tial interactions, there are two broad possibilities: (a) regional neural activity patterns differ
depending on cue type(s) or (b) shape information from different depth cues is fused so that
neural activity patterns are similar among some regions, irrespective of cue type. Some
researchers have investigated questions related to these possibilities. For example, Ban
et al. (2012) found that human dorsal area V3B/KO is involved in the integration of
motion and disparity cues by fMRI study. More recently, using the same technique,
Armendariz et al. (2019) provided evidence that the macaque middle temporal (MT) area
computes the fusion of disparity and motion depth cues, which is similar to the role of the
human V3B/KO. Tsutsui et al. (2001) found that the caudal part of the lateral bank of the
intraparietal sulcus (area caudal intraparietal region [CIP]) may be involved in the
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integration of perspective and binocular cues for the perception of surface orientation in

depth. Similar to these studies, we investigated the neural patterns for our specific stimuli.

The second aim of this study is to investigate whether the neural activity patterns differ

during the processing of a given 3D shape with distinct depth cues/elements or if there are

common patterns among some regions independent of cue types/elements. We examined this

using MVPA to classify BOLD data for each ROI obtained during the processing of images

with cues and element types that differed from that of the training set, a condition termed

“transfer convex versus concave stimuli classification.” When the classification accuracy is

higher than the statistical significance level in a given ROI, this suggests that there are

common neural activity patterns for processing shapes using different types of stimuli (i.e.,

the activity pattern in a given ROI during processing of the same shape is independent of the

depth cue or element type).
Early visual areas are believed to process simple attributes; for example, neurons in V1 are

selective to orientation, binocular disparity, and motion direction (Hubel & Wiesel, 1962).

For the same stimuli convex versus concave classification task, these local attributes of

convex and concave shape are very different. Therefore, the first hypothesis is that some

early areas show high classification accuracy for the “same-type stimuli convex versus con-

cave classification.” For the higher level visual areas, there is evidence that some higher order

dorsal and ventral stream regions are related to shape processing (Todd, 2004). Therefore,

the second hypothesis is that these areas may show high classification accuracy for the

“same-type stimuli convex versus concave classification.” Furthermore, these regions process

more complex object attributes, and there is evidence that certain parietal areas are involved

in processing 3D shapes defined by different cues. For example, an fMRI study by Durand

et al. (2009) revealed that the anterior IPS regions are involved in the processing of 3D

shapes defined by disparity, and Nelissen et al. (2009) found that the processing of 3D

shapes based on texture involves both ventral and parietal regions, with the strongest acti-

vation observed in the CIP, with decreasing strength toward the anterior IPS (Nelissen et al.,

2009). In addition, the dorsal visual stream is believed to be involved in the unconscious

control of action. For instance, the intraparietal cortex is involved in the control of visually

guided actions, such as reach-to-grasp, which require the rapid extraction of 3D shape

information. The 3D shape information required to guide actions may be more generalized

and does not depend on the specific nature of the depth cues and elements. Information

processing in the dorsal stream generally follows the trend of the more anterior areas and are

more likely to be concerned with computations related to potential action (Fabbri et al.,

2016; Shmuelof & Zohary, 2005; Stark & Zohary, 2008). Therefore, it is possible that

neurons in higher areas, especially the parietal areas, will show a common neural activity

pattern when 3D shapes defined by different types of stimuli are presented; therefore, we also

hypothesized that higher areas (especially parietal areas) would show high accuracy for

“transfer convex versus concave classification.”

Methods

Ethics Statement

The study protocol was approved by the Human Research Ethics Committee of the Kochi

University of Technology. Written informed consent was obtained from all participants in

accordance with the Declaration of Helsinki.
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Participants

Nine participants were recruited for the fMRI experiments (seven males and two females).

One male was left-handed, and all other participants were right-handed. All participants had

normal or corrected-to-normal vision. None of the patients had a history of mental illness or

neurological disease. Their ages ranged from 20 to 34 years (mean 23.9� standard deviation

3.9 years). Participants were remunerated for their participation.

Stimuli

Stereoscopic stimuli were presented using a PROPixx projector with a 3D circular polarized

filter placed in front. The stimuli were projected onto a translucent screen inside the bore of

the fMRI magnet. The participants wore polarized glasses and viewed the images through a

tilted mirror (angled at 45�) located above the head coil. The optical distance from the

midpoint of the two eyes to the screen was 71 cm. The screen resolution was set at

1,920� 1,080 pixels and the refresh rate was 480 Hz.
The 3D stimuli were generated using Psychotoolbox 3 in MATLAB (MathWorks, Natick,

MA, USA). The images depicted a shape that was either convex or concave and consisted of

two slanted planes. According to different visual components and depth cues, we used three

types of stimuli: (A) random dot stereogram (RDS), (B) black and white dotted lines with

perspective, or (C) black and white dotted lines with disparity (Figure 1). Different depth

cues with similar elements (Stimulus Type B and Type C) were used to examine whether cues

could induce cue-specific or common neural activity patterns. Similarly, images with differ-

ent elements and the same depth cues (Stimulus Type A and Type C) were used to assess

activity related to visual elements. Images were presented on a mid-gray background

Figure 1. Sample visual stimuli used to generate 3D images of convex or concave shapes, which consisted of
planes (only those generating the convex shape are shown). A: Random dot stereogram. B: Black and white
dotted lines with perspective. C: Black and white dotted lines with disparity.
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rectangular area of 31.7� � 18.2�. A fixation marker comprising a hollow square with a side

length of 0.7� and horizontal and vertical nonius lines of 0.5� was shown at the center of the

screen to help participants maintain eye vergence.
For the RDS, the stimulus for each eye covered an area of 14.6� � 14.6�. The density of

the stereogram was 289 dots/deg2, and all dots were the same size (0.2� in diameter). The

relative disparity between the peak and the sides of the convex shape was 0.4� and that of the

concave shape was 0.2�. The angle of the two slanted planes forming the convex shape was

