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The response to contrast is one of the most important
functions of the macaque primary visual cortex, V1, but
up to now there has not been an adequate theory for it.
To fill this gap in our understanding of cortical function,
we built and analyzed a new large-scale, biologically
constrained model of the input layer, 4Cα, of macaque
V1. We called the new model CSY2. We challenged CSY2
with a three-parameter family of visual stimuli that
varied in contrast, orientation, and spatial frequency.
CSY2 accurately simulated experimental data and made
many new predictions. It accounted for 1) the shapes of
firing-rate-versus-contrast functions, 2) orientation and
spatial frequency tuning versus contrast, and 3) the
approximate contrast-invariance of cortical activity
maps. Post-analysis revealed that the mechanisms that
were needed to produce the successful simulations of
contrast response included strong recurrent excitation
and inhibition that find dynamic equilibria across the
cortical surface, dynamic feedback between L6 and L4,
and synaptic dynamics like inhibitory synaptic
depression.

Introduction

Our scientific aims are to use computational models
to understand the neural mechanisms responsible for
cortical function. This article is about contrast response
in the macaque monkey’s primary visual cortex, V1.
We used a new large-scale model (called CSY2) to

gain insight into mechanistic explanations for contrast
response and cortical dynamics.

Arguably the most important function of the
magnocellular pathway of the primary visual
cortex, V1, is contrast response (e.g., Albrecht &
Hamilton, 1982), yet so far there has not been an
adequate theoretical account of how the firing rate
of visual cortical cells depends on visual contrast.
The mechanisms for contrast response may seem
straightforward: at higher contrast, there is more spatial
and temporal modulation of the rate at which photons
hit the retina, which sends a stronger modulated signal
to the lateral geniculate nucleus (LGN), which then
passes it to the cortex, increasing the firing rate of
cortical neurons. This line of reasoning assumes that the
cortical contrast response is inherited from the retina.
It assumes implicitly that cortical neurons function
as filters, or transducers, that transform currents into
spikes in a mostly feedforward regime. However, the
modern view of cat and monkey cortex (e.g., Douglas
& Martin, 2007) is that cortical signal transmission is
much less feedforward than previously thought, even
in the input layers. Data on the extreme sparsity of
feedforward LGN input to macaque V1 (Connelly &
Van Essen 1984; Silveira & Perry 1991) support the
modern view and specifically require corticocortical
interaction to provide most of the excitation to cortical
neurons.

To reconcile experimental data with the modern
recurrent view of cortical function, we need a new
theory of contrast response in the cortex. An adequate
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theory must take into account that the LGN supplies no
more than 10% to 20% of the excitatory synaptic input
to cortical neurons; the bulk of cortical excitation comes
from excitatory interactions within the cortex (Douglas
& Martin, 1991, 2007). This leads immediately to the
following three fundamental questions about contrast
response in the cortex:

1) How exactly do cortical neurons respond with so
many spikes in a graded manner following the
changes in such a small feedforward input?

2) How do these responses together produce the
increased feature selectivity of cortical neurons at
high contrast?

3) If cortical response is dominated by corticocortical
interactions, how do V1 neurons that are nearby in
the cortical network but prefer different orientations
respond so differently to increased contrast?

This article offers insight into these three questions
based on analysis of a biologically realistic model. The
issues are discussed in Results (1) to (3).

Previously, descriptive explanations were proposed
for contrast response in terms of cortical contrast
gain control (Ohzawa et al., 1982) or normalization
(Carandini & Heeger, 2011) but these were not intended
as mechanistic explanations. Previous mechanistic
models did not deal with the extreme sparsity of LGN
input (Somers et al., 1995; Tao et al., 2004; Troyer et al.,
1998). We compare CSY2 with previous models in the
Discussion.

Earlier we built a large-scale network model called
CSY1, a model of layer 4Cα (L4) in the macaque
visual cortex (Chariker et al., 2016). We chose to
study L4 because orientation and spatial frequency
(sf) selectivity are observable already in this cortical
input layer (Livingstone & Hubel, 1984; Ringach et al.,
2002). The CSY1 model simulated many aspects of V1
behavior, including orientation and sf selectivity and
their population distributions, as well as average values.
CSY1 was the first V1 model that included the extreme
sparsity of LGN inputs. But CSY1 was designed to
simulate only spontaneous activity and responses to
stimuli at full contrast.

We present in this article a new model, CSY2, based
on CSY1. The CSY2 model is capable of simulating
cortical responses to the full range of contrast while
retaining all the capabilities of CSY1. CSY2 is a
mechanistic model composed of integrate-and-fire
neurons that have excitatory and inhibitory synapses.
The fundamental mechanisms that determine its
contrast response are the recurrent excitatory and
inhibitory synaptic interactions within the cortical
network. Recurrent circuitry is a feature of cerebral
cortex (Braitenberg & Schüz, 1998; Douglas & Martin,
1991, 2007; Thomson et al., 2002) that influences many
functions of the cortex. To enable CSY2 to explain

cortical contrast response, we had to incorporate into
CSY2 some additional known cortical mechanisms.
For instance, CSY2 has a dynamic feedback loop
between layer 6 (L6) and layer 4 (Callaway, 1998).
When presented with a visual stimulus, feedforward
input from the LGN causes neurons in L4 and L6
in CSY2 to interact with one another dynamically
to compute a response, mimicking the way neurons
compute in the real cortex. As presented in the Results,
the successful simulation of V1 visual responses across
visual contrasts by CSY2 is a big step in being able to
understand the function of V1 theoretically.

Methods (model description)

This section contains a description of CSY2, the
model presented in this article, as well as its predecessor
CSY1, on which CSY2 was built.

(1) Overview: CSY2, a model of LGN→L4↔L6

The physical layout of CSY2 is as shown
in Figure 1A. As in CSY1, the inputs to CSY2 are visual
images of drifting grating patterns. The primary focus
of CSY2 is the region of L4 that represents the visual
field at about 5° eccentricity because we have many data
about this region of V1 with which to compare model
and data. Also modeled is the corresponding region of
the thalamic LGN that projects to L4. Magnocellular
LGN responses are modeled as spatiotemporal filters of
the visual image (see Supplementary Appendix section
0.1). CSY2 also models the corresponding region of L6
of V1, which is known to feedback to L4 (Callaway,
1998). Signal transmission from LGN to L4 is assumed
to be feedforward only, whereas the interaction between
L4 and L6 is bidirectional as indicated in Figure 1.
Inputs to the model are visual stimuli represented as
time-dependent light-intensity maps I(x,t) where x
denotes the location on the retina (or on the LGN
sheet) and t denotes the time. Once I(x,t) is presented
to the model, the LGN will compute a response, which
is passed to L4, and the dynamic interaction between
L4 and L6 produces a response. Outputs of the CSY2
model are shown in the Results. Only drifting gratings
are used in this article but the model’s capabilities are
not limited to this class of visual stimuli.

