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OBJECTIVES: Hyper- and hypoinflammatory subphenotypes discovered in 
patients with acute respiratory distress syndrome predict clinical outcomes and 
therapeutic responses. These subphenotypes may be important in broader criti-
cally ill patient populations with acute respiratory failure regardless of clinical di-
agnosis. We investigated subphenotyping with latent class analysis in an inclusive 
population of acute respiratory failure, derived a parsimonious model for subphe-
notypic predictions based on a small set of variables, and examined associations 
with clinical outcomes.

DESIGN: Prospective, observational cohort study.

SETTING: Single-center, academic medical ICU.

PATIENTS: Mechanically ventilated patients with acute respiratory failure.

MEASUREMENTS AND MAIN RESULTS: We included 498 patients with 
acute respiratory failure (acute respiratory distress syndrome: 143, at-risk for 
acute respiratory distress syndrome: 198, congestive heart failure: 37, acute on 
chronic respiratory failure: 23, airway protection: 61, and multifactorial: 35) in 
our derivation cohort and measured 10 baseline plasma biomarkers. Latent class 
analysis considering clinical variables and biomarkers determined that a two-class 
model offered optimal fit (23% hyperinflammatory subphenotype). Distribution of 
hyperinflammatory subphenotype varied among acute respiratory failure etiolo-
gies (acute respiratory distress syndrome: 31%, at-risk for acute respiratory dis-
tress syndrome: 27%, congestive heart failure: 22%, acute on chronic respiratory 
failure 0%, airway protection: 5%, and multifactorial: 14%). Hyperinflammatory 
patients had higher Sequential Organ Failure Assessment scores, fewer ventila-
tor-free days, and higher 30- and 90-day mortality (all p < 0.001). We derived a 
parsimonious model consisting of angiopoietin-2, soluble tumor necrosis factor 
receptor-1, procalcitonin, and bicarbonate and classified subphenotypes in a val-
idation cohort (n = 139). Hyperinflammatory patients (19%) demonstrated higher 
levels of inflammatory biomarkers not included in the model (p < 0.01) and worse 
outcomes.

CONCLUSIONS: Host-response subphenotypes are observable in a hetero-
geneous population with acute respiratory failure and predict clinical outcomes. 
Simple, biomarker-based models can offer prognostic enrichment in patients with 
acute respiratory failure. The differential distribution of subphenotypes by specific 
etiologies of acute respiratory failure indicates that subphenotyping may be more 
relevant in patients with hypoxemic causes of acute respiratory failure and not in 
patients intubated for airway protection or acute on chronic decompensation.
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biomarkers; heterogeneity; latent class analysis; subphenotypes
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The recent discovery of two distinct subpheno-
types (hyper- vs hypoinflammatory) in patients 
with the acute respiratory distress syndrome 

(ARDS) has offered new opportunities for targeted 
therapeutics in critical care. Based on unsupervised 
classification methods (latent class analyses [LCAs] or 
clustering approaches) considering multiple clinical 
and biomarker variables, the emerging hyperinflam-
matory subgroup of patients with ARDS has been con-
sistently shown to exhibit worse clinical outcomes and 
to be associated with differential responses to therapies, 
such as positive end-expiratory pressure, statin use, 
and fluid management strategies (1). Efforts have also 
been made to derive simpler models for subphenotype 
prediction in patients with ARDS, involving either 
predictive models with biomarkers (2) or machine-
learning classifiers based on clinical variables alone (3).  
However, restricting this subphenotyping framework 
exclusively to patients with ARDS excludes broad pop-
ulations with acute respiratory failure (ARF) that may 
have clinical and biological overlap with ARDS.

To date, most subphenotyping analyses in patients 
with respiratory failure have been performed exclusively 
in ARDS, which represents a complex clinical syndrome 
and the end result of various disease processes that can 
result in lung injury and permeability edema. The in-
herent subjectivity in ARDS diagnosis, primarily due to 
uncertainty on radiographic edema criteria and exclu-
sion of cardiac failure as per the Berlin definition, makes 
clinicopathologic correlations challenging (4, 5). Only 
about half of patients with clinical diagnosis of ARDS 
have the pathognomonic histopathologic findings of dif-
fuse alveolar damage (DAD), whereas among those with 
clinical ARDS without DAD, histopathologic findings of 
pneumonia are the most common (6, 7). On the other 
hand, hydrostatic edema coexists with permeability 
edema in about 30% of patients with ARDS (8), com-
plicating the criterion for exclusion of cardiac etiology 
of edema. Therefore, even among patients who meet the 
clinical diagnostic criteria of ARDS, substantial clinical 
overlap with the broad syndromes of pneumonia and 
congestive heart failure (CHF) exists. Furthermore, most 
of the predictive biomarkers of ARDS subphenotypes, 
such as interleukin (IL)–6 and IL-8, angiopoietin-2, and 
soluble tumor necrosis factor receptor (TNFR)–1, reflect 
nonspecific pathways of innate immunity activation and 
tissue injury and have validated prognostic implications 
in patient populations beyond ARDS (9–12).

Recent evidence demonstrates that two distinct sub-
phenotypes of host-responses are present in patients 
who do not meet the Berlin criteria for diagnosis of 
ARDS but have lung injury risk factors (e.g., pneumonia 
and sepsis) and ARF. Hyperinflammatory patients 
who are at-risk for ARDS had higher severity of illness 
and worse clinical outcomes compared with hypoin-
flammatory patients (13, 14). However, it remains un-
known whether a similar subphenotypic framework 
can be applied to a broader population of patients with 
ARF, regardless of clinical diagnosis. Subphenotyping 
of broader patient populations with ARF may uncover 
distinct subgroups of patients who could benefit from 
targeted enrollment in clinical trials. In this explora-
tory analysis, we sought to investigate whether hyper- 
and hypoinflammatory subphenotypes can be detected 
by LCA in an inclusive cohort of patients with ARF and 
to examine the proportion of subphenotypes within 
different clinical subgroups of ARF. We also sought to 
determine whether parsimonious predictive models 
can be derived and applied in this heterogeneous pop-
ulation to facilitate future investigative applications.