113� and that of the planes forming the concave shape was 121�. Both the convex and the

concave peaks were located at the fixation marker plane. The concave shape was nearer than

the fixation marker plane with crossed disparity, whereas the convex shape was farther than

the fixation marker plane with uncrossed disparity. Figure 2 shows the top view of the virtual

3D images.
For the stereo images composed of black–white dotted lines with disparity, each

monocular component covered an area of 14.6� � 14.6�. Lines consisted of black and

white sublines of random lengths. We used dotted lines because it is easier for participants

to perceive convex and concave shapes compared with solid black or white lines with dis-

parity. In the latter case, participants may not be able to correctly match the corresponding

lines in the left and right eyes. The angle of the two slanted planes forming these convex and

concave images differed among the participants. To determine the optimal angle for 3D

perception, participants first performed a task to adjust the angle defined by the dotted

lines with disparity to that defined by the RDS inside the bore of the scanner before the

fMRI scan. In this procedure, the reference shape defined by the RDS and the shape for

adjusting the dotted lines with disparity were shown in sequence, and the participants adjust-

ed the angle of the latter image by pressing the corresponding buttons on a keypad. This task

was repeated twice by each participant, and the average disparity was used for the main

experiment.
For the images composed of black and white dotted lines with perspective, we used the

same types of lines as those used for the images with disparity. The participants performed a

similar angle adjustment task so that the angle of the shape defined by the perspective

appeared the same as the angle of the shape defined by the RDS. The width of the stimuli

was 14.6� and the height differed depending on the angle adjustment determined by the

participants.

Figure 2. Top views of the virtual 3D images (using the RDS stimuli as the example). A: The convex shape.
B: The concave shape.
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Experimental Design

Convex and concave shapes composed of different elements or cues were presented: (a) RDS,
(b) black and white dotted lines with perspective, and (c) black and white dotted lines with
disparity. Thus, there were six different stimuli (3 types� 2 shapes), which were presented in
a block design (Figure 3). To avoid adaptation and to maintain neuronal activation, the
stimuli in each block were flashed on and off at 1 Hz (with each on and off period lasting 0.5
seconds). The random dots or black and white dotted lines were regenerated on every pre-
sentation. In each block, one of the six stimulus conditions was shown for 15 seconds. After
each block, the participant was required to judge whether the shape was convex or concave
by pressing the corresponding button on a keyboard within 3 seconds. After each judgment,
there was a 6 seconds fixation period (the last fixation block was 12 seconds). The six
stimulus conditions were presented in random order (12 blocks). Each run began with a
12 seconds fixation period and a total run lasted 306 seconds.

The day before the fMRI scans, participants were asked to perform two tests in front of a
computer screen outside the scanner to assess whether participants were qualified for our
experiment: (a) we showed all the stimuli (i.e., the convex and concave shapes used in fMRI
scan) individually and asked the participants to report the shape they observed, to which the
participants responded verbally. The participants that successfully reported all the shapes
were eligible for the second test. (b) Convex versus concave discrimination test, similar to the
one used during fMRI scan, was performed. The participants first practiced the test for two
runs, after which they performed the formal test for maximum three runs. The participants
with all answers correct in one of the runs were then recruited for the formal fMRI
experiment.

During the fMRI scan, participants were required to observe the fixation marker during
the scan, and to try their best to reduce head movement as much as possible over the entire
session. If head movement was too large during one run (translational movement> 2 mm or
rotation> 2�), the run was excluded from the analysis. In addition, if two or more behavioral
errors occurred of any stimulus type in one run, this run was excluded from the analysis. In
general, all participants were able to maintain head stillness and performed well, and at least
six runs of echo-planar imaging (EPI) data were acquired for analysis from each participant.

fMRI Data Acquisition

Functional MRI data acquisition was performed at the Brain Communication Research
Centre of the Kochi University of Technology using a 3-Tesla Siemens MRI scanner with
a 24-channel multiphase array head coil. A pair of foam pads was used to help participants
to keep their head still during the experiment. To construct a flattened cortical surface with
preserved relative dimensions, a high resolution (1� 1� 1 mm) T1-weighted anatomical
image was obtained for each participant. During the functional scans, we measured the
BOLD signals using an EPI sequence from an area of 35 slices that covered the visual
cortex, posterior parietal cortex, and posterior temporal cortex. The acquisition parameters

Figure 3. The block design for the image-classification task during functional magnetic resonance imaging.
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of the EPI sequence were as follows: 102 volumes per run, echo time of 30 milliseconds,
repetition time of 3,000 milliseconds, slice thickness of 3 mm, in-plane resolution of 2.04
mm� 2.04 mm, and descending slice acquisition order. For each session, we also measured a
T2-weighted structural image with the same number of slices, which covered the same area as
the corresponding EPI data. This structural image was used as the reference for 3D motion
correction of EPI data and for coregistration between the T1-weighted anatomical image and
the EPI images. After coregistration, both the anatomical image and the EPI images were
transformed into Talairach space.

