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Abstract: Circular RNAs (circRNAs) are covalently closed single-stranded RNA molecules, which
have many biological functions. Previous experiments have shown that circRNAs are involved in
numerous biological processes, especially regulatory functions. It has also been found that circRNAs
are associated with complex diseases of human beings. Therefore, predicting the associations of
circRNA with disease (called circRNA-disease associations) is useful for disease prevention, diagnosis
and treatment. In this work, we propose a novel computational approach called GGCDA based on
the Graph Attention Network (GAT) and Graph Convolutional Network (GCN) to predict circRNA-
disease associations. Firstly, GGCDA combines circRNA sequence similarity, disease semantic
similarity and corresponding Gaussian interaction profile kernel similarity, and then a random walk
with restart algorithm (RWR) is used to obtain the preliminary features of circRNA and disease.
Secondly, a heterogeneous graph is constructed from the known circRNA-disease association network
and the calculated similarity of circRNAs and diseases. Thirdly, the multi-head Graph Attention
Network (GAT) is adopted to obtain different weights of circRNA and disease features, and then
GCN is employed to aggregate the features of adjacent nodes in the network and the features of the
nodes themselves, so as to obtain multi-view circRNA and disease features. Finally, we combined a
multi-layer fully connected neural network to predict the associations of circRNAs with diseases. In
comparison with state-of-the-art methods, GGCDA can achieve AUC values of 0.9625 and 0.9485
under the results of fivefold cross-validation on two datasets, and AUC of 0.8227 on the independent
test set. Case studies further demonstrate that our approach is promising for discovering potential
circRNA-disease associations.

Keywords: circular RNAs; circRNA-disease associations; graph attention network; random walk
with restart algorithm; graph convolutional network

1. Introduction

Circular RNAs (circRNAs) produced by reverse splicing of pre-mRNAs are single-
stranded, covalently closed RNA molecules, which are lacking a 5′ cap and a 3′ polyadeny-
lated tail [1]. However, the original circRNAs were only known to be junk from splicing
errors [2], and without any function. Due to the rapid development of high-throughput
RNA sequencing technology, researchers have unearthed numerous circRNAs. Moreover,
experimental research showed that some circRNAs are highly expressed in specific types
of tissues and cells [3,4]. The expression of hundreds of circRNAs also changes during
the epithelial-mesenchymal transformation of human cells [5]. These studies indicate that
circRNAs are not junk from splicing errors; instead, they have irreplaceable biological
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functions. The explored experiments [6,7] showed that circRNAs are involved in the oc-
currence of various complex diseases. To be specific, circular RNAs are closely associated
with cancer [8]. For example, biological exploration has shown that the proliferation and
invasion of gastric cancer cells can be prevented by inhibiting the expression of circRNAs
such as has_circRNA7690_15 and hsa_circ_0047905 [9]. Yin et al. [10] found that the plasma
expression level of hsa_circ_0001785 was significantly different between breast cancer
patients before and after surgery and healthy individuals, which proved that it can be
regarded as an emerging biomarker for breast cancer diagnosis compared with traditional
biomarkers. Wang et al. [11] identified a biomarker, circCNST, as a potential biomarker for
osteosarcoma patients, which significantly promoted tumor genesis of osteosarcoma cells.

In recent years, through various biological experiments and studies, more and more
manually curated databases have been designed for studying circRNAs and the associa-
tions between circRNAs and diseases. These databases fall into two broad categories. The
first category is databases of recording circRNA annotation resources, such as circBase [12],
CircNet [13] and CircFunBase [14]. The second category is databases of circRNAs associ-
ated with diseases, such as Circ2Disease [15], CircR2Disease [16] and CircRNADisease [17].
So far, the research of circRNAs and diseases is a hot topic, and a growing number of
researchers are involved in this field. However, biological experiments to determine the
relationship between circRNAs and diseases are time-consuming, labor-intensive and a
waste of resources. Therefore, it is important to develop calculation methods to predict
the correlations between circRNAs and diseases. The existing calculation methods can be
divided into two categories [18]: the method based on network and the method based on
machine learning. The main process of the network-based method is to build a heteroge-
neous network by using circRNA-disease-related information, circRNA similar network
and disease similar network, and then use corresponding network-based algorithms to
deduce potential associations. For example, by constructing a heterogeneous network
consisting of a circRNA similarity network, a disease similarity network and a circRNA-
disease association network, Lei et al. [19] proposed a path-weighted model for predicting
circRNA-disease associations (PWCDA). Fan et al. [20] constructed KATZHCDA based
on the KATZ method, which calculates the similarity of nodes in heterogeneous networks
using known circRNA-disease associations, the similarity of circRNA expression profiles
and the similarity of disease phenotype. Based on circRNA sequence similarity and disease
semantic similarity, Zuo et al. [21] built a similarity network and then put forward a kind of
double matrix completion method to predict the circRNA relationship with the disease. The
main process of the method based on machine learning is as follows: firstly, various features
of circRNAs and diseases are manually extracted; secondly, the same number of positive
and negative samples are selected; finally, machine learning methods are used to make
predictions. Lei et al. [22] proposed a method called RWRKNN that uses a Random Walk
with Restart algorithm and a KNN model to predict potential circRNA-disease associations.
Lei et al. [23] proposed a GBDTCDA model that uses gradient enhanced decision tree
and multi-biological data fusion to predict the associations between circRNA and disease.
Wang et al. [24] established the GCNCDA model that uses Graph Convolutional Network
fast learning to effectively extract high-quality features and further used the Forest by
Penalizing Attributes algorithm to obtain the final prediction.