MATERIALS AND METHODS

Extensive methods are provided in Supplemental File 
1 (http://links.lww.com/CCX/A761).

Clinical Cohort

From October 2011 to October 2020, we prospectively 
enrolled a convenience sample of patients with ARF in 
medical ICUs (MICUs) at the University of Pittsburgh 
Medical Center to the Pittsburgh Acute Lung Injury 
Registry and Biospecimen Repository (13, 15–17). We 
excluded patients unable to provide informed consent or 
if they were mechanically ventilated for greater than 72 
hours prior to enrollment. Informed consent was provided 
by all participants in accordance with local regulations. 
The study was approved by the University of Pittsburgh 
Institutional Review Board (protocol STUDY19050099). 
We recorded baseline demographics, comorbidities, me-
chanical ventilation and laboratory variables, and calcu-
lated Sequential Organ Failure Assessment scores.

Biomarker Measurements

We collected blood samples upon enrollment and 
measured 10 host-response biomarkers shown to 
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have validated associations with ARDS and/or sepsis 
with a customized Luminex assay (R&D Systems, 
Minneapolis, MN) (18). Host-response biomarkers 
were classified into markers of innate immune response 
(IL-6, IL-8, IL-10, fractalkine, TNFR-1, and suppres-
sion of tumorigenicity [ST]–2) (2, 11, 12, 19, 20),  
epithelial injury (receptor of advanced glycation end 
products [RAGEs]) (21, 22), endothelial injury (angio-
poietin-2) (9, 23, 24), and response to bacterial infec-
tions (procalcitonin and pentraxin-3) (25–27).

Clinical Group Classifications

A consensus committee retrospectively reviewed all 
available clinical and radiographic data without know-
ledge of biomarker values and classified subjects into 
distinct clinical categories of ARF: 1) ARDS per Berlin 
criteria (4); 2) at-risk for ARDS, based on presence 
of an identifiable lung injury risk factor but not ful-
filling ARDS criteria; 3) cardiogenic pulmonary edema 
from CHF; 4) acute on chronic respiratory failure (e.g., 
acute exacerbation of chronic obstructive pulmonary 
disease); 5) intubation for airway protection; and 6) 

“multifactorial” category, including cases for which the 
committee could not reach consensus for clinical clas-
sification into any of the categories above.

Outcomes

Primary outcomes included ventilator-free days 
(VFDs) to 28 days and 30- and 90-day mortality (28). 
Patients were also followed prospectively for the pres-
ence of shock within the first week of enrollment (de-
fined as need for vasopressor agents), acute kidney 
injury (AKI), time to liberation from mechanical ven-
tilation, and ICU length of stay (13).

Subphenotypic Classifications and Statistical 
Analyses

For subphenotypic classification with LCA models first 
and then derivation of a parsimonious predictive model, 
we considered patients from all six clinical categories of 
ARF. We divided our cohort of patients into two tem-
porally independent datasets (Fig. 1): 1) a derivation 
dataset of 498 mechanically ventilated patients enrolled 

Figure 1. Flow chart of enrolled patients in the derivation and validation cohorts with displayed distribution of hyper- versus 
hypoinflammatory subphenotypes by different types of analyses. The four-variable internal parsimonious model used levels of 
bicarbonate, tumor necrosis factor receptor (TNFR)–1, angiopoietin-2, and procalcitonin, whereas the three-variable external model used 
levels of interleukin-8, bicarbonate, and TNFR-1. Prediction with parsimonious models was not possible for 28 of 498 subjects (5.6%) 
due to missingness of one or more biomarker levels.
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from October 2011 to February 2019 (143 [36%] ARDS, 
198 [50%] at-risk for ARDS, 37 [9%] CHF, 23 [6%] 
acute on chronic respiratory failure, 61 [15%] airway 
protection, and 35 [9%] multifactorial) and 2) a valida-
tion dataset including 139 patients enrolled from March 
2019 to October 2020. With the onset of the coronavirus 
disease 2019  (COVID-19) pandemic, the validation co-
hort consisted of 80 COVID-19 patients (40 intubated 
and 40 managed with high-flow nasal cannula oxygen 
or noninvasive mechanical ventilation) and 59 mechan-
ically ventilated patients with ARF of other etiologies, 
reflective of the patient population in our ICUs during 
this study period. Data for 235 of 498 patients (47%) in 
the derivation dataset had been previously used for ap-
plication of LCA models separately in patients with and 
at-risk for ARDS (13).

We performed subphenotypic classifications by apply-
ing LCA in the derivation dataset. First, we estimated the 
optimal number of classes that best fit our patient cohort. 
We considered a total of 35 baseline clinical and biomarker 
variables similar to previous studies (Supplemental Table 
S2, http://links.lww.com/CCX/A761) (2, 13, 20). We 
graphically examined continuous variables by plotting 
standardized values to a common z scale (Supplemental 
Fig. S3, http://links.lww.com/CCX/A761). For LCA mod-
els, we examined p values for bootstrapped parametric 
likelihood ratio tests, entropy, and frequency of each class 
to select the final number of classes.

We then developed a parsimonious logistic regres-
sion model for subphenotype predictions based on a 
best subsets generalized linear model approach using 
Bayesian Information Criteria (29). We applied sub-
phenotype classifications provided from the parsimo-
nious model in the derivation cohort to assess model 
performance and then to the validation cohort to 
assess for differences in baseline clinical variables and 
outcomes between predicted subphenotypes. With an 
area under the curve (AUC) statistic, we examined for 
agreement between the predictions from our internal, 
newly developed parsimonious model versus an ex-
ternally developed predictive model in patients with 
ARDS that had used three biomarker variables (IL-8, 
bicarbonate, and TNFR-1) (30).

Comparisons between hyperinflammatory and 
hypoinflammatory subphenotypes were obtained from 
Wilcoxon test for continuous variables and Fisher test 
for categorical variables. Kaplan-Meier curves and Cox 
proportional hazard models were created for survival 

and time to liberation from mechanical ventilation, for 
which we also examined models adjusted for the com-
peting risk of death (28). We performed LCA in Mplus 
8.3 (Muthén & Muthén, Los Angeles, CA) and all 
other analyses in R v.3.5.1 (R Foundation for Statistical 
Computing, Vienna, Austria) (31, 32).