To define the ROIs, separate fMRI measurements were acquired from all participants
before the main experiment using stimuli shown to activate specific cortical regions in pre-
vious studies (Figure 4). A rotating wedge and expanding rings were used to define the
retinotopically organized visual areas V1, V2, V3d, V3v, and V3A (DeYoe et al., 1996;
Sereno et al., 1995; Warnking et al., 2002). The V7 was defined as the area dorsal and
anterior to V3A with lower visual field quadrant representation (Tootell et al., 1998; Tyler
et al., 2005). In addition, the higher dorsal areas hMTþ and KO, the higher ventral area
LOC, and areas along the IPS (VIPS, POIPS, and DIPS) were localized using standard
procedures. hMTþ was defined as an area of voxels in the lateral temporal cortex exhibiting
higher activation to dots that moved outward and inward coherently compared with static
dots (Zeki et al., 1991), while KO was defined as an area of voxels showing higher activation
in response to contours defined by motion compared with the transparent motion of black
and white dots (Dupont et al., 1997; Zeki et al., 2003). LOC was defined as an area of voxels
in the lateral occipito-temporal cortex demonstrating higher activation in response to intact
images of objects compared with the corresponding scrambled image (Kourtzi & Kanwisher,
2000, 2001). Finally, individual areas along the IPS (VIPS, POIPS, and DIPS) were localized
using nine connected lines as stimuli (Figure 5). These areas were identified by contrasting

Figure 4. Illustration of regions of interests superimposed on the flattened visual cortex. LOC¼ lateral
occipital complex; hMTþ¼ the human middle temporal complex; KO¼ kinetic occipital area; VIPS¼ ventral
intraparietal sulcus; POIPS¼ parieto-occipital intraparietal sulcus; DIPS¼ dorsal intraparietal sulcus.
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activity to 3D shapes produced by rotating the lines in depth compared with movement along

a frontoparallel plane (Vanduffel et al., 2002).

Data Analysis

Preprocessing. Data processing and analysis were conducted using Freesurfer (Fischl, 2012),
BrainVoyager QX (Version 2.8.4.2645, 64-bit; BrainInnovation, Maastricht, the

Netherlands), MATLAB R2014a, and SPSS Statistics 23 (IBM Inc.). The scalp was removed

from the T1-weighted 3D anatomical images of each participant, and the white matter (WM)

was separated from the other components using Freesurfer. The WM component was then

used as the mask to segment WM from gray matter (GM) using Brain Voyager QX. The
extracted brain was transformed into Talairach space using BrainVoyager QX. The flat-

tened cortical surface was generated to visualize the functional maps and to delineate the

ROIs by the following series of operations: segmenting the brain along the GM/WM

boundary, inflating the segmented GM, cutting the GM along the calcarine sulcus, and
flattening. The ROIs were then used for MVPA. For EPI data, slice scan time correction

was performed. Then, 3D motion correction was performed using a T2-weighted reference

image obtained at the beginning of each session (Woods et al., 1998). Temporal filtering

was then applied on these EPI data. Spatial smoothing was not performed. For coregis-

tration, T2-weighted data and T1-weighted data were used to estimate the parameters.
After that, these parameters were applied to the EPI data; therefore, EPI data and T1-

weighted data were coregistered. Finally, functional EPI data were transformed into

Talairach space.

ROI-Based MVPA. The high sensitivity of MVPA allows for the detection of subtle differences

between conditions of interest and the comparison of neural patterns between cortical

ROIs of the human brain. In this study, we performed MVPA for the ROIs in

MATLAB. The linear support vector machine (SVM) implemented in MATLAB was
used as the classifier for MVPA. Two main types of classification were performed. In

the first classification type, SVM was trained and tested using activity patterns evoked

by shapes with the same type of stimuli (e.g., using data from the shapes by RDS for both

Figure 5. Illustration of IPS areas localizer.
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training and testing). This classification type was used to assess whether reliable neural
activity patterns are induced by convex and concave shapes with a specific stimulus type.
The second classification type, transfer convex versus concave classification, used activity
patterns evoked by images with different types of stimuli for training and testing (e.g.,
using activity evoked by the shapes with RDS for training and the shapes with “lines with
perspective” for testing). The main purpose of this second type of classification was to
assess whether certain areas within the visual cortex exhibit common neuronal activity
patterns in response to convex or concave shapes, irrespective of stimulus type. Figure 6
illustrates these classifications.

The MVPA procedure was conducted as follows: all fMRI time series were shifted two
volumes (6 seconds) to account for the hemodynamic delay of the BOLD signal. For each
ROI, voxels were selected from both the left and right hemispheres. These voxels were sorted
from large to small response magnitude compared with the eye-fixation baseline condition.
We selected the top 250 voxels from each ROI for classification. If the total number of voxels
was less than 250 for a given ROI, the largest available number of voxels was used for the
classification.

To estimate the response amplitude of each voxel of ROI within a stimulus block, we
calculated the difference between the average BOLD signal of the first three volumes (after
shifting by two volumes) after stimulus onset (denoted avg1) and the average BOLD signal
value of the last two volumes (after shifting by two volumes) before stimulus onset (denoted
avg2), or avg1–avg2. Finally, all difference values were transformed into z scores, and these z
scores were used as the input for SVM training and testing.

To evaluate the performance of MVPA classification, the leave-one-run out crossclassi-
fication method was used to partition the EPI data into training and testing data sets
consisting of different combinations of data from individual subject runs. For each individ-
ual subject ROI, the accuracies of all crossclassifications were averaged. Finally, the aver-
aged accuracy of each individual ROI was averaged across all participants.