In this paper, we propose a novel approach based on the Multi-Head Graph Attention
Network and Graph Convolutional Network to predict circRNA and disease associations,
called GGCDA. Our model offers the following contributions:
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1. GGCDA constructs a novel deep learning model based on multi-head GAT and GCN.
Specifically, the multi-head Graph Attention Network is used to obtain different
weights of circRNA and disease features, and GCN is used to aggregate the features
of adjacent nodes in the network and the features of the nodes themselves. So, it can
learn not only the node feature information, but also the information contained in the
network structure.

2. Multiple similarities of circRNAs and diseases are integrated as the original features
of nodes in the GGCDA, including circRNA sequence similarity, disease semantic
similarity and corresponding Gaussian interaction profile kernel similarity.

3. RWR is used to capture the multi-faceted relationship between two nodes, capturing
the overall structural information of the graph.

4. An independent dataset that contains more data is used to verify the generalization
of GGCDA, besides common comparisons and case studies.

Comparisons with several state-of-the-art methods and case studies were applied to
verify the performance of the proposed method; the experimental results demonstrate the
capability of GGCDA for predicting circRNA-disease associations. The source code and
run environment of our model are available at https://github.com/hhhhcccc22/GGCDA
(accessed on 23 May 2022).

2. Materials and Methods
2.1. Known Human circRNA-Disease Associations

To measure model performance, we used CircR2Disease, an experimentally validated
circRNA-disease association database. The CircR2Disease database includes 739 manually
collected circRNA-disease associations from published literature, covering 661 circRNAs
and 100 diseases, which can be downloaded from http://bioinfo.snnu.edu.cn/CircR2
Disease/ (accessed on 23 May 2022). Based on the original CircR2Disease database, we
removed duplicate associations, non-human associations and some circRNA-disease as-
sociations of circRNAs with no sequence information in the circBase database or diseases
with no disease ontology identity information in the Disease Ontology (DO) database [25].
Consequently, from the CircR2Disease dataset we used, there are a total of 651 associations,
including 590 circRNAs and 88 diseases.

To validate the stability of the model, we constructed a larger dataset called DATA
containing more data information from three databases: CircR2Disease, Circ2Disease and
CircRNADisease. After de-duplication and the same operation as above, we integrated the
data from these three databases, and finally, the DATA dataset containing 944 associations
of 809 circRNAs and 119 diseases was obtained.

To investigate the generalization of the model, we tested the models on an independent
dataset that was used in the reference [26]. We collected circRNA-disease associations from
the circRNA-disease pair information in the database MNDR version 3.1 [27] and removed
the circRNA-disease pairs that are not human. Finally, a total of 2175 kinds of circRNAs
and 154 kinds of diseases were obtained with 2758 circRNA-disease pairs. All dataset
information can be seen in Table 1.

Table 1. The used datasets.

Datasets circRNA Numbers Disease Numbers Associations

CircR2Disease 590 88 651
DATA 809 119 944
MNDR 2175 154 2785

https://github.com/hhhhcccc22/GGCDA
http://bioinfo.snnu.edu.cn/CircR2Disease/
http://bioinfo.snnu.edu.cn/CircR2Disease/
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In order to facilitate the expression of the calculation formula, we used A ∈ Rnc×nd to
represent the association matrix between circRNAs and diseases, where nc and nd are the
numbers of circRNAs and diseases, respectively. When a circRNA ci is correlated with a
disease dj in the dataset, we set the association matrix Ai,j at the corresponding position to
have the value 1; otherwise, the value is 0.