RESULTS

Derivation Cohort Description

We provide detailed baseline characteristics, bio-
marker values, and clinical outcomes by ARF etiology 
in Supplemental Table S4 (http://links.lww.com/CCX/
A761). ARDS patients had the highest frequency of 
pneumonia and worse hypoxemia, whereas patients at-
risk for ARDS had higher incidence of aspiration and 
extrapulmonary sepsis compared with other groups (p < 
0.0001). Patients with ARDS had the longest duration of 
ICU stay (median, 12.0 d; [interquartile range, 8.0–21.0 
d]) and fewer VFDs (12.0 [0.0–21.0]), whereas patients 
intubated for airway protection had short ICU length of 
stay (5.0 d [3.0–9.0 d]), more VFDs (24.0 [20.0–26.0]), 
and favorable clinical outcomes compared with the other 
groups (Supplemental Fig. S5, http://links.lww.com/
CCX/A761). With few exceptions, the acute on chronic 
and airway protection groups generally had the lowest 
 levels of host-response biomarkers (Supplemental Fig. 
S6, http://links.lww.com/CCX/A761).

Subphenotypic Classifications by LCA  
and Clinical Outcomes

With a staged process of variable selection for our LCA 
model, a two-class LCA model using 22 clinical and bio-
marker variables offered optimal fit versus a single-class 
model (entropy, 0.911) (Supplemental File 1, http://
links.lww.com/CCX/A761; Supplemental Table S2,  
http://links.lww.com/CCX/A761; Supplemental Fig. S3,  
http://links.lww.com/CCX/A761). A three-class model 
resulted in a class with very low frequency (3.4%), 
which was considered clinically not useful. Therefore, 
we retained a final two-class model. Overall, 23% of 
patients were assigned to class 2 with characteristic 
features of the hyperinflammatory subphenotype, that 
is, higher levels of leukocytosis, creatinine, and all 
measured biomarkers and lower serum bicarbonate 
(p < 0.0001) compared with patients assigned to class 
1 or the hypoinflammatory subphenotype (Table  1). 
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TABLE 1. 
Comparisons of Baseline Variables and Clinical Outcomes by Latent Class Analyses 
Subphenotypes

Variables Hypoinflammatory Hyperinflammatory p

N 383 115  

Demographics    

 Age, median (IQR) 58.2 (46.0–66.9) 58.5 (44.0–67.2) 0.6779

 Male gender, n (%) 200 (52.2) 68 (59.1) 0.2313

 Body mass index, median (IQR) 29.0 (25.2–36.1) 28.3 (24.8–34.2) 0.2438

 Caucasian race, n (%) 355 (92.7) 102 (88.7) 0.2408

History of chronic disease, n (%)    

 Diabetes 127 (33.2) 39 (33.9) 0.9700

 Chronic obstructive pulmonary disease 89 (23.2) 25 (21.7) 0.8345

 Immunosuppression 78 (20.4) 25 (21.7) 0.8511

 Chronic kidney disease 49 (12.8) 34 (29.6) < 0.0001

 Chronic cardiac failure 45 (11.7) 13 (11.3) 1.0000

 Alcohol use 59 (15.4) 20 (17.4) 0.7145

Risk factors for acute respiratory  
 distress syndrome

   

 Pneumonia, n (%) 139 (36.3) 47 (40.9) 0.4189

 Aspiration, n (%) 63 (16.4) 20 (17.4) 0.6406

 Sepsis, n (%) 73 (19.1) 42 (36.5) 0.0003

 Lung Injury Prediction Score 5.0 (4.0–6.5) 6.5 (5.5–8.0) < 0.0001

Hemodynamic variables, median (IQR)    

 Heart rate 89.0 (76.0–102.0) 99.0 (83.0–109.5) 0.0002

 Systolic blood pressure 119.0 (104.0–135.0) 109.0 (96.0–124.0) 0.0004

Laboratory variables, median (IQR)    

 Arterial pH 7.4 (7.4–7.4) 7.3 (7.3–7.4) < 0.0001

 WBC 11.4 (7.9–16.0) 15.5 (11.1–23.5) < 0.0001

 Creatinine 1.0 (0.7–1.6) 3.2 (1.9–4.7) < 0.0001

 Serum Co2 25.0 (22.0–28.0) 20.0 (18.0–23.0) < 0.0001

Mechanical ventilation variables,  
 median (IQR)

   

 Worst Pao2:Fio2 ratio 164.0 (117.0–208.0) 163.0 (110.5–221.5) 0.4363

 Peak inspiratory pressure 25.0 (20.0–31.0) 26.0 (21.0–32.0) 0.2508

 Tidal volume (per kg of predicted body  
 weight), mL/kg

6.7 (6.0–7.6) 6.7 (6.0–7.7) 0.9442

 Saturation, % 97.0 (95.5–99.0) 97.0 (95.0–99.0) 0.2783

Severity of illness and clinical outcomes    

 Shock (vasopressor use), n (%) 178 (46.5) 89 (77.4) < 0.0001

 Sequential Organ Failure Assessment  
 score, median (IQR)

6.0 (4.0–8.0) 10.0 (8.0–11.0) < 0.0001

 Acute kidney injury, n (%) 219 (57.2) 106 (92.2) < 0.0001

(Continued )
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 30-d mortality, n (%) 85 (22.2) 46 (40.0) 0.0002

 90-d mortality, n (%) 94 (24.5) 50 (43.5) 0.0001

 ICU length of stay, median (IQR) 9.0 (5.0–15.0) 9.0 (5.0–14.0) 0.6497

 Ventilator-free days, median (IQR) 19.0 (0.0–24.0) 11.0 (0.0–22.0) 0.0002

 Duration of mechanical ventilation,  
 median (IQR), d

6.5 (4.0–12.0) 7.0 (4.0–11.0) 0.6956

Biomarkers, median (IQR)    