CSY1 has a similar structure as that shown
in Figure 1A, minus the bidirectional interaction
between L4 and L6. Because it was built to respond
only to gratings at full contrast, the contribution of L6
in CSY1 was inserted by hand. A self-adjusted feedback
mechanism capable of responding, in principle, to any
stimuli presented to the eye was introduced in CSY2.
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Figure 1. The CSY2 model at a glance. (A) Model flow diagram. The grating on the left is symbolic of the visual stimulus presented to
the eye. It is presented in the form of a light intensity map I(x,t) where x denotes the location on the retina and t the time; I(x,t) can
be any function. The CSY2 model begins with the modeling of LGN as ON/OFF cells responding to I(x,t), the red square at the center of
the LGN sheet corresponding roughly to one hypercolumn (HC) in cortex. LGN projects to L4. The right half of the diagram depicts a
feedback loop between L4 and L6. Our main focus is on L4: The model has nine HCs, each subdivided into six intended orientation
domains; a majority of the neurons in each domain is connected to LGN configurations spatially aligned with the intended orientation
[details in Chariker et al. (2016)]. (B) Neuronal connectivity within L4. Black dot is a postsynaptic neuron, and red or blue dots are
distribution of its presynaptic cells, for E to E, E to I, and I to E/I, respectively.

Another novel feature of CSY2 was the use of synaptic
and adaptation dynamics, which were absent (because
they are not needed) in CSY1.

Here we first review the construction and properties
of CSY1 before proceeding to the new features of
CSY2, with further technical information provided in
the Supplementary Appendix.

(2) Review of the previously constructed model
CSY1

The material on CSY1 is taken mostly from (Chariker
et al., 2016, 2018). We begin with a description of the
model architecture.

Magnocellular LGN layers
An important new feature of CSY1—which is

also the basis for our contention that a mechanistic
explanation for contrast response is needed—is the very
sparse LGN input to macaque primary visual cortex,
V1. There are on average approximately 10 LGN cells (5
ON and 5 OFF) that correspond to each hypercolumn
(HC). Because these numbers are important, we review
the anatomic evidence and repeat the computation here.

Silveira and Perry (1991) found that the M retinal
ganglion cell density at 5° eccentricity is 3500/mm2.
If we take the conversion factor of {200 μm (on the

retina)}/{degree visual angle} for the Java monkey M
fascicularis (Silveira & Perry 1991) then the M cell
density is 140 M ganglion cells/deg2 at 5° eccentricity.
The cortical magnification factor in M fascicularis
V1 at 5° eccentricity is approximately 2 mm/deg
(Xing et al., 2009). Therefore, one HC in V1 cortex
(0.5 mm × 0.5 mm) at 5° eccentricity corresponds
to about (0.25 deg)2 = 1/16 deg 2. Then, the number
of M ganglion cells that provide direct input to one
HC would be 1/16 × 140, or around 9 cells. A similar
calculation can be performed with the macaque LGN
data of Connolly and Van Essen (1984). They provide
an estimate of the magnocellular LGN density at 5° to
10° at approximately 160/deg2, yielding the estimate of
10 LGN cells providing direct LGN input to each HC.
Counting these direct projections and the branching
Magnocellular axons from neighboring HCs (Blasdel
& Lund 1983; Lund et al., 1993), these results are
consistent with those from Angelucci and Sainsbury
(2006), who reported that, in L4, a region 300 μm in
diameter is contacted by no more than 11 LGN cells,
and they proposed that the numbers of LGN inputs to
cortical cells are likely much smaller.

Following the optical imaging data of Obermayer
and Blasdel (1993), we sought to assign to each neuron
in a designated orientation domain in L4 (Figure 1A)
a configuration of LGN cells that has the potential to
produce two or three ON/OFF subregions aligned in the
direction specified, and to do so obeying the constraints
above. Another relevant fact was V1’s preference for a
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sf at 2.5 to 3.0 c/d (DeValois et al., 1982), so that rows
of LGN cells corresponding to adjacent subregions
should be separated by 3/16° to 1/4°.

In CSY1, we started with a (regular) triangular lattice
on the plane (as in Figure 1A), which we identified with
visual space. Assuming that the centers of the receptive
fields of ON LGN cells correspond with points in this
lattice, we placed the OFF cells at the barycenters of
the triangles defined by the ON lattice. Lattice spacing
was chosen so that neighboring ON (resp. OFF) cells
are about 0.125° apart, resulting in 10 cells per HC.
We then perturbed randomly and independently each
lattice point to match the retinal mosaics of M retinal
ganglion cells.

As indicated in Figure 1A, we divided each HC
of L4 into six distinct orientation domains around
a pinwheel center, and stipulated that within each
domain, neurons received LGN inputs favoring one of
the orientations—0°, 30°, 60°, 90°, 120°, or 150°—with
0° taken to be vertical. Because the lattice we used
has a three-fold rotational symmetry, it is sufficient
to enumerate two sets of admissible templates, one
preferring, for example, horizontal and the other 30°
from horizontal. Rotating these two sets of templates
by 60° and 120°, one obtains templates for the other
four orientations. Permitting each cortical E-cell to have
zero to six LGN inputs, arranged in two or three rows
of one to three cells each, we found that there are only
a small number of viable configurations. Some example
LGN templates are shown in Figure 2A.

Layer 4Cα
We modeled nine HCs of 4Cα each measuring

0.5 × 0.5 mm2 . Each HC is divided into regions within
which cells are intended to have similar orientation
preferences. Following Beaulieu et al. (1992), we used
cell densities of approximately 4,000 neurons per HC,
three-quarters of which are excitatory (E) cells and the
rest are inhibitory (I) cells. The I-neurons are assumed
to be a homogeneous population of local circuit basket
cells, a reasonable approximation for L4 (DeFelipe
et al., 1999). E- and I-neurons are uniformly distributed
in the model cortex, and their dynamics are governed by
conductance based integrate-and-fire equations, details
of which are given in the Supplementary Appendix.

The probability of a connection between model
cells depends on distance and cell types (E or I), while
the strength of connection is independent of distance
(based on Oswald & Reyes, 2011). For presynaptic
E-neurons, connection probabilities are given by
Gaussians with a standard deviation of 200/�2 μm; for
presynaptic I-cells, a standard deviation of 125/�2 μm
(Fitzpatrick et al., 1985; Yoshioka et al., 1994). Peak
connection probability between E-cells is approximately
15% on average. According to Holmgren et al. (2003)

and Oswald and Reyes (2011), I-cell connections are
much denser (from 50% to 100%); we set the peak
connection probabilities for E→I, I→E, and I→I to
be 60%. The numbers of connections and cell densities
imply that, on average, an E-cell has approximately
200 E-cells and approximately 100 I-cells presynaptic
to it, and an I-cell has, on average, approximately 750
E-cells and approximately 100 I-cells presynaptic to it
(Figure 1B). All of these connectivity properties are the
same in CSY2.

Feedback from L6
L4 receives substantial feedback primarily from L6

(Callaway, 1998), the effects of which are incorporated
in the model. We do not model L6 as a network,
modeling only its outputs as a collection of spike trains,
one for each L6 neuron that projects to L4. From the
cell density of L6 (Beaulieu et al., 1992) and the small
fraction of E-cells that project to L4 (Wiser & Callaway,
1996), we estimated that approximately 300 L6 neurons
per HC have ascending axons that terminate in L4.
The axonal spreads are large (Wiser & Callaway, 1996);
in the model, we assumed that most (approximately
five out of six) of an L6 cell’s synaptic contacts occur
in a disk of radius approximately 180 μm, with some
extending as far as approximately 360 μm. This gives an
average of approximately 50 presynaptic L6 neurons.