2.2. CircRNA Sequence Similarity

To obtain the sequence similarity of circRNAs, we downloaded all the human cir-
cRNAs in the circBase database, which contains 140,790 pieces of circRNA sequence in-
formation. Then, we extracted the circRNAs sequence information corresponding to the
circRNA-disease associations. The similarity between any two circRNAs sequence is cal-
culated based on Levenshtein distance [28]. Levenshtein distance refers to the degree of
difference between two character strings, such as String1 and String2, measured by the min-
imum operand to convert String1 to String2 by deleting, adding, replacing, etc. A circRNA
can also be regarded as a string consisting of A, G, C and T. Therefore, Levenshtein distance
can be used to calculate the sequence similarity in the field of biological information. The
smaller the value between two circRNAs expressed by the Levenshtein distance, the greater
the similarity. The similarity of circRNA ci and circRNA cj is calculated as follows:

SCseq(ci, cj) = 1−
LevDis(ci, cj)

length(ci) + length(cj)
(1)

where LevDis(ci, cj) represents the operand to convert circRNA ci to circRNA cj, and
length(ci) represents the sequence length of circRNA ci.

2.3. Disease Semantic Similarity

To calculate the semantic similarity of diseases, we downloaded disease terms includ-
ing DOID, name and associations with parents from the DO database. Given a disease d,
a directed acyclic graph (DAG) can be formed, which can be expressed as DAGd(Fd, Ed),
where Fd represents the disease node and Ed represents the relationship between the var-
ious disease nodes. Based on Wang’s summary of the ontology of disease [29], we used
the DOSE function in the R package to calculate the similarity between disease pairs,
represented by SDds ∈ Rnd×nd; its calculation formula is as follows:

SDds(di, dj) =
∑ f∈Fdi

∩Fdj
(Ddi

(t) + Ddj
(t))

∑ f∈Fdi
Ddi

(t) + ∑ f∈Fdj
Ddj

(t)
(2)

where Fdi
means disease di and its ancestors in DAG. Ddi

represents the contribution value
of all nodes in Fdi

to disease di, which can be explained by the following formula:{
Dd(t) = 1, i f t = d
Dd(t) = max{ψ·Dd(t,)|t, ∈ children o f t}, i f t 6= d

(3)

where ψ represents the disease semantic contribution score, which is set to 0.5 according to
Wang’s method [29].
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2.4. Gaussian Interaction Profile Kernel Similarity for circRNA and Disease

Due to the sparse sequence similarity of circRNAs and the semantic similarity of
diseases, we introduced the Gaussian interaction profile kernel [30] (GIP) similarity that
is constructed to measure circRNA similarity and disease similarity based on the known
circRNA-disease association matrix A defined in Section 2.1. In A, the ith row K(i) rep-
resents the association of the circRNA with all diseases, and it is a binary vector. The
jth column K(j) means the association of the jth disease with all circRNAs. Based on the
assumption that similar diseases are more likely to be associated with similar circRNAs
and vice versa, we calculate the GIP similarity as follows:

SCGIP(ci, cj) = exp(−ρc‖K(ci − K(cj)‖2) (4)

SDGIP(di, dj) = exp(−ρd‖K(di)− K(dj)‖2) (5)

where ρc and ρd are utilized to control the kernel bandwidth, and the calculation formulas
can be expressed as follows:

ρc = 1

/
(

1
nc

nc

∑
i=1
‖K(ci)‖2) (6)

ρd = 1

/
(

1
nd

nd

∑
j=1
‖K(dj)‖2) (7)

where nc represents the number of rows indicating the number of circRNAs, and nd
represents the number of columns indicating the number of diseases.

2.5. Integration of Different Similarities

In order to solve the problem that single similarity of circRNAs and diseases is too
sparse and causes the instability of the prediction results, we combined the GIP similarity
of circRNAs with sequence similarity, and the GIP similarity of diseases with semantic
similarity, respectively. The combination formula is as follows:

SCFus(ci, cj) =

{
SCseq(ci, cj), i f SCseq(ci, cj) 6= 0
SCGIP(ci, cj), else

(8)

SDFus(di, dj) =

{
SDds(di, dj), i f SDds(di, dj) 6= 0
SDGIP(di, dj), else

(9)

where SCseq and SCGIP