 IL-6, pg/mL 43 (20–114) 207 (50–635) < 0.0001

 IL-8, pg/mL 14 (7–25) 37 (22–83) < 0.0001

 IL-10, pg/mL 0.1 (0.0–4.0) 8.7 (0.0–21.7) < 0.0001

 Tumor necrosis factor receptor-1, pg/mL 2,902 (1,801–4,777) 10,586 (7,652–16,302) < 0.0001

 Angiopoietin-2, pg/mL 5,446 (3,083–9,896) 19,054 (13,590–35,875) < 0.0001

 Pentraxin-3, pg/mL 2,488 (1,098–6,508) 7,816 (3,406–22,469) < 0.0001

 Fractalkine, pg/mL 1,271 (528–2,023) 2,686 (1,902–4,013) < 0.0001

 Suppression of tumorigenicity-2, pg/mL 132,620 (64,313–328,541) 622,752 (268,033–1,260,289) < 0.0001

 Procalcitonin, pg/mL 429 (136–1,404) 4,191 (2,227–5,029) < 0.0001

 Receptor of advanced glycation  
 end products, pg/mL

2,533 (1,513–4,258) 7,491 (5,252–12,803) < 0.0001

 1-3-beta-D-glucan, pg/mL 23 (14–39) 41 (21–73) < 0.0001

IL = interleukin, IQR = interquartile range.
p values for comparisons between hyperinflammatory and hypoinflammatory subphenotypes were obtained from Wilcoxon test for 
continuous variables and Fisher test for categorical variables. Statistically significant p values (p < 0.05) are highlighted in bold.

TABLE 1. (Continued) 
Comparisons of Baseline Variables and Clinical Outcomes by Latent Class Analyses 
Subphenotypes

Variables Hypoinflammatory Hyperinflammatory p

Hyperinflammatory patients also had worse 30- and 
90-day survival and longer time to liberation from me-
chanical ventilation (Fig. 2) (Supplemental Fig. S7, 
http://links.lww.com/CCX/A761).

The proportion of patients classified to the hyperin-
flammatory subphenotype was different between clin-
ical diagnosis groups (Fig. 3) (p < 0.01), with highest 
proportions in ARDS (31%), at-risk for ARDS (27%), 
and CHF groups (22%). In contrast, the hyperinflam-
matory subphenotype was absent in patients with 
acute on chronic respiratory failure and of very low 
prevalence (5%) in the airway protection group.

Derivation of a Parsimonious Model  
for Subphenotype Predictions

For the development of the predictive model, we first 
considered 13 variables that were found to be the 
most discriminatory between the two subphenotypes: 

hypoalbuminemia, creatinine, bicarbonate, respira-
tory rate, arterial pH, vasopressor use, procalcitonin, 
RAGE, TNFR-1, ST-2, angiopoietin-2, fractalkine, and 
pentraxin-3. With feature selection using a best subsets 
generalized linear model (using 100-fold cross-valida-
tion), we derived a four-variable parsimonious model 
for the probability of assignment (threshold proba-
bility of 50%) to the hyperinflammatory subphenotype: 
–2.367566 – 2.379745e-01 × (bicarbonate) + 6.844e-04 
× (procalcitonin) + 4.073e-04 (TNFR-1) + 1.0378e-04 
× (angiopoietin-2). Subphenotypic predictions by the 
parsimonious model offered excellent classification 
(AUC, 0.910) against LCA-defined subphenotypes.

Proportion of subphenotypes (22% hyperinflam-
matory) and comparison of baseline variables between 
subphenotypes by this four-variable parsimonious 
model were very similar to those of the LCA model 
(data not shown). Subphenotypic classifications by this 
parsimonious model revealed statistically significant 

http://links.lww.com/CCX/A761
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differences for all other plasma biomarkers not in-
cluded in the model equation (Fig. 4), indicating that 
the model identified distinct profiles of host-response 
despite using only four variables. We then compared our 
novel, internally derived four-variable parsimonious 
model with the predictions offered by an externally 

developed three-variable model  (IL-8, bicar-
bonate, and TNFR-1) and found overall good 
agreement between the two models (AUC, 
0.816) (Supplemental Fig. S8, http://links.
lww.com/CCX/A761). Similarly, application 
of this external parsimonious model yielded 
similar results in terms of clinical variables and 
biomarker distribution between the two pre-
dicted subphenotypes (data not shown). Both 
parsimonious models predicted worse 30-day 
survival for the hyperinflammatory subpheno-
type (Supplemental Fig. S9, http://links.lww.
com/CCX/A761).

Application of the Parsimonious Model 
in a Validation Cohort of ARF Patients

In a validation cohort of 139 patients with 
ARF, we considered patients with broad eti-
ologies of ARF (n = 59) as well as patients 
with  COVID-19 (n = 80), which was the pre-
dominant etiology of ARF in our ICUs in 
2020. We applied predictions from the four-
variable model in the validation cohort and 
classified 27 patients (19%) in the hyperin-
flammatory subphenotype (Supplemental 
Table S10, http://links.lww.com/CCX/A761). 
There was no significant difference in hyper-
inflammatory subphenotype prevalence be-
tween patients with COVID-19 (18%) versus 
non-COVID ARF (22%; Fisher test p = 0.52). 
Hyperinflammatory patients had higher bi-
omarker levels not included in the parsimo-
nious model (Supplemental Fig. S11, http://
links.lww.com/CCX/A761), higher incidence 
of shock and AKI (p < 0.05) (Supplemental 
Table S10, http://links.lww.com/CCX/A761), 
and worse 30-day survival compared with 
hypoinflammatory patients (adjusted hazard 
ratio, 2.52 [95% CI, 1.25–5.11]; p = 0.009) 
(Fig. 5).