To assess whether the classification accuracy was reliable, permutation testing was per-
formed to estimate the baseline of statistical significance. Classification was performed using
randomly permutated fMRI patterns for all ROIs (i.e., the correspondences between the
fMRI data and the class labels were randomized) and classification was performed in the
same way as for normal nonpermutated data. We repeated this procedure 1,000 times to

Figure 6. Illustration of the classifications performed. a-1, a-2, and a-3 indicate classification of convex
versus concave 3D images generated with the same type of stimuli; b-1, b-2, and b-3 indicate classification of
convex versus concave 3D images generated with different types of stimuli. RDS¼ random dot stereogram.
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generate a distribution of classification accuracies. The 99.6th percentile (one-tailed,
12 ROIs) was used as the baseline for statistical significance.

Results

Behavioral Results

For the behavioral results for judging convex versus concave during the fMRI scan, the
average accuracies of the runs after the exclusion of unqualified runs for participants ranged
from 86.46% to 100% (mean� standard deviation, 93.97%� 6.54%). The analysis of var-
iance (ANOVA) results showed that there were no significant difference between the average
behavioral accuracies for the three types of stimuli (i.e., RDS, lines with perspective, lines
with disparity): F(2, 16)¼ 1.364, p¼ .284. The detailed behavioral data are shown in Table 1
in the supplemental material.

Classification of Convex Versus Concave 3D Images With the Same Type of Stimuli

To investigate whether the neurons in the ROIs are selective to convex or concave 3D images
generated from RDS, black and white lines with perspective, and black and white lines with
disparity, we measured the BOLD signals from the visual cortex and then fed the ROI data
to MVPA using the same type of stimuli for training and testing (e.g., training using RDS
data and testing using RDS data).

Classification of Convex Versus Concave Images Composed of Random Dots. This classification pro-
cess is illustrated Figure 6a-1, and the results for all ROIs are shown in Figure 7A. Almost all
ROIs showed classification accuracy (convex vs. concave) greater than chance for this binary
classification (50%). Among these ROIs, V1, dorsal areas V3d, and V3A demonstrated
classification accuracy higher than the baseline of statistical significance, and DIPS
showed classification accuracy only slightly below the baseline of statistical significance.

Classification of Convex Versus Concave Images Composed of Lines With Perspective. This classifica-
tion process is illustrated in Figure 6a-2, and the results for all ROIs are shown in Figure 7B.
Again, many ROIs showed classification accuracy higher than chance (50%). Among these
ROIs, V1 and dorsal area V3A demonstrated classification accuracy higher than the baseline
of statistical significance.

Classification of Convex Versus Concave Images Composed of Lines With Disparity. This classification
process is illustrated in Figure 6a-3, and the results for all ROIs are shown in Figure 7C.
Many ROIs showed classification accuracy higher than chance (50%), and the ROIs for V1,
V2, dorsal areas V3d and V7, and intraparietal area DIPS demonstrated classification accu-
racy higher than the baseline of statistical significance.

Classification of Convex Versus Concave 3D Images With Different Types of Stimuli

In the second type of classification, SVM was trained and tested using different types of
stimuli (different depth cues and visual elements) to investigate whether certain ROIs exhibit
a common neural activity pattern in response to a given image (concave or convex), inde-
pendent of the specific type of stimuli (e.g., training using images generated from black and
white lines with perspective and testing using images generated from black and white lines
with disparity).

Li and Shigemasu 11



RDS for Training and Lines With Perspective for Testing, and Vice Versa. The classification process is
illustrated in Figure 6b-1. In this classification task, we trained SVM using the 3D shapes
generated by the RDS and tested SVM using shapes generated by black and white dotted
lines with perspective, and vice versa. The results are shown in Figure 8A. Only intraparietal
area DIPS showed classification accuracy higher than the baseline of statistical significance.
Paired-sample t test revealed that the mean values of these two types of classification were
not significantly different in all ROIs (false discovery rate <0.05), and more strictly, if the

Figure 7. Classification accuracies for convex versus concave 3D images generated with the same type of
stimuli. A: RDS data. B: Lines with perspective. C: Lines with disparity. The red horizontal dotted lines
indicate the baseline of statistical significance for each ROI. The locations of these lines indicate the upper
99.6th percentile of the classification accuracy distribution for the permutated data. The black horizontal line
indicates the chance level for the binary convex versus concave classification (50%). The error bars depict the
standard error of the mean across subjects (n¼ 9). LOC¼ lateral occipital complex; hMTþ¼ the human
middle temporal complex; KO¼ kinetic occipital area; VIPS¼ ventral intraparietal sulcus; POIPS¼ parieto-
occipital intraparietal sulcus; DIPS¼ dorsal intraparietal sulcus.
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correction of multicomparison problem is not considered, only V2 showed a p value of less
than .05 (p¼ .029). However, the classification accuracies in both directions were around
chance level, which does not affect our conclusion; therefore, averaging the results of the two
types for each ROI remains accurate.

Figure 8. Classification accuracies for convex versus concave 3D images generated with different types of
stimuli (different depth cues and elements). A: Random dot stereogram (RDS) and lines with perspective. B:
Lines with perspective and lines with disparity. C: RDS and lines with disparity. The red horizontal dotted
lines indicate the baseline of statistical significance for each ROI. The locations of these lines indicate the
upper 99.6th percentile of the classification accuracy distribution for the permutated data. The black hor-
izontal line indicates the chance level. The error bars depict the standard error of the mean across subjects
(n¼ 9). LOC¼ lateral occipital complex; hMTþ¼ the human middle temporal complex; KO¼ kinetic
occipital area; VIPS¼ ventral intraparietal sulcus; POIPS¼ parieto-occipital intraparietal sulcus; DIPS¼ dorsal
intraparietal sulcus.
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Lines With Perspective for Training and Lines With Disparity for Testing, and Vice Versa. This classifi-

cation is shown in Figure 6b-2. In this classification task, we trained the SVM using 3D

shapes generated by black and white dotted lines with perspective and tested the SVM using

shapes generated by black and white dotted lines with disparity (and vice versa). The results

are shown in Figure 8B. Only the intraparietal areas POIPS and DIPS showed classification

accuracy higher than the baseline of statistical significance. Paired-sample t test showed that

the mean values of these two types of classification were not different significantly in all

ROIs (false discovery rate <0.05), and more strictly, if correction of the multicomparison

problem is not considered, only the VIPS showed a p value of less than .05 (p¼ .049).