Parameter determination
The model has more than 10 parameters, the most

central ones of which are the four synaptic coupling
weights SXY, where X, Y = E, I, and X is the target while
Y is the source. Details on parameter determination
are given in the Methods section of Chariker et al.
(2016). Summarizing, we first set SEE using the fact that
10 to 20 excitatory pulses in quick succession to drive
a cell across threshold places SEE between 0.02 and
0.03. From this, we determined SEI by setting the total
E-current and I-current into an E-cell to be roughly
balanced. We then made an assumption that SII is
approximately 0.75*SEI, the 0.75 chosen to represent
the effective lowering of SII owing to the presence of
electrical coupling among I-neurons. The remaining
synaptic weight parameter, SIE, was not determined by
physiologic data. With the other three parameters fixed,
SIE was found by numerical simulation to be the value
that gave a background E-firing rate of three to four
spikes per second and the corresponding I-firing rate
was three to four times that.

Model outputs
The CSY1 model captured fairly accurately many

of the basic properties of V1, including its mean and
peak firing rates, as well as firing rate distributions,
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Figure 2. Snapshots of model outputs of CSY1. (A) A sample of LGN templates showing ON and OFF cells vertically aligned (left 3
panels) and horizontally aligned (right 3 panels). The red box corresponds to a HC. (B) Membrane potentials (normalized so spikes are
fired at 1 and reset to 0) with red dots indicating spikes fired, conductance, and current traces of two model cells, simple (top) and
complex (bottom), E-current in red and I-current in blue. (C) Five example model E-cells. On the left are tuning curves, the number
representing the circular variance of the cell; on the right are its cycle averaged firing rates in response to a grating at 4 Hz. The
numbers are modulation ratios. (D) Fine-scale orientation preferences. The central HC is divided into thin wedges (locations shown on
left); the numbers are intended orientation preferences. The seven panels on the right show the angles of gratings preferred among
neurons in each wedge, the red line making the intended orientation preference for the wedge. (E) Raster of neurons in a local
population in response to an optimal grating at full contrast. The x-axis is time and the y-axis is neuron index; E-neurons in red,
I-neurons in blue. Below the raster is a summed spike plot showing the fraction of the population spiking in 5-ms bins. (F) Spectral
power as function of time and (G) power spectral density, both for same simulation as in (E).
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when optimally and orthogonally driven. Other
important properties were orientation and sf selectivity,
the production of simple and complex cells, and
gamma-band rhythms. For the convenience of the
reader, we have reproduced in Figure 2 a sample
of the results to give a sense of the capabilities and
performance of the model. These are only a subset of
the results in (Chariker et al., 2016). In particular, we
will not duplicate the results subsumed (as special cases)
in the outputs of CSY2 to be reported in the Results.

Figure 2A shows templates for LGN configurations
as discussed elsewhere in this article. Membrane
potentials, conductance, and current traces of a
simple and a complex cell are shown in Figure 2B.
Here, membrane potential has been normalized so
spiking threshold is at 1 and following a spike it is
reset to 0. Figures 2C and D give two different views
of orientation selectivity (OS). Five model E-cells
are shown in Figure 2C, their tuning curves on the
left and cycle averaged firing rates on the right. The
numbers written in each box are circular variances (left)
and modulation ratios (right). In Figure 2D, which
shows fine-scale orientation preferences, we divided
the central HC into fairly thin wedges that would
correspond theoretically with the angles specified if one
is to interpolate linearly between the 6 discrete angles
represented by LGN templates. Shown in Figure 2D
are the angle preferences for the neurons in each wedge.
As one can see, individual neurons do not always prefer
the intended orientation, although the distribution is
peaked around that point.

The results of Figure 2E through 2G are taken
from Chariker et al. (2018). The raster in Figure 2E
depicts a gamma-band rhythm produced by a local
population when optimally driven. Notice that the
rhythm is irregular, and the spiking events were entirely
self-organized. It was an emergent phenomenon,
meaning a phenomenon that cannot be predicted by
the properties of individual neurons and that occurs
solely as a result of the dynamical interaction among
neurons. Below the rasters are summed spike plots,
showing the fraction of neurons spiking in each 5-ms
bin. We show these plots to stress that gamma rhythms
produced by the model are very far from full population
spikes: seldom did 20% of the neurons spike together
in a 5-ms period. Figure 2F shows the concentration
of gamma power as function of time. As one can see,
the frequencies wander irregularly through the gamma
band of 30 to 90 Hz. Figure 2G shows the power
spectral density of the same simulation.

(3) The new model, CSY2

Our main motivation for constructing CSY2 was to
explain contrast response. CSY1 was programmed to
respond only to background and drifting gratings at

full contrast; it did not have the capability to respond
in a graded manner to visual stimuli of intermediate
contrast as in the real V1. CSY2 is the next generation
of CSY1. Its structure is shown in Figure 1A. This
model inherits all of the structure above from CSY1
(except for the hand-crafted L6). Two new features were
introduced. We first describe these features, followed by
how the parameters were tuned.

A self-adjusted feedback mechanism
First we explain why CSY2 needs a dynamic feedback

loop between L6 and L4. In CSY1, it was sufficient to
program into the model—following data—the desired
L6 spiking behavior at full contrast, because that was
the only situation considered. Such a strategy cannot be
applied to stimuli that vary in visual contrast, because
L6 response would vary accordingly. In CSY2, we did
not try to model L6 (which would be challenging given
the large numbers of cell types), but rather sought to
capture only the appropriate feedback L6 projects to
L4. This was done by indexing L6 firing rates to the
level of L4 activity around the same location around
that point in time.

More precisely, we assumed, as in CSY1 (see the
paragraph on L6 in the review of CSY1 elsewhere in this
article), that a set of 300 E-cells in L6 per HC would
project to L4. Each L6 neuron was assigned a spatial
location evenly distributed throughout the HC, and
each was represented by a spike train, the instantaneous
rates of which were adjusted on demand according
to a rule to be specified. Identifying the locations in
L4 and L6, we assumed that postsynaptic to the L6
neuron at location x there was a set of neurons in L4,
most of which lay within a radius of approximately
200 μm centered at x with some as far as 300 μm or
more (Callaway, 1998). Each L4 E-neuron had 38 to
55 presynaptic L6 neurons; those with fewer LGN
inputs (likely complex cells) had more L6 inputs. On
average, each I-neuron in the model’s L4 had 100 to 110
presynaptic L6 neurons.

To determine the appropriate amount of feedback
the L6 neuron at location x at time t should provide,
we created an L6 response function f(R) to be used
as follows: We measured the mean firing rate of L4
neurons in a disk of radius 75 μm centered at x for a
brief period of approximately 50 ms before time t. Call
this number R. Then the instantaneous L6 firing rate
at x was set to f(R). The choice of the function f(R)
follows known L6 spiking characteristics: When R is
the spontaneous firing rate of L4, f(R) is approximately
5 spikes/s, and when L4 is firing at peak values, f(R)
is approximately 80 spikes/s. (The L6 firing rates are
known to be quite high, with a synaptic failure rate of
about 50%.) Between these two extreme values of R,
we assume f(R) is increasing and has the shape of a
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sigmoidal function which is quite reasonable based on
L6 firing rates (Hawken et al., 2019).