DISCUSSION

In a prospective, observational cohort of mechanically 
ventilated patients with ARF of different etiologies, 
we demonstrated that the subphenotypic framework 
described for patients with ARDS applies also in a 

Figure 2. Hyperinflammatory patients had worse 30-d survival and longer 
time to liberation from mechanical ventilation. Kaplan-Meier curves for  
(A) 30-d survival and (B) time to liberation from mechanical ventilation for 
each subphenotype as derived by the latent class analysis model. p values 
for differences between subphenotypes were obtained with a log-rank test. 
Adjusted hazard ratios (HRs) with 95% CIs are displayed for the effects 
of the hyperinflammatory subphenotype, as derived from multivariate Cox 
proportional hazards models adjusted for age and clinical category of acute 
respiratory failure. Ninety-day survival data were very similar to 30-d and 
are not shown.

http://links.lww.com/CCX/A761
http://links.lww.com/CCX/A761
http://links.lww.com/CCX/A761
http://links.lww.com/CCX/A761
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broader and more heterogeneous crit-
ically ill population. Although prior 
studies have shown the presence of 
hyper- and hypoinflammatory subphe-
notypes in specific patient subgroups 
(i.e., ARDS or patients at-risk for ARDS) 
(13, 20), our model included a broad 
range of patients with ARF, independent 
of specific clinical manifestations or ful-
fillment of ARDS diagnostic criteria. Our 
LCA models classified 23% of patients in 
the hyperinflammatory subphenotype, a 
slightly lower proportion compared with 
previous studies (27–37%), reflecting 
the expansion of our models to clinical 
groups with lower levels of systemic in-
flammatory biomarkers, such as patients 
intubated for airway protection or with 
acute on chronic respiratory failure. We 
derived a new four-variable model con-
sisting of validated biomarkers in ARDS 
and other critical illness syndromes, 

Figure 3. Distribution of subphenotypes among clinical categories of acute 
respiratory failure. The proportions of subphenotypic classifications were 
significantly different between the clinical categories of acute respiratory failure  
(p < 0.01). Patients intubated for airway protection had very low proportion (5%) of 
hyperinflammatory subphenotype classification, whereas no patients with acute on 
chronic respiratory failure were classified to the hyperinflammatory subphenotype. 
A much higher proportion of patients was assigned to the hyperinflammatory 
subphenotype in acute respiratory distress syndrome (ARDS) (31%), at-risk for 
ARDS (27%) and congestive heart failure (CHF) (22%) groups.

Figure 4. Patients classified to the hyperinflammatory subphenotype by the four-variable parsimonious model had higher levels of all 
other plasma biomarkers not included in the four-variable model. Biomarker values are displayed on logarithmic scale. ****p < 0.0001.  
BDG = 1-3-beta-D-glucan, IL = interleukin, RAGE = receptor of advanced glycation end product, ST-2 = suppression of tumorigenicity-2.



Original Clinical Report

Critical Care Explorations www.ccejournal.org     9

which had excellent agreement with the LCA results 
in the derivation cohort, and predicted clinical out-
comes in the validation cohort. Our findings support 
the need for further investigation of biomarker-based 
subphenotyping in broader critically ill patient popu-
lations beyond those with ARDS.

Among the complex critical illness syndromes in-
cluding ARDS, sepsis, and AKI, attempts to subdi-
vide patients solely based on clinical criteria have been 
largely unsuccessful. In ARDS, subgroups receiving dif-
ferential ventilator management strategies based on CT 
morphology showed no difference in mortality, and this 
strategy even proved to be harmful if misclassified into 
the wrong group (33). However, biomarker-based sub-
phenotyping in ARDS has shown promise based on ret-
rospective analyses that suggest differential responses to 
therapies by subphenotypes (30, 34). In AKI, like ARDS, 
no effective therapeutic interventions exist other than 
supportive care and renal replacement therapy. However, 
with the evolution of biomarker-based subphenotyping, 
two distinct subphenotypes of AKI emerged with dif-
ferential responses to therapy such as vasopressin (35). 

Parsimonious modeling revealed that the distinguishing 
biomarkers in AKI are similar to those of our hetero-
geneous cohort, including bicarbonate, angiopoietin-2, 
and TNFR-1. Such findings raise the possibility that 
common pathways of systemic inflammation are con-
served across heterogeneous, critically ill populations. 
Despite these encouraging results, barriers to bedside 
translation, including lack of available point-of-care 
assays, have precluded the prospective study of bio-
marker-guided therapeutic investigations.

An important challenge in critical care pertains to 
the subjective and nonspecific nature of diagnostic cri-
teria for critical illness syndromes. ARDS is systemati-
cally underrecognized or underreported as a diagnosis 
in clinical practice (36), and diagnostic disagreement is 
common among expert providers (5, 37). ARDS recog-
nition is straightforward in cases with typical presen-
tations of diffuse, bilateral infiltrates on imaging with 
an obvious risk factor, such as pneumonia or sepsis. 
However, less classic radiographic presentations are a 
source of uncertainty and diagnostic discordance (38). 
Further investigation into underrecognition of ARDS 
demonstrated that interobserver agreement of ARDS 
diagnosis under Berlin criteria has only been mod-
erate, with lack of consensus on chest radiograph in-
terpretation accounting for most differences (5). Given 
such inherent diagnostic uncertainty in ARDS, there 
is compelling need to understand the underlying bi-
ological mechanisms that drive different outcomes in 
these conditions. Biological subphenotyping in critical 
illness syndromes is an intriguing concept that with 
further investigation could attenuate the impact of di-
agnostic misclassifications, as critical illness evolution 
and outcomes may be more related to the underlying 
biology than initial diagnostic group assignments. 
Nonetheless, clinical investigation of subphenotype-
guided interventions will require several additional 
lines of evidence, including demonstration of external 
validity in diverse patient populations and feasibility of 
incorporating biomarker measurement and guidance 
in clinically relevant timelines.