However, the classification accuracies in both directions were around chance level, which

does not affect our conclusion; therefore, there is no problem that we averaged the results of

the two types for each ROI.

RDS for Training and Lines With Disparity for Testing, and Vice Versa. This type of classification is

illustrated in Figure 6b-3. We examined the classification accuracy for images generated

using different visual elements but the same depth cue (RDS for training and lines with

disparity for testing and vice versa). Paired-sample t test showed that the mean values of

these two types of classification were not different significantly in all ROIs; therefore, we

averaged the results of the two types for each ROI. The results are shown in Figure 8C. The

dorsal areas V3A and V7, as well as IPS area DIPS, demonstrated a classification accuracy

higher than the baseline of statistical significance.
The baselines of statistical significance require some explanation. The baselines in

Figure 7 are generally higher than the baselines in Figure 8. Generally speaking, if the

label-shuffling procedure could really randomize the data structure, the baselines should

be determined by the numbers of repetitions, samples, and participants, irrespective of the

type of classification and the baselines in Figures 7 and 8 should almost be same. But in our

case, the baselines in Figure 8 are the averaged values of the classification results of transfer

classification in two directions of the shuffled data, and the variance of averaged accuracy is

decreased compared with every component’s classification accuracy; therefore, the baselines

are lower in Figure 8.

Discussion

In this study, we examined the processing of different visual elements (dots and lines) and

depth cues (disparity and perspective) by different subregions of the visual cortex using fMRI

and MVPA to elucidate the mechanisms of 3D image processing. To examine the processing

of visual elements, measurements were conducted using similar images (a convex or concave

shape) generated by an RDS and using black and white dotted lines, both with binocular

disparity as the depth cue. The processing of depth cues was examined by measuring the

responses to similar images generated by the same elements (black and white dotted lines)

but with different depth cues (disparity or perspective).
The major findings can be summarized as follows: (a) When depth cue and element were

the same, the regions with activity that showed significant classification accuracy by SVM

were mainly located in the lower and mid-level visual areas, and the higher order DIPS

region also demonstrated significant or near significant classification accuracy; (b) When

the depth cues and elements were different, the DIPS region and other higher order areas

demonstrated significant classification accuracy. These results suggest that, in general, lower

level visual areas generate different activity patterns in response to the same image with
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different depth cues and elements, while higher level regions generate similar activity patterns
in response to the same image with different depth cues and elements.

Differential Responses of Various Low- and High-Level Visual Cortices to Depth
Cues/Elements

It is believed that the visual system is split into two separate pathways after the primary
visual cortex (V1): a dorsal pathway to the parietal cortex and a ventral pathway to the
inferior temporal cortex. Visual information is processed progressively in a hierarchical
manner from the lower to the higher order visual areas. Lower order visual areas in each
pathway mainly process simple attributes, such as motion direction, orientation, and speed,
whereas the visual attributes processed by the higher order visual areas of each pathway are
much more complex, culminating in recognition of objects and complex shapes. We hypoth-
esized that the lower order visual areas would show higher accuracy for the same cue and
element types in the convex versus concave classification condition, and that some higher
order visual areas would show substantial accuracy in both same-cue/element type and
different-cue/element type (transfer) convex versus concave classification conditions. In gen-
eral, the MVPA results are in line with our expectations.

(1) The classification accuracy of V1 was above the baseline of statistical significance for
all convex versus concave classifications with the same cue and element type. This type of
classification includes three subtypes depending on the stimuli used. In the same-cue/element
type (lines with perspective) convex versus concave classification condition, the convex and
concave shapes are distinguished by line orientation, and V1 neurons are highly sensitive to
lines of different orientation (Hubel & Wiesel, 1959). For the same-cue and element-type
(RDS or lines with disparity) convex versus concave classification, it is possible that the high
accuracy was dependent on the selectivity of V1 neurons to the signs of disparity gradient:
the disparity sign is different for concave and convex forms, and V1 neurons are highly
sensitive to the sign of binocular disparity (Preston et al., 2008). In addition, the convex
shapes provided information of uncrossed disparity and the concave shapes provided infor-
mation of crossed disparity, which may differentially activate populations of V1 neurons. It
is also possible that the high classification accuracy of V1 for these two conditions may have
been aided by the difference in image depth (near or far to the fixation marker image plane).