We located a function f(R) that produced satisfactory
responses. This function does not depend on x or on
t, and is not stimulus dependent. The assumption
here is that L6 firing rate follows that in L4 averaged
over space and time: Whatever L4 is doing, L6 sends
back a slightly diffused current commensurate with
the instantaneous firing rate of L4. The function
f(R) does not determine L4 response; it specifies how
much to magnify it. L4 and L6 interact continuously,
negotiating their respective firing rates. We emphasize
that the choice of f(R) does not prescribe the firing rate
in L4, but that it does influence the range of responses
possible in L4.

In CSY2, L6 feedback is net excitatory because in
this model L6 neurons have more synaptic coupling
to E-cells than to I-cells. We arranged it this way
because the problem in macaque V1 is poverty of
excitation, because of the very weak feedforward
synaptic drive. The situation in mouse V1 seems to
be quite different, with a much stronger feedforward
drive and also much lower visually driven firing rates
than in macaque V1 (Lien & Scanziani, 2013). There
are reports about mouse V1 that indicate that L6
input to L4 is net suppressive there (Bortone et al.,
2014; Olsen et al., 2012). However, the evidence about
cat V1 is mixed about whether L6 feedback to L4
is suppressive or excitatory (Bolz & Gilbert, 1986;
Grieve & Sillito, 1991). Suppressive L6 feedback in
macaque V1 would be hard to reconcile with the
sparsity of LGN input, the steep response versus
contrast functions, and the higher firing rates in L4 in
macaque V1.

Synaptic dynamics and excitability control
The features below are all known to be present in

the real cortex. They were not needed for OS, the
primary purpose of CSY1, but are needed in CSY2 to
control the graded response of neurons to increasing
contrast.

(a) Synaptic depression of I-neurons. I-neurons are
known to become less effective when the spikes
follow one another too closely (Galaretta & Hestrin,
1999; Gibson et al., 1999). To achieve this, we
decreased the synaptic weight from I to E for
approximately 40 ms or so after each spike: If an
I-cell spikes at time t1 and it previously spiked at
time t0, then

SEI (t1) = SEI
baseline ∗ (1 − 0.12) ∗ e(t0−t1 )/20

(b) Facilitation of L6 neurons. It has been observed
empirically that at higher firing rates, L6 E-neurons
produce larger excitatory postsynaptic potentials

(EPSPs) in L4 neurons (Tarczy-Hornoch et al.,
1999). In the model, we set its coupling weight at 60
spikes/s to be about 1.1 times that at 30 spikes/s.

(c) Controlling excessive E-spiking in L4. In real cortex,
it is known that Kv currents in certain E-cells
contribute to increased thresholds for potential
generation in repetitive spiking (Yuan et al., 2005).
To curb excessive excitation in L4, especially when
exacerbated by positive feedback from L6, we raised
the spiking threshold for E-neurons by 20% after
each spike, to be relaxed back 90% of the way in 10
ms. This adaptation mechanism helped to control
E-cell firing.

We view it as a strength of the model to find
functional consequences of known cellular mechanisms
(a) to (c).

Parameter robustness and simulations
performed

Starting from the parameters of the CSY1 model
(see Chariker et al. (2016) for details), the bulk of
the parameter tuning for CSY2 was done to locate
a feedback response function that, together with the
synaptic dynamics and control of neuronal excitability
not present in the previous model, produced satisfactory
firing rates in response to the full range of contrast. We
did this using a small patch of the central HC of the
model preferring the vertical orientation, and several
drifting gratings at different contrasts, all aligned with
the vertical and with a sf of 2.5 c/d. Once approximate
parameters were located, we performed sweeps (varying
key parameters) to select the best parameters and to
establish robustness in parameter dependence.

The parameters obtained thus far were chosen to
produce good results for one small patch in the model
cortex and for three to four gratings as described in
the last paragraph; there was no guarantee that they
would perform in other situations. To confirm that the
chosen parameters worked in general, we simulated
the entire model’s response to gratings at all different
orientations, for full ranges of spatial frequencies and
contrast. This three-dimensional matrix of stimuli
required approximately 700 simulations each lasting
10 s (or 20–30 minutes of computation time). In
each simulation, all spikes fired by each of the 36,000
neurons in the model cortex, as well as their membrane
potentials and currents, were recorded and stored in a
database that we queried to obtain the various kinds of
information needed to produce the figures shown.

The parameters used are given in the Supplementary
Appendix. The codes will be uploaded to Github after
the publication of this article.
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Results

We have organized the results into three sections
corresponding to the three fundamental questions asked
in the Introduction: Part (1) documents the model’s
response to stimuli for the full range of contrast. Part
(2) discusses orientation and sf tuning in relation to
contrast. Part (3) presents neuronal activity maps across
the cortical surface.

Remarks on building a coherent,
comprehensive model

Our model was built up gradually: It was trained to
perform one group of tasks satisfactorily before new
features were added. The new feature being added here
is contrast response, and we wish to clarify what adding
a new feature entails, because it is much more than just
tweaking parameters or introducing new parameters or
mechanisms to achieve this one property alone. To build
a coherent model—a single model defined by a single
set of parameters capable of simultaneously replicating
many cortical functions (and not a different model for
each function)—the following steps are necessary every
time the model is upgraded: a) We must ensure that
all previously established properties are retained, and
b) it is necessary to investigate the relations between
new and previously established features, to ensure that
they covary in ways that conform with data. We strive
not just to study one visual function at a time, but to
build a coherent picture of visual processing. For us,
then, a) means checking that all of the properties for
CSY1 continued to hold for CSY2. As an example
of b), OS and sf preferences were studied in CSY1 at
full contrast, and adding contrast means that we must
now consider how these tuning curves covary with
contrast. This is what Part (2) of this Results section is
about.

(1) Response versus contrast

Firing rates
The graphs in Figure 3A are population averages of

firing rate versus contrast for optimal and orthogonal
stimuli. A region slightly larger than the central HC in
the nine HC model cortex was divided up evenly into
eight patches or zones in the shape of wedges organized
around the pinwheel center. For each patch, the response
to a drifting grating at the optimal <orientation,
sf> was computed for the full range of contrast for
each neuron in the patch. The responses graphed are
population averages of mean firing rate averaged over
300 to 400 excitatory neurons in each patch, and over

5 seconds of presentation of the stimulus. We excluded
from the averages drawn in Figure 3A the weak
responses of silent neurons, that is, neurons the peak
responses of which to gratings of all orientations and
spatial frequencies were below 5 sp/s, as is commonly
done in the experimental literature, so that we could
compare model results with data. Only 5% to 10% of
neurons in CSY2 were silent neurons; this percentage
in the model roughly agrees with V1 data obtained
informally by Shapley andM.J. Hawken, and colleagues
(unpublished results).