In our cohort, patients intubated for airway pro-
tection or those with acute decompensation of their 
chronic lung disease appear to have very low prev-
alence of the hyperinflammatory subphenotype  
(5% and 0%, respectively). Thus, biomarker-based sub-
phenotyping may be less relevant in ARF that does not 
involve acute lung injury and/or pulmonary edema, 

Figure 5. Hyperinflammatory patients in the validation cohort had 
worse 30-d survival compared with hypoinflammatory patients. 
Kaplan-Meier curves for 30-d survival for each subphenotype, 
as derived by the four-variable parsimonious model. p values 
for differences between subphenotypes were obtained with a 
log-rank test. Adjusted hazard ratios (HRs) with 95% CIs are 
displayed for the effects of the hyperinflammatory subphenotype, 
as derived from a multivariate Cox proportional hazards model 
adjusted for age and clinical category of acute respiratory failure 
(coronavirus disease 2019 [COVID-19] acute respiratory distress 
syndrome [n = 40], COVID-19 pneumonia not intubated [n = 40], 
and non-COVID acute respiratory failure [n = 59]).



Drohan et al

10     www.ccejournal.org August 2021 • Volume 3 • Number 8

such as patients with severe encephalopathy requir-
ing intubation for airway protection or patients with 
advanced lung disease and prone to decompensation 
with minimal additional physiologic burden. Patients 
in these latter categories are readily distinguishable on 
clinical grounds, and management of their respiratory 
failure is focused on the triggers of decompensation 
(e.g., encephalopathy or acute on chronic hyper-
capnia). On the other hand, in patients with complex 
syndromes such as ARDS, pneumonia, sepsis, or CHF, 
the exact etiology of ARF may not be clear at the time 
of the initial clinical encounter, prior to accumulating 
informative diagnostic data. For example, exclusion 
of cardiac edema is a major source of disagreement in 
the clinical diagnosis of ARDS, as seen in the Fluid and 
Catheters Treatment Trial, where 30% of ARDS patients 
had  elevated pulmonary artery occlusion pressure (> 
18 mm Hg) (8). Consequently, it is possible for patients 
with pure cardiogenic edema to be clinically diagnosed 
as ARDS and vice versa, and such misclassifications 
are not always straightforward to identify and/or rec-
tify clinically. Although we recognize that our sample 
size is small and our findings require external valida-
tion, about one fifth of CHF patients were assigned to 
the hyperinflammatory subphenotype, suggesting bio-
logical commonalities with the acute lung injury syn-
dromes. These findings further highlight the relevance 
of objective classification of critical illness based on bi-
ological markers rather than clinical impression alone.

Given the timing of our study, our validation cohort 
comprises a large proportion of patients with COVID-19, 
a population in which subphenotyping is actively being 
explored (39). With recognition of significant clinical 
heterogeneity in COVID-19, extensive research efforts 
are being made to clarify the biological underpinnings of 
the observed clinical variability. Interestingly,  COVID-19 
is the only form of ARDS with clinical trial data to sup-
port treatment efficacy with immunomodulation, which 
may be more beneficial in hyperinflammatory patients 
based on a recent report (40). Consistent with the der-
ivation cohort results, in the validation cohort, we also 
found that hyperinflammatory patients had higher levels 
of innate immunity biomarkers and worse 30-day sur-
vival, supporting the generalizability of such subpheno-
typic classifications in patients with COVID-19.

Our four-variable internal parsimonious model 
includes two markers that have been associated in cohorts 
much larger than our current study (bicarbonate and 

TNFR-1) (13, 20), one well-validated marker in sepsis and 
ARDS (angiopoietin-2) (23, 24), and one already widely 
clinically available and used test (procalcitonin) (26, 41). 
Angiopoietin-2 is a plausible causal factor in develop-
ment of ARDS in septic patients (24), in addition to an in-
dependent predictor of mortality (9, 10). Angiopoietin-2 
has been included in prior parsimonious models (9, 35, 
42) for ARDS and AKI subphenotypes. Similarly, bicar-
bonate and TNFR-1 have been identified as key predictors 
in prior parsimonious models for ARDS subphenotypes  
(2, 30), including the three-variable model we applied in 
our cohort (30). Notably, many of these analyses did not 
include the other two biomarkers in our parsimonious 
model (angiopoietin-2 and procalcitonin) as possible 
classifier variables. Further verification in larger datasets 
is therefore required. Although a parsimonious model 
allows for easier clinical applicability than complex LCA, 
models that depend on biomarker variables will eventu-
ally require point-of-care or rapid turnaround tests to en-
sure timely acquisition of results for model predictions.

Our study has several limitations. Although our 
study prospectively enrolled patients with ARF, it is lim-
ited by sample size and single-center design. Due to lo-
gistical reasons for enrollment, our cohort represented 
a convenience sample from consecutively admitted 
patients in our MICUs, resulting in limited recruitment 
over time. We also only examined baseline data (within 
48 hr intubation in the derivation cohort). Therefore, it 
is unclear whether patients transition between subphe-
notypes over time. In a previous analysis of an ARDS 
clinical trial population, the majority of patients (> 
94%) remained in the same subphenotype from day 0 
to day 3 post sampling (43). However, preliminary data 
within our own cohort demonstrate the possibility of 
higher rates of transition between subphenotypes by 
days 3–6 post intubation (44). Further examination 
of the stability of subphenotypes will be important, 
as transition from one group to another may impact 
the ability to effectively target clinical interventions. 
Although we had an independent dataset for validation 
demonstrating similar trends with outcomes and bio-
markers, the validation dataset is small, illustrating the 
need to further externally validate our model in larger 
datasets. Additionally, it is important to note that our 
findings are hypothesis generating and not yet action-
able at the bedside. Larger, prospective trials will be 
necessary to verify subphenotypic models and explore 
differential treatment effects between groups.
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CONCLUSIONS

The formerly described hyper- and hypoinflamma-
tory subphenotypes can be observed in a more heter-
ogeneous population of patients with ARF, suggesting 
underlying biological commonalities among diverse 
clinical syndromes. Objective and accurate subphe-
notyping of these patients is possible with the use of 
simple predictive models based on biomarker values, 
although several steps must be taken prior to being 
applied to clinical practice. The differential distribu-
tion of subphenotypes by specific etiologies of ARF 
indicates that subphenotyping may be more relevant 
in patients with hypoxemic respiratory failure (i.e., 
ARDS, at-risk for ARDS, and CHF) and not in patients 
intubated for airway protection or for acute on chronic 
decompensation.