(2) For results of same-type stimuli convex versus concave classifications in V2, the
description is as follows:

Accuracy was slightly higher than the chance level (50%) for convex versus concave
classifications with the RDS; accuracy was higher than chance level but lower than the
baseline of statistical significance for convex versus concave classifications with lines with
perspective; accuracy was higher than the baseline of statistical significance for convex versus
concave classifications with lines with disparity. Previous studies have reported that V2 is
related to process disparity (Preston et al., 2008; Thomas et al., 2002); therefore, it is rea-
sonable that classification accuracy was higher than the baseline of statistical significance on
the lines with disparity. However, the results of our study for the RDS stimuli differ from
those in the previous study. This may have been caused by the fact that the single-cell study
of Thomas et al. (2002) reported that 68 of a total 165 V2 neurons showed selectivity to the
disparity stimuli used. As only some neurons show selectivity to disparity, it is possible that
the activity of neurons that are not selective to disparity may affect the classification accu-
racy. In addition, the previous studies (Preston et al., 2008) mainly adopted planes in dif-
ferent depth positions. Because the local disparities on different parts of the convex/concave
shape are different, while the disparities on different parts of the plane are same, it may have
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been harder for the SVM to classify convex versus concave than to classify depth positions
on planes; therefore, the same-type stimuli classification accuracy for RDS (52.83%) was
only slightly higher than chance level. For convex/concave shapes from lines with perspec-
tive, we can also partially view them as shapes from their texture. Previous studies have
shown that V2 is selective to texture (Freeman et al., 2013; Ziemba et al., 2016); therefore, the
classification accuracy for lines with perspective (55.80%) was higher than chance level but
still did not reach the baseline of statistical significance (57.31%).

The classification accuracies for convex versus concave 3D images generated with differ-
ent types of stimuli were not higher than the baseline of statistical significance, indicating
that V2 is more involved in the lower attributes of the shapes.

(3) The classification accuracy of V3d was significant for the same cue (disparity) and
element (dots or lines) convex versus concave condition, possibly because V3d neurons are
sensitive to binocular disparity. In an fMRI study by Preston et al. (2008), neurons in V3d
demonstrated selectivity to absolute disparity, while Chandrasekaran et al. (2006) reported
that fMRI activity in area V3d is related to performance in binocular disparity-defined shape
judgments. Therefore, the high classification accuracy in these two conditions is consistent
with the response properties of V3d neurons. Conversely, the classification accuracy of V3d
activity was below significance for the convex versus concave classification of images gen-
erated by lines with perspective, suggesting that V3d neurons are not selective to perspective
or that perspective-selective neurons are not clustered densely enough (and thus the local
signal is not strong enough) for SVM classification. The classification accuracy was also not
significant for the transfer convex versus concave classification conditions using different
depth cues. We speculate that this classification requires high-order processing (greater inte-
gration), while V3d is an early visual area in the dorsal pathway. At a lower level of proc-
essing, differences in training and testing conditions would induce different activity patterns
for the same shape type, resulting in poor classification accuracy.

(4) The classification accuracy of the dorsal area V3A was significant for the same-cue and
element convex versus concave conditions for the RDS and lines with perspective as well as
for the transfer condition between RDS and lines with disparity. These findings may be
explained by the selectively of V3A neurons for disparity (Goncalves et al., 2015).
Moreover, our previous fMRI study showed that V3A is selective to stereoscopic convex–
concave shapes (Li & Shigemasu, 2019). The disparity patterns between the convex and
concave shapes defined by the RDS were different, so the high accuracy for the RDS
convex versus concave classification condition is consistent with the known response prop-
erties of V3A neurons. In addition, there is evidence that basic perspective processing can be
performed in V3A (Welchman et al., 2005), thereby accounting for the significant accuracy
for lines with perspective convex versus concave classification. While both RDSs and lines
with disparity create 3D convex and concave shapes by binocular disparity, the classification
accuracy was significant for the RDS condition but was around chance level for the lines
with the disparity condition. As V3A neurons are selective for shape, it is reasonable that the
classification accuracy would be high for the RDS. Alternatively, the shapes generated by
lines of disparity were depicted by conflicting cues: the disparity produced the convex and
concave shapes, whereas the horizontal and vertical parallel lines created the flat plane. As
mentioned earlier, V3A neurons are also involved in the processing of perspective; therefore,
V3A’s accuracy in the lines with disparity condition was near chance level.

The V3A classification accuracy for the RDS/lines with disparity transfer condition was
also significant, consistent with our previous MVPA study (Li & Shigemasu, 2019), in which
we found that V3A neurons showed a common activity pattern to convex and concave
shapes defined by disparity in two different orientations and depth positions. It is thus
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possible that area V3A is involved in a generalized representation of shape defined by bin-
ocular disparity and does not depend on element type (random dots vs. lines). It is worth
mentioning that, although the shapes generated by lines of disparity were depicted by con-
flicting cues, the accuracy was still high. This may be due to the fact that the elements of
RDS and lines with disparity are different: the RDS consists of random dots, and the lines
with disparity consist of lines; as the elements are different, the conflict-cue effect may be
weakened and the SVM must be more biased to disparity, resulting in high accuracy.

For transfer classification between lines with perspective and lines with disparity, the
accuracy in V3A was lower than the baseline of statistical significance. There are two pos-
sible reasons for this result: the first possibility is that there are common patterns for the
stimuli of lines with perspective and lines with disparity, but both types of stimuli contain
line elements, and the conflicting cues contained in lines of disparity stimuli affect the trans-
fer classification, therefore the accuracies were low in V3A; the other possibility is that there
is no common pattern for each of the pairs of stimuli. Further study is required to distinguish
which of these possibilities is correct.