Results for the four patches intended to prefer
0°, 45°, 90°, and 135° are plotted in the main panel
of Figure 3A. They show that the firing rate versus
contrast curves for neurons with different orientation
preferences have the same general shape, rise steeply
and then hit a response ceiling, as in V1 data (Albrecht
& Hamilton, 1982; Henry et al., 2013). Also plotted
in Figure 3A are the firing rate versus contrast curves for
stimuli that are orthogonal to the preferred orientation;
these are the curves plotted without data points. It can
be seen that the responses to orthogonal do not increase
much with contrast, an indication of the OS of the
model.

Synaptic currents
The CSY2 model, composed of conductance-based,

integrate-and-fire neurons, allows us to examine the
contrast dependence of excitatory and inhibitory
currents in model neurons. The ability to analyze
synaptic currents is crucial for understanding the
mechanisms that produce realistic contrast response
functions. Figure 3B shows the currents from various
sources received by E-neurons in the vertical preferring
patch when driven by a vertical grating; the currents,
averaged over the nonsilent neurons in the patch (as
in Figure 3A) and averaged over time (5 s), are shown as
functions of contrast. What can be gleaned from these
plots is that all currents increase with contrast, and
that recurrent L4 excitation is the largest component
of the E-current, the second largest source being that
from feedback. In Figure 3B and 3C, the absolute
value of the inhibitory synaptic current is plotted, to
facilitate the comparison of E- and I-currents. We
have used a dashed line for the inhibitory current
to remind the reader that this current has a negative
sign. (Please note that we used s−1 as the units of
current, and conductance, as in previous articles such as
Chariker et al. (2016), (2018). The reasoning behind this
convention for current and conductance units is given
in the Supplementary Appendix section 0.2, second
paragraph.)

At peak contrast, L4, L6, and LGN provide 60% or
more, 25%, and a little less than 10%, respectively, of the
total E-current in E-cells (Fig. 3B), with the rest coming
from ambient (representing other modulating effects
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Figure 3. Contrast response: Firing rates and synaptic currents as functions of contrast. (A) Contrast response functions in the CSY2
model for the 0°, 45°, 90°, and 135° regions in response to a drifting grating aligned with the preference of the region and to a grating
orthogonal to preferred for that region. The firing rates reported were obtained as follows: Each simulation was run for 10 s, and the
mean firing rate of each neuron over the last 5 s was recorded. We then dropped the 5% to 10% of silent neurons (the peak firing
rates of which were <5 sp/s for all gratings), and the firing rates shown are averages of those for the remaining neurons in the
specified region. The contrast response function for the LGN input (Kaplan and Shapley, 1986; Kaplan et al., 1987) (in peak firing rates)
used in the model is drawn as a dashed line. Inset shows the distribution of C50 for all regions combined. (B and C) Plotted versus
contrast are the mean synaptic currents received by E-cells, averaged over neurons in the vertical patch over 5 s in time, in response
to the vertical grating (B) and in response to the horizontal grating (C). The different curves are for recurrent excitatory current from
within L4 (Rec E), Feedback from L6 to L4 (FB), LGN feedforward (LGN), ambient (Amb), and gamma-aminobutyric acid (GABA)
inhibitory current (plotted in dash to indicate that this is the magnitude of a current that is opposite in sign to the other excitatory
currents). Total excitatory current is plotted as a thicker black curve. The membrane capacitance was normalized to 1 (McLaughlin
et al., 2000). Therefore, conductance was proportional to the inverse of the membrane time constant and has the same units, s−1.

not modeled). The same plot also shows that neuronal
interaction within L4 produces more inhibitory
synaptic current (blue dashed) than excitatory (red).
However, when other sources of excitation (L6, LGN,
and ambient) are included, then the total E-current
(thick black) exceeds I-current at all contrasts.

Figure 3C shows synaptic currents in the same
vertical-preferring group of E-cells in response to
a horizontal (orthogonal) grating. The mean LGN
currents for the situations in Figures 3B and 3C are

identical, because neurons in optimal and orthogonal
patches receive the same number of impulses per second
from LGN cells. Only their input timing differed (there
is much more spike rate modulation at the preferred
orientation as noted by others [Troyer et al., 1998]),
and it is this timing difference that is responsible for
initiating the OS evident in Figure 3A and in later
figures.

In CSY2 as in CSY1, as well as in the real cortex,
there are no more than a handful of afferent LGN cells
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Figure 4. Factors that influence model contrast response. Panels A–C show three factors that contributed to the steep increase of the
contrast response function. (A) The contribution of recurrent excitation within L4. The plots show mean firing rates in the vertical
patch when driven by vertical gratings at various contrasts, with the synaptic coupling SEE between E-cells in L4 systematically
decreased to 0%, 25%, 50%, and 75% of the value used in the CSY2 model; all other parameters were unchanged. Contrast response
collapsed even with 75% of the recurrent excitation in the CSY2 model. (B) The contribution of feedback from L6. As before, all other
parameters were unchanged except for the amount of feedback. (C) The contribution of I-cell synaptic depression.

driving each 4Cα neuron. As a consequence of the very
sparse LGN input to V1, the change in total LGN
current as stimulus contrast increases from background
to full contrast is quite small (Figures 3B and 3C). It is
remarkable that this small increase in Excitatory current
sets off the full range of firing rate versus contrast
(Figure 3A). As stated in the Introduction, one of the
fundamental questions about contrast response is: How
exactly does this work; how do cortical neurons follow
the (rather subtle) changes in such small feedforward
LGN input?

Analysis: Cortical mechanisms contributing to the large
amplification of weak LGN inputs

Having demonstrated that the CSY2 model produced
desirable responses to contrast (Figure 3), we now use
the model to investigate how cortical cells follow the
small changes in LGN currents. We found that L4 firing
rate bootstraps itself up through the combined effects
of many different neural mechanisms. To understand
the effect and relative importance of each, we have
isolated them in Fig 4.

(i) First and foremost is recurrent excitation within
L4. As demonstrated in Figure 4A, the effects of
decreasing SEE, the synaptic coupling strength
between E-neurons, were catastrophic, underscoring
the role of recurrent excitation in the model’s
contrast response. For instance, when the synaptic
weight of recurrent excitation, SEE, was decreased by
25%, the firing rate at high contrast was decreased
from 18 sp/s down to 8 sp/s; when SEE was halved,
the firing rate at high contrast was only 4 sp/s. Note

that in Figure 4A, when recurrent excitation was
reduced to 0, the feedforward LGN input in CSY2
was so weak that it produced a firing rate of only
3 sp/s at the highest contrast.

(ii) Next in importance was the positive feedback
between L4 and L6 (Figure 4B). When the strength
of feedback was halved, cortical spiking was less
than 10 sp/s.

(iii) Next in significance was synaptic depression of
I-cells (Figure 4C), which is instrumental in the steep
rise of the contrast response curve. The presence
of such depression has been clearly documented
in experimental data (Galaretta & Hestrin, 1999;
Gibson et al., 1999).

(iv) Finally, facilitation of the excitation of L4 neurons
by L6 cells (Tarczy-Hornoch et al., 1999) also played
a role, bringing the contrast response of L4 to
saturation at midcontrast of about 30% (not shown).