 1 Division of General Internal Medicine, University of 
Pittsburgh Medical Center, Pittsburgh, PA.

 2 Acute Lung Injury Center of Excellence, Division of 
Pulmonary, Allergy and Critical Care Medicine, University of 
Pittsburgh Medical Center, Pittsburgh, PA.

 3 Staff Physician, Veterans Affairs Pittsburgh Healthcare 
System, Pittsburgh, PA.

 4 Center for Medicine and the Microbiome, Department of 
Medicine, University of Pittsburgh, Pittsburgh, PA.

Supplemental digital content is available for this article. Direct 
URL citations appear in the printed text and are provided in the 
HTML and PDF versions of this article on the journal’s website 
(http://journals.lww.com/ccejournal).

Drs. McVerry and Kitsios are cosenior authors.

Supported, in part, by the National Institutes of Health: (K23 
HL139987 [to Dr. Kitsios]; P01 HL114453 [to Dr. McVerry]; R01 
HL097376 [to Dr. McVerry]; U01 HL098962 [to Dr. Morris]; K24 
HL123342 [to Dr. Morris]; F32 HL137258 [to Dr. Evankovich]; F32 
HL142172 [to Dr. Bain]; K23GM122069 [to Dr. Shah]); Career 
Development Award Number IK2 BX004886 from the United 
States Department of Veterans Affairs Biomedical Laboratory 
R&D Service (to Dr. Bain); and Clinical and Translational Science 
Institute Pilot Award on Coronavirus Disease 2019 (to Dr. Kitsios).

Dr. McVerry has been a consultant for Boehringer-Ingelheim, Inc. 
and receives research funding from Bayer Pharmaceuticals, Inc. 
Dr. Kitsios has received research funding from Karius, Inc. The 
remaining authors have disclosed that they do not have any con-
flicts of interest.

For information regarding this article, E-mail: kitsiosg@upmc.edu

REFERENCES
 1. Reddy K, Sinha P, O’Kane CM, et al: Subphenotypes in crit-

ical care: Translation into clinical practice. Lancet Respir Med 
2020; 8:631–643

 2. Sinha P, Delucchi KL, McAuley DF, et al: Development and 
validation of parsimonious algorithms to classify acute res-
piratory distress syndrome phenotypes: A secondary anal-
ysis of randomised controlled trials. Lancet Respir Med 2020; 
8:247–257

 3. Sinha P, Churpek MM, Calfee CS: Machine learning classifier 
models can identify ARDS phenotypes using readily available 
clinical data. Am J Respir Crit Care Med 2020; 202:996–1004

 4. Ranieri VM, Rubenfeld GD, Thompson BT, et al: Acute respi-
ratory distress syndrome: The Berlin definition. JAMA 2012; 
307:2526–2533

 5. Sjoding MW, Hofer TP, Co I, et al: Interobserver reliability of the 
Berlin ARDS definition and strategies to improve the reliability 
of ARDS diagnosis. Chest 2018; 153:361–367

 6. Thille AW, Esteban A, Fernández-Segoviano P, et al: 
Comparison of the Berlin definition for acute respiratory dis-
tress syndrome with autopsy. Am J Respir Crit Care Med 2013; 
187:761–767

 7. Thompson BT, Matthay MA: The Berlin definition of ARDS 
versus pathological evidence of diffuse alveolar damage. Am J 
Respir Crit Care Med 2013; 187:675–677

 8. Wiedemann HP, Wheeler AP, Bernard GR, et al: Comparison of 
two fluid-management strategies in acute lung injury. N Engl J 
Med 2006; 354:2564–2575

 9. Bime C, Casanova N, Oita RC, et al: Development of a bio-
marker mortality risk model in acute respiratory distress syn-
drome. Crit Care 2019; 23:410

 10. Terpstra ML, Aman J, van Nieuw Amerongen GP, et al: 
Plasma biomarkers for acute respiratory distress syndrome: 
A systematic review and meta-analysis*. Crit Care Med 2014; 
42:691–700

 11. Bajwa EK, Volk JA, Christiani DC, et al; National Heart, Lung 
and Blood Institute Acute Respiratory Distress Syndrome 
Network: Prognostic and diagnostic value of plasma soluble 
suppression of tumorigenicity-2 concentrations in acute respi-
ratory distress syndrome. Crit Care Med 2013; 41:2521–2531

 12. Liu CH, Kuo SW, Ko WJ, et al: Early measurement of IL-10 
predicts the outcomes of patients with acute respiratory dis-
tress syndrome receiving extracorporeal membrane oxygena-
tion. Sci Rep 2017; 7:1021

 13. Kitsios GD, Yang L, Manatakis DV, et al: Host-response sub-
phenotypes offer prognostic enrichment in patients with or 
at risk for acute respiratory distress syndrome. Crit Care Med 
2019; 47:1724–1734

 14. Heijnen NFL, Hagens LA, Smit MR, et al: Biological subphe-
notypes of acute respiratory distress syndrome show prog-
nostic enrichment in mechanically ventilated patients without 
acute respiratory distress syndrome. Am J Respir Crit Care 
Med 2021; 203:1503–1511

 15. Kotok D, Yang L, Evankovich JW, et al: The evolution of ra-
diographic edema in ARDS and its association with clinical 
outcomes: A prospective cohort study in adult patients. J Crit 
Care 2020; 56:222–228

 16. Kitsios GD, Yang H, Yang L, et al: Respiratory tract dysbiosis 
is associated with worse outcomes in mechanically ventilated 
patients. Am J Respir Crit Care Med 2020; 202:1666–1677

 17. Bain W, Li H, van der Geest R, et al: Increased alternative com-
plement pathway function and improved survival during critical 
illness. Am J Respir Crit Care Med 2020; 202:230–240

http://journals.lww.com/ccejournal
mailto:kitsiosg@upmc.edu


Drohan et al

12     www.ccejournal.org August 2021 • Volume 3 • Number 8

 18. McKay HS, Margolick JB, Martínez-Maza O, et al: Multiplex 
assay reliability and long-term intra-individual variation of se-
rologic inflammatory biomarkers. Cytokine 2017; 90:185–192