(5) IPS regions: The classification accuracy of the DIPS was around the baseline of sta-
tistical significance for the same-cue and element condition and higher than the baseline of
statistical significance for all transfer (different depth cue or element) conditions. Mid-order
and higher order visual cortices appear to process first-order and second-order depth infor-
mation (such as slant and curvature, respectively) from 3D object structures. The areas
involved in processing higher order depth features of objects in the dorsal cortex include
the hMTþ, V3A, V7, and regions along the IPS (Alizadeh et al., 2018; Freud et al., 2016;
Georgieva et al., 2009; Janssen et al., 2018; Katsuyama et al., 2011). Many previous studies
have found that intraparietal areas are involved in 3D shape processing. For example, there
is evidence that the CIP in monkeys, which corresponds to the VIPS, V7/IPS0, or V7A in
humans (Konen et al., 2013; Orban, 2016), is involved in the representation of 3D curvature
defined by disparity (Alizadeh et al., 2018). The CIP region may also be a locus where
different types of depth cues are integrated, including disparity and linear perspective
(Tsutsui et al., 2001). The CIP area projects to anterior regions of the intraparietal area
(AIP) and may belong to a larger object-processing network (Erlikhman et al., 2018). There
is also evidence that the AIP region in nonhuman primates is sensitive to 3D curvature and
3D shape (Joly et al., 2009; Srivastava et al., 2009). The AIP of nonhuman primates is
believed to correspond partially to the human DIPS (Orban, 2016), and Durand et al.
(2009) found that some human DIPS regions are sensitive to depth structure. Considering
these findings, it is reasonable that accuracy was high in the DIPS for all types of classifi-
cation. In addition, in the two-stream theory proposed by Goodale and Milner (1992),
information in the dorsal stream is used for the unconscious control of action, such as the
movement of the body guided by visual input. It is possible that the 3D information in the
dorsal stream ultimately serves visually guided actions (Cohen & Andersen, 2002; Sakata
et al., 1998). Accordingly, some regions in the posterior parietal cortex involved in motor
planning respond to depth signals, including AIP for grasping (Srivastava et al., 2009; Theys,
Srivastava, et al., 2012), the parietal reach region (Bhattacharyya et al., 2009), and the lateral
intraparietal area (Durand et al., 2007). This information, independent of depth cue type and
element type, may be required for rapid visually guided actions. As this information is more
generalized, it does not depend on the specific nature of the depth cue and element.
Therefore, the DIPS showed high classification accuracy for both same-cue/element type
and transfer conditions.

In summary, the common pattern in the DIPS may be related to two functions. First, it is
possibly related to more generalized shape presentation that does not depend on stimulus
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type. As the visual information goes along the visual stream, it is possible that information

from different cues is fused into a single representation at a certain stage, and that this

information then flows to the higher areas. Therefore, the DIPS will contain this generalized

information. Second, it is possibly related to potential information used for action.

Anatomically, part of the IPS area is connected to the ventral premotor cortex (Matelli

et al., 1986), especially to motor area F5. Previous animal studies have demonstrated that

the IPS projects to F5 (Theys, Pani, et al., 2012; Theys et al., 2013), which is related to

specific object-related hand movements and presentation of a 3D object without subsequent

manipulation (Murata et al., 1997). Action planning, such as grasping the convex or concave

shapes, is related to the shape and not related to the cues defining the shape. The common

neural activity in the IPS may be related to potential information which flows from the IPS

to motor-related areas, and this information may correlate with the shape of objects, which

does not depend on depth cues. Also, there may be information feedback from F5 to parts of

the IPS areas, which can improve the classification accuracy in the IPS areas; however, to the

best of our knowledge, there are no previous studies that support the hypothesis of feedback

from the premotor cortex to IPS areas. Further investigation is required on this point.

The Role of Eye Movement

As most of the high accuracies we obtained were on the ROIs in the dorsal stream, and this

stream serves visually guided actions (Goodale & Milner, 1992), is it possible that these high

accuracies were related to the eye movement pattern while the participants observed the

convex/concave stimuli. To answer this question, we conducted an additional behavior

experiment in a dark room. An EyeLink II eye-tracker (SR-Research Ltd., Mississauga,

Ontario, Canada) was used to track the eye movement while the participants completed

the same tasks as those for the fMRI experiment: 10 participants (6 males, 4 females)

were recruited for this experiment. For the analysis, we calculated the fixation position

difference between the stimulus block and fixation block for the left eye (denoted by dl)

and right eye (denoted by dr) separately; then, the difference between the right and left eyes

(delta¼ dr� dl) was calculated. A two (shape: convex and concave) by three (cue: RDS, lines

with disparity, and lines with perspective) repeated-measures ANOVA was performed. The

ANOVA results showed that there was no main effect of shape, F(1, 9)¼ 0.638, p¼ .445, and

no main effect of cue, F(2, 18)¼ 2.394, p¼ .12; also, there was no interaction between shape

and cue: F(2, 18)¼ 2.154, p¼ .145. From the eye movement data, there was no specific

movement pattern associated with the convex/concave shape; therefore, we believe that

the high accuracies were not caused by eye movements during the experiment. However,

we cannot exclude the possibility that the high accuracy was caused by potential information

related to the shapes, which can be used for action.

The Relationship Between Behavioral Results and MVPA Results

We checked the Pearson’s correlation coefficient between behavioral accuracies and “same-

type stimuli classification” accuracies in each area on the data for the RDS, lines with

perspective, and lines with disparity, respectively. The results showed that there was no

correlation between the behavioral accuracies and the classification accuracies of the

fMRI data for all the ROIs. The detailed results are shown in Table 8 in the supplementary

material. The possible reasons we could not find a relationship between the behavioral

results and the fMRI results are as follows: one possibility is that there is indeed no rela-

tionship between the behavioral performance and the neural activity pattern; another
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possibility is the limitations of our method: (a) the participants recruited for the experiment
could perform the task very easily, the behavioral performance was good, and the variation
of performance was small; (b) the difficulty of the task was constant during the fMRI scan,
therefore, we could not measure performance changes systematically.