CSY2 has thus identified contrast response as a
functional consequence of the combined effects of
known cellular mechanisms like synaptic depression in
I-cells, and facilitation of L6 feedback.

(2) Orientation and sf tuning as functions of
contrast

As explained at the beginning of the Results section,
to develop a coherent picture of the cortex it is
necessary to go beyond studying cortical functions
one at a time: we need to understand how they covary.
With this in mind, we challenged the model with a
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Figure 5. Tuning for orientation and sf for various contrasts. (A) Orientation tuning curves. Gratings in eight orientations evenly spaced
from –90 to +90° with sf 2.5 c/d were presented at seven different contrasts, and mean firing rates of the vertical patch (0°) are
shown; E-cells (left), I-cells (right). (B) The sf tuning curves. Gratings aligned with the orientation preference of the population at 10
different sf and seven different contrasts were used. Again, E-cells (left); I-cells (right). (C) Histograms showing orthogonal-to-preferred
firing rates at various contrasts, for neurons in the vertical patch. Distributions for E-cells (red) and for I-cells (blue) are overlaid.

3-parameter family of gratings varying in orientation,
sf, and contrast. CSY2 is able to simulate population
data about spatial tuning for visual grating patterns.
The model does this over the full range of contrast
without any adjustment of parameters at different
contrasts (Figures 5,6).

Population-averaged tuning profiles of firing rate
versus orientation are provided in Figure 5A, and the
corresponding tuning profiles of firing rate versus sf
are provided in Figure 5B. First, consider orientation
tuning of model E-cells (Figure 5A, left). The response
at the preferred orientation increases while the response
at orthogonal changes little with increasing contrast.
Therefore, the OS of E-cells (indexed by the ratio of
the response of orthogonal to preferred orientations)
increases at higher contrast (Figure 5C). Remarkably,
the model is in quantitative agreement with V1 data on
this crucial point (Alitto & Usrey, 2004; Johnson et al.,
2008; Skottun et al., 1987) as illustrated in Figure 6B,
where data for cat V1 from the original Skottun et al.
(1987) article are reproduced. Model I-cells, in contrast,
show much less increase in OS with increasing contrast
(Figure 5A, right, and Figure 5C).

Tuning profiles for firing rate versus sf (Figure 5B)
show a similar trend: sf selectivity (the preference

for certain optimal frequencies) increases at higher
contrast. The sf tuning dependence of E-cells on
contrast is consistent with real V1 (Figure 6B).

Neither the model nor the real cortex shows precise
contrast invariance of orientation tuning or sf tuning.
Rather, what is seen is only an approximate invariance
in the responses of E-cells: The growth of preferred
responses with increasing contrast and the clamping
of responses to nonpreferred stimuli to low levels
at all contrasts. A functional consequence of this is
increase of feature selectivity in E-cells with increasing
contrast.

The model agrees with experimental data on how
much OS is increased at higher contrast. This test
of the model’s predictive power is important. We
show in Figure 5C the distributions of orthogonal-
to-preferred firing rates (O/P) for E-cell and I-cell
populations in the vertical patch as functions of
contrast. Of note is the magnitude of the leftward
shift of the O/P distribution for E-cells between 10%
and 64% contrast, the range explored in experiments.
It is approximately 0.2, a value that is comparable
to the decrease in O/P ratio, or circular variance,
(increase in OS) found in experiments (Alitto & Usrey,
2004; Johnson et al., 2008). Thus, the CSY2 model
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Figure 6. Individual cell data. (A) Contrast response curves, orientation and sf tuning of 12 model cells, four simple excitatory, four
complex excitatory, and four inhibitory, all taken from the vertical patch (used in Fig 5A, B, C). (B) Orientation and sf tuning data at
different contrasts from cells in cat V1 from Skottun et al. (1987), reproduced with permission.

accounts quantitatively for the contrast dependence
of OS found in experiments on populations of
V1 neurons.

Single cell results
Results from examples of model neurons are shown

in Figure 6 to illustrate both the diversity and the
trends underlying the population averages—and also
for comparison with electrophysiologic data. Firing rate
versus contrast, and orientation and sf tuning curves
are plotted for excitatory and inhibitory neurons taken
from the same vertical patch used in Figure 5.

Analysis: Mechanisms for increased selectivity at high
contrast

First we explain why in the model responses of E-cells
to optimal stimuli grow more with increasing contrast
than responses to nonpreferred stimuli, answering
the second question posed in the Introduction. Being
more broadly tuned (Nowak et al., 2008), I-cells when
stimulated supply a minimum level of suppression

across the entire model cortex. This minimum level of
suppression extends over all orientations and beyond
the ranges of sf to which E-firing responds (Figure 5),
forming a shield of suppression that serves as a barrier
to increasing E-activity in many simulations; additional
thrust is required to break through the shield, but once
it has broken through, E-activity increases more easily
owing to recurrent excitation and positive feedback
with L6. For preferred stimuli, this breakthrough is
enabled by the boosting of E-cell activity through the
combined action of the neural mechanisms discussed
in connection with Figure 4. For nonpreferred stimuli,
the E-cell firing rate is kept down by the broad shield
of I-cell suppression. This is the mechanism by which
the model increases its feature selectivity at high
contrast.

But what brought about the broader tuning of
model I-cells in the model? One reason is that SEI,
the inhibitory synaptic coupling weight from I-cells
to E-cells, is higher than SII, the inhibitory synaptic
coupling weight from I-cells to I-cells. We used a
smaller value of SII to compensate for the effects of
electrical coupling (which was not modeled) among
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pairs of I-cells (Galaretta & Hestrin, 1999; Gibson
et al., 1999). Lower SII leads to a higher operating
point for I-cells than E-cells, causing them to fire
spikes even for nonpreferred stimuli (Figure 5A
and 5B). A secondary reason is that LGN affects
E- and I-cells differently, producing larger EPSCs in
I-cells—a property of the model that follows data
(Beierlein et al., 2003).

(3) Activity maps across the cortical surface

Because the bulk of the excitatory current for cortical
neurons comes not from LGN but from intracortical
interactions (Figure 3B and 3C), studying spatial maps
of cortical activity on the cortical surface helps us to
understand cortical function. In CSY2 as in real cortex,
when the contrast of a grating is increased, firing rates
of cells in optimally driven domains climb steeply, while
firing rates of cells in orthogonal domains are virtually
unchanged (Figures 3 and 5). Within an HC, these
domains are no more than approximately 100 μm apart.
This means that, at high contrast, the firing rate profile
across the cortical surface is extremely uneven, with tall
peaks separated by deep valleys. It is intriguing how
such a wildly varying landscape of activity in mutually
interacting neurons can be stable across contrast. To
answer this question, we present in this last part of
Results simulated activity maps in CSY2 analogous to
fMRI images (as in e.g., [Kay et al., 2013]) and optical
imaging (Carandini & Sengpiel, 2004; Obermayer &
Blasdel 1993), except that the activity depicted is firing
rates and the resolution can be as close to the neuronal
level as one wishes.