 19. Hoogendijk AJ, Wiewel MA, van Vught LA, et al; MARS 
Consortium: Plasma fractalkine is a sustained marker of disease 
severity and outcome in sepsis patients. Crit Care 2015; 19:412

 20. Calfee CS, Delucchi K, Parsons PE, et al; NHLBI ARDS 
Network: Subphenotypes in acute respiratory distress syn-
drome: Latent class analysis of data from two randomised 
controlled trials. Lancet Respir Med 2014; 2:611–620

 21. Jabaudon M, Blondonnet R, Pereira B, et al: Plasma sRAGE 
is independently associated with increased mortality in ARDS: 
A meta-analysis of individual patient data. Intensive Care Med 
2018; 44:1388–1399

 22. Jones TK, Feng R, Kerchberger VE, et al: Plasma sRAGE acts 
as a genetically regulated causal intermediate in sepsis-asso-
ciated acute respiratory distress syndrome. Am J Respir Crit 
Care Med 2020; 201:47–56

 23. Calfee CS, Gallagher D, Abbott J, et al; NHLBI ARDS 
Network: Plasma angiopoietin-2 in clinical acute lung injury: 
Prognostic and pathogenetic significance. Crit Care Med 
2012; 40:1731–1737

 24. Reilly JP, Wang F, Jones TK, et al: Plasma angiopoietin-2 as a 
potential causal marker in sepsis-associated ARDS develop-
ment: Evidence from Mendelian randomization and mediation 
analysis. Intensive Care Med 2018; 44:1849–1858

 25. Mauri T, Coppadoro A, Bellani G, et al: Pentraxin 3 in acute 
respiratory distress syndrome: An early marker of severity. Crit 
Care Med 2008; 36:2302–2308

 26. Liu D, Su LX, Guan W, et al: Prognostic value of procalcito-
nin in pneumonia: A systematic review and meta-analysis. 
Respirology 2016; 21:280–288

 27. Hui L, Zhang X, An X, et al: Higher serum procalcitonin and 
IL-6 levels predict worse diagnosis for acute respiratory dis-
tress syndrome patients with multiple organ dysfunction. Int J 
Clin Exp Pathol 2017; 10:7401–7407

 28. Yehya N, Harhay MO, Curley MAQ, et al: Reappraisal of venti-
lator-free days in critical care research. Am J Respir Crit Care 
Med 2019; 200:828–836

 29. Jovanovic BD, Hosmer DW, Buonaccorsi JP: Equivalence of 
several methods for efficient best subsets selection in gener-
alized linear models. Comput Stat Data Anal 1995; 20:59–64

 30. Famous KR, Delucchi K, Ware LB, et al; ARDS Network: Acute 
respiratory distress syndrome subphenotypes respond differ-
ently to randomized fluid management strategy. Am J Respir 
Crit Care Med 2017; 195:331–338

 31. R Foundation for Statistical Computing RCT: R: A Language 
and Environment for Statistical Computing. Vienna, Austria, 
CRAN, 2016

 32. Muthén LK, Muthén BO: Mplus User’s Guide. Los Angeles, CA, 
Muthén & Muthén, 1997–2017

 33. Constantin JM, Jabaudon M, Lefrant JY, et al; AZUREA 
Network: Personalised mechanical ventilation tailored to lung 
morphology versus low positive end-expiratory pressure for 
patients with acute respiratory distress syndrome in France 
(the LIVE study): A multicentre, single-blind, randomised con-
trolled trial. Lancet Respir Med 2019; 7:870–880

 34. Calfee CS, Delucchi KL, Sinha P, et al; Irish Critical Care Trials 
Group: Acute respiratory distress syndrome subphenotypes 
and differential response to simvastatin: Secondary analysis 
of a randomised controlled trial. Lancet Respir Med 2018; 
6:691–698

 35. Bhatraju PK, Zelnick LR, Herting J, et al: Identification of acute 
kidney injury subphenotypes with differing molecular signa-
tures and responses to vasopressin therapy. Am J Respir Crit 
Care Med 2019; 199:863–872

 36. Weiss CH, Baker DW, Weiner S, et al: Low tidal volume ventila-
tion use in acute respiratory distress syndrome. Crit Care Med 
2016; 44:1515–1522

 37. Sjoding MW, Hofer TP, Co I, et al: Differences between patients 
in whom physicians agree and disagree about the diagnosis 
of acute respiratory distress syndrome. Ann Am Thorac Soc 
2019; 16:258–264

 38. Ferguson ND, Fan E, Camporota L, et al: The Berlin definition 
of ARDS: An expanded rationale, justification, and supplemen-
tary material. Intensive Care Med 2012; 38:1573–1582

 39. Bos LDJ, Paulus F, Vlaar APJ, et al: Subphenotyping acute 
respiratory distress syndrome in patients with COVID-19: 
Consequences for ventilator management. Ann Am Thorac 
Soc 2020; 17:1161–1163

 40. Chen H, Xie J, Su N, et al: Corticosteroid therapy is asso-
ciated with improved outcome in critically ill patients with 
COVID-19 with hyperinflammatory phenotype. Chest 2021; 
159:1793–1802

 41. Yu Z, Ji M, Hu X, et al: [Value of procalcitonin on predicting 
the severity and prognosis in patients with early ARDS: A pro-
spective observation study]. Zhonghua Wei Zhong Bing Ji Jiu 
Yi Xue 2017; 29:34–38

 42. Bos LD, Schouten LR, van Vught LA, et al; MARS Consortium: 
Identification and validation of distinct biological phenotypes 
in patients with acute respiratory distress syndrome by cluster 
analysis. Thorax 2017; 72:876–883

 43. Delucchi K, Famous KR, Ware LB, et al; ARDS Network: 
Stability of ARDS subphenotypes over time in two randomised 
controlled trials. Thorax 2018; 73:439–445

 44. Drohan C, Nouraie SM, Shah F, et al: Longitudinal evolution of 
host-response subphenotypes in critical illness. Am J Respir 
Crit Care Med 2020; 201:A4223