Limitations

The first limitation of this study is the potential use of monocular information for concave
versus convex classification. Monocular information may be used for two same-cue/element
classification conditions (RDS and lines with disparity) as well as for one transfer classifi-
cation with stimuli of RDS and lines with disparity. These monocular cues are explained for
the lines with disparity in Figure 9 as the RDS condition is similar. Figure 9 shows the shapes
defined by black and white dotted lines with disparity. For illustration, these images have
greater disparity and fewer lines than those used in the experiments. Part A shows a stimulus

Figure 9. Illustration of monocular information for judging convex versus concave shapes. Shapes defined by
black and white dotted lines with disparity are shown. L indicates the image projected to the left eye, and R
indicates the image projected to the right eye. The stimuli shown in this figure are simplified for illustration
and are not the real stimuli shown to the participants. A: Stimuli generating the convex shape. B: Stimuli
generating the concave shape.
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depicting a convex shape, and Part B shows a stimulus depicting a concave shape. For the
convex shape, the distance between the left side line and the fixation marker, D1 in (A) of
Figure 9, is longer than the distance between the right side line and the fixation marker, D2
in (A) of Figure 9 (i.e., D1>D2). For the concave shape, the distance between the left side
line and the fixation marker, D1’ in (B) of Figure 9, is shorter than the length between the
right side line and the fixation marker, D2’ in (B) of Figure 9 (i.e., D10 <D20). This difference
between convex and concave stimuli may be used by the left eye for the lines with disparity
convex versus concave classification. There is also monocular information accessible to the
right eye for classification. For the convex shape, the left side is shorter than the right (i.e.,
D3<D4), (A) in Figure 9, whereas, for the concave shape, the left side is longer than the
right (i.e., D30 >D40), (B) in Figure 9. Similar differences can also be used for the RDS/lines
with disparity transfer classification.

Although it is possible that this monocular information was used for classification, we
think it is unlikely. First, in the real stimuli for experiments, the length difference between the
left side and the right side relative to the fixation marker was only 5.05 mm, which is about
0.2�. Second and more importantly, there was no such monocular information for the black
and white dotted lines with perspective; therefore, the transfer RDS/lines with perspective
and the transfer lines with perspective/lines with disparity classifications could not be made
using monocular cues. We conclude that there are common neural activity patterns in the
DIPS region for the processing of shapes with different depth cues and elements.

The second limitation is that this study can only confirm that neurons in the DIPS contain
common activity patterns for processing shapes with different depth cues and elements, but
we cannot judge whether other areas for early visual areas contain this kind of common
pattern. If we assume this case, both the higher and lower areas can have common neuron
patterns irrelevant to stimulus elements or types; therefore, stimulus shapes can be decoded
in both higher and lower areas for same-type stimuli classification. However, in the lower
visual areas, the stimulus features (e.g., disparity or perspective) are also strongly repre-
sented; thus, they may be contaminated in classification analysis. Therefore, the transfer
decoding performance may be degraded compared with higher regions. In addition, the
MVPA method of fMRI also has its limitations: if we can obtain a significantly high accu-
racy in an area, we can conclude that this area contains information regarding the classes. In
contrast, if we cannot obtain high classification accuracy in an area, we cannot conclude that
this area does not contain information regarding the classes. This is because there are many
factors that can affect the accuracy of classification; for example, the resolution of the fMRI
is limited and each voxel may contain numerous neurons, and these neurons do not have to
be activated uniformly. Therefore, it is possible to obtain accuracy at chance level even if the
information of classes is included. We still believe, however, that a common pattern to a
shape from different cues/elements exists in some middle or higher areas. The reasons for this
are as follows: (a) From the two-stream theory, visual information is processed progressively
from early to high visual areas, and early areas mainly process simple attributes, while visual
attributes processed by higher order visual areas of each pathway are much more complex.
(b) There is evidence that shows that some dorsal areas, such as the MT and V3B/KO, may
be related to the integration of some depth cues (Armendariz et al., 2019; Ban et al., 2012). It
is possible that information from different cues is fused into a single representation at certain
stage, and that this information then flows to the higher areas. Therefore, the higher areas
will contain this generalized information. This generalized information does not have to be
generated in the high areas; it may be generated in some middle stages. (c) Some regions in
the posterior parietal cortex that are involved in motor planning respond to depth signals
(Bhattacharyya et al., 2009; Srivastava et al., 2009; Theys, Srivastava, et al., 2012), and
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information about 3D shapes is required. This shape information should not directly rely on

depth cues and should be generalized. This generalized representation may be one of the

reasons that we obtained relatively high accuracy in the DIPS.
The third limitation of this study is that the number of participants was small compared

with some of the other fMRI studies that used the MVPA method. For example, data from

12 participants were used in the study of Murphy et al. (2013). However, there have also been

studies in which a similar number of participants were recruited. In study of Preston et al.

(2008), for example, eight participants were recruited. The reliability of results can be assured

by a “permutation test,” and this method was used in many studies (Ban & Welchman,

2015). The baseline for statistical significance selected can ensure that if classification accu-

racy is higher than the baseline, it is rare that this accuracy is obtained by chance. Therefore,

we believe that our results are valid.

Conclusion

In this study, we demonstrate that lower order visual cortices process 3D shapes differently

depending on the specific depth cues/elements. In contrast, high-order cortices such as the

DIPS can process 3D shapes similarly regardless of the specific depth cue/elements.
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