Cortical activity in response to gratings of different
orientations

The activity maps in Figure 7 were produced in
simulations of V1’s response to drifting sine gratings of
high contrast.

Consider first the activity maps of E-cells (Figure 7A,
top row). Looking at the intended orientations map in
Figure 7B, we see that the vertical preferring region is
composed of three diamonds stacked up vertically on
the left side and three half-diamonds on the right side
of the nine HC model cortex. This means that when
the vertical, or 0°, grating is presented, one should
expect these diamond-shaped regions to respond most
vigorously. The top left panel of Figure 7A shows that
this is indeed the case. The other four panels show
cortical responses to four other gratings. The reader can
check, by comparing with Figure 7B, that in each case
the regions that responded most vigorously are those
whose designated orientation preferences aligned with
the grating.

Observe also that the regions of elevated spiking
in each of the panels in fact spill over the edges of

the designated orientation domains. This finding is
consistent with the fact that neurons do not respond
only to a single orientation; the amount of spilling
reflected the breadth of the orientation tuning of
neurons.

Activity maps for I-cells look different. Figure 7A,
second row, shows activity maps for I-cells. Observe
that i) E- and I-cells are co-activated in the sense
that their firing rates are elevated in roughly the
same regions of the model cortex for each grating
presented, and ii) I-firing rates in these regions are
three to four times higher than those of E-cells,
consistent with data. Also, iii) the regions of elevated
I-spiking are larger than those for E-cells, and I-firing
rates are greater than 20 to 30 spikes/s virtually
everywhere in the model cortex, unlike E-cells,
which in orthogonal regions fire at or slightly above
background level, that is, at approximately 4 spikes/s
(cf. Figure 5A).

Figure 7C zooms in on the response of E-cells in
the central HC for the same five gratings. Here one
can see clearly that over the 1-s period used for the
time average, firing rates vary considerably from one
pixel (corresponding to about 30 E-neurons) to the
next, but that overall, the regions of elevated spiking
rotated smoothly around the pinwheel with the grating’s
orientation.

Activity maps versus contrast
Orientation preference maps are usually measured in

optical imaging experiments with high contrast stimuli,
as in Figure 7. To investigate whether such maps are
stable with contrast, we ran simulations, the results of
which are presented in Figure 8. The rightmost column
in Figure 8 is identical to the top row in Figure 7, and
each row in Figure 8 from left to right shows increasing
contrast for a grating of the same orientation. Figure 8
shows that, in CSY2, activity maps are very stable with
contrast: The regions of increased activity in each row
have nearly identical footprints on the cortical surface
starting from very low contrast. That is, as contrast
is increased, steady-state firing rate profiles, varied in
shape and in magnitude as they are across the cortical
surface, are robustly maintained. These results are
consistent with the optical imaging results of Carandini
and Sengpiel (2004).

Below we explain the dynamical considerations
behind these activity maps, and how they are impacted
by the various mechanisms involved.

Analysis: Balancing excitation and inhibition across the
cortical surface

Each of the panels in Figures 7A and 8 represents
a continuum of local equilibria, obtained through the
dynamic balancing of excitation and inhibition, across
the surface of L4 in response to a visual stimulus. In
the CSY2 model as in real cortex, the circuitry of L4 is
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Figure 7. Orientation preference maps in the model. (A). Activity maps of E-cells (top) and I-cells (bottom) in L4 in response to five
gratings at 64% contrast; orientations of the gratings are written above the panels. Each panel is composed of 900 pixels, each one of
which corresponds to a 50 × 50 µm2 patch of cortex containing about 30 E-neurons and 10 I-neurons. The color represents the mean
firing rate (see color bars) averaged over the neurons in a pixel and over 1 s in time. (B) To facilitate the interpretation of the activity
maps in (A), we have replotted from Fig 1 the L4 component of the model showing the locations of intended orientation domains in
the nine HCs. The six regions in each HC, arranged counterclockwise in a pinwheel configuration, prefer 0°, 30°, 60°, 90°, 120°, and
150°, vertical labeled as 0°. Neurons in these regions are given six distinct sets of LGN templates. (C) Highlighting of activity of E-cells
in the central HC (region enclosed in black square) in response to the five orientations used in (A).

roughly spatially homogeneous. The inputs received, in
contrast, vary from point to point depending on the
stimulus, and the patterns of activity seen are produced
by these (rather subtle changes in) inputs together with
corticocortical interaction.

We elaborate on this point, because it is an important
difference between our model and models in which a
transducer function converts each neuron’s feedforward
input into spikes. In CSY2 as in real cortex, the bulk
of the excitatory current received by a neuron is from
within cortex, with only a small percentage of the
current coming from the LGN (Figure 3B). At each
location—think of it as a pixel in the activity maps
in Figures 7A and 8—instantaneous rates of spike
firing are determined by balancing the inhibition
received by the local population against the excitation
from four sources: i) LGN, ii) E-neurons from L4, iii)
feedback from L6, and iv) ambient sources representing
other modulatory forces. According to the leaky

integrate-and-fire equation (Supplementary Appendix),
excess excitation over inhibition controls spike firing.
The E- and I-input to each neuron is summed over fairly
large areas, over many neighboring pixels, determined
by the axonal lengths of neurons (Figure 1B). The
E/I balance point differs from pixel to pixel because
visual stimuli typically cause the values of the E- and
I-inputs to be location dependent. Each of the activity
profiles shown depicts a nonequilibrium steady state,
representing negotiated local equilibria that hold
simultaneously at all pixels everywhere in the model
cortex.

The presence of peaks and valleys in close
proximity in the activity maps are an illustration
of the very delicate balancing of E- and I-input
from the network to each neuron in the network.
Consider the response of L4 neurons in vertical and
horizontal-preferring domains of the same HC. As
contrast is increased, both excitation and inhibition are
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Figure 8. Activity maps at different contrasts in the V1 model. These are activity maps of the same type as Figure 7 showing firing
rates in the nine HC model cortex in response to 2.5 c/d gratings at various orientations and contrasts. Each row represents the
responses to a drifting grating of a particular orientation; each column a different contrast. Contrast increases from left to right. Firing
rates are given by the color bar, and resolution of the maps is as in Figure 7.

increased (e.g., Figures 3B and 3C). Excess excitation
over inhibition, however, is larger in the optimally
driven domain due to recurrent excitation enhanced
by feedback and synaptic depression of I-neurons
(see text accompanying Figure 4). There is also the
broader inhibition that sets a threshold that is exceeded
in optimally driven domains at high contrast, but not
in orthogonally driven domains (see the Analysis in
Results (2)). At each contrast, the nonequilibrium
steady-state solution smoothly interpolates the peaks
and valleys in spiking activity in the different orientation
domains.

Discussion

The CSY2 model accurately simulated V1
experimental data, producing the following three
outstanding results: 1) It simulated the firing rate
versus contrast function observed in V1 neurons
(e.g., Albrecht & Hamilton, 1982, and many others
afterwards); 2) it simulated the contrast dependence of

orientation tuning, with stronger selectivity at higher
contrast, agreeing with monkey, cat, and ferret V1 data
(Alitto & Usrey 2004; Johnson et al., 2008; Skottun
et al., 1987); 3) it produced maps of cortical activity
across the surface of V1 that were stable with contrast
as was reported in V1 optical imaging experiments
(Carandini & Sengpiel, 2004). We hypothesize that
the mechanisms in CSY2 that produced these three
results are likely to be responsible for the corresponding
phenomena in real cortex.

Comparison with previous models

The way the CSY2 model achieved its results was
different from that of all previous visual cortex models.
Many previous models were built with explicit or
implicit assumptions that excitatory synaptic input
from the LGN was sufficient to cause the cortical cells
to spike (Goris et al., 2015; Persi et al., 2011; Tao et al.,
2004; Troyer et al., 1998). This is very different from the
CSY2 model, in which LGN excitatory input is quite
weak. In CSY2, corticocortical excitation provoked



Journal of Vision (2020) 20(4):16, 1–19 Chariker, Shapley, & Young 16

by LGN input is what breaks through the shield of
inhibition to cause spike firing. No previous model
tested whether such large corticocortical amplification
of weak LGN input could be made to work in a
large-scale simulation of cortical function. The success
of CSY2 in simulating cortical function means that the
cellular and network mechanisms incorporated into
CSY2 are enough to explain the major phenomena of
the cortex’s contrast response.

As to how CSY2 compares with the normalization
model (Carandini & Heeger, 2011) developed to explain
data on the cortical contrast gain control (Ohzawa
et al., 1982), the idea of normalization was intended
to provide insight into the way cortical inhibition
could regulate many disparate cognitive functions.
It is a descriptive model not constrained by data on
cortical anatomy or physiology and it was not intended
to inform about the roles of cortical mechanisms in
explaining contrast phenomena. Another theoretical
idea is the stabilized supralinear network (SSN) theory
in (Rubin et al., 2015). CSY2 takes a different approach:
It is a neuroanatomy-based, biologically constrained
model built for purposes of shedding light on cortical
mechanisms.

There were previous models that included the idea
of recurrent excitation as a mechanism for feature
selectivity in V1. In particular, the large-scale model in
Somers et al., (1995) was very influential in persuading
theorists that recurrent excitation could play a role in
the V1 OS. Somers et al., (1995) also predicted the shape
of the V1 contrast response function. But the Somers
et al., (1995) model was much more feedforward than
CSY2 and its cortical cell density was much lower than
in the real V1. The importance of recurrent circuitry
in explaining contrast response is indicated more
convincingly in CSY2, a model with closer resemblance
to the real V1 in neuroanatomy and which explains
coherently many other aspects of cortical function.

Relation to experimental results: Predictions
and postdictions

The CSY2 model has enabled us to make many new
testable predictions; it also confirms and explains a
number of experimental observations. Here we collect
and summarize the main new model predictions and
postdictions.

• Intracellular E- and I-currents: Our model results
predict that a) inhibitory synaptic current tracks
total excitatory current across contrast, but that b)
E- and I-currents are not exactly balanced, with E-
current leading (c.f., the homogeneously connected
models of van Vreeswijk & Sompolinsky 1996),
and c) the excess of E-current over I-current,

which promotes spike firing, is correlated with
the neuron’s firing rate. See Figure 3B and 3C for
supporting simulations.
• Mechanisms for contrast response: It has been
suggested in Somers et al., (1995) that recurrent
excitation played an important role. Here we
amplify this assertion: Our analysis (Figure 4A)
showed that a 25% decrease in SEE decreases
contrast response to no more than a few spikes
above the spontaneous level. Another model
prediction is that the dynamic positive feedback
loop between L6 and L4 is an essential mechanism
for contrast response (Figure 4B).
• Net excitation of feedback from L6: L6 has been
shown to be net-inhibitory in mouse V1. For
monkey, whether the L6 projection to L4 is
net excitatory or net inhibitory has yet to be
determined. Our model predicts that, owing to
the paucity of LGN input in macaque V1, for
L4 neurons to produce the observed firing rates
(which are much higher than those for mouse), it is
necessary that L6 input to L4 be net excitatory in
macaque V1.
• Broader tuning of I-cells:One of the postdictions of
our model is that I-cells are more broadly tuned for
orientation than E-cells, especially at high contrast;
we offered mechanisms for this phenomenon, and
connected it to stronger feature selectivity at high
contrast (Results (2)). We predict also that future
imaging results will show, when E and I-responses
are separated, that I-cells will have a larger footprint
of elevated spiking on the cortical surface than
E-cells (Figures 5 and 7).
• O/P ratios as a measure of OS: The amount that
contrast enhances OS can be quantified by the
O/P ratio which for E-cells is predicted to decrease
by 40% between just suprathreshold contrast and
high contrast (Johnson et al., 2008). Our model
results are in close quantitative agreement with this
observation. As for I-cells, no data are available,
and our model predictions are that their O/P ratio
will decrease with increasing contrast, although not
by as much as for E-cells (see Figure 5C).
• Diversity of neuronal responses: Our model
produces—through dynamical interaction of
neurons—greater amounts of diversity in E-cell
firing rates in contrast response and in OS and
sf selectivity (Figures 3A, 5, and 6) than most
previous models, in agreement with data.
• Stability of neuronal activity maps with contrast:
The CSY2 model reproduces activity maps similar
to the images in, for example, Kay et al. (2013)
and Carandini and Sengpiel (2004), but with much
higher spatial and temporal resolutions, down to
real-time interaction on the neuronal level. CSY2
predicts that such activity maps are stable across
the full range of contrast.
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Greater emphasis on population activity in
model analysis

Another feature that sets this article apart is
that it has a stronger emphasis on the analysis of
CSY2’s population activity (Figures 3, 5, 7, and 8)
than previous model analyses. Although individual
neuron properties (Figure 6) in models are useful
for comparison with data from electrophysiology,
cortical mechanisms such as recurrent excitation and
indirect suppression can and do emerge from the
dynamic interaction of neurons, as a result of which
population responses can be quite different from those
from individual neurons. Because cortical function is
likely influenced as much if not more by population
responses as by attributes of individual neurons,
we believe there is a need to devote more effort to
understanding population dynamics in computational
modeling.

Examples of the analysis of population responses
are the activity maps in Figures 7 and 8. CSY2’s
production of these maps required the balancing of
excitation and inhibition in L4 from multiple sources:
Feedforward input from the LGN, feedback from
L6, and the synaptic inputs the neurons in L4 receive
from lateral interaction from within this layer. This
had to be done not just for a single local population,
but simultaneously for all local populations in the
model cortex, each local population receiving different
inputs owing to the different ways it was impacted
by the visual stimuli. It is important to remember
that all the images in Figures 7 and 8, as for all of
the figures in the article, were produced using a single
set of equations and a single set of parameters; it
was only the input light intensity maps that differed
(see Methods (1)).

Achieving dynamic balance with desired outcomes
for a significantly larger set of circumstances than the
number of adjustable parameters is both a goal and a
high bar for computational modeling. This is what we
have demonstrated for CSY2 with the activity maps
in Figures 7 and 8. These maps offer a new and useful
view of cortical population dynamics quite different
from those obtainable through current experimental
techniques.

Keywords: visual cortex, computational model,
contrast response, mechanisms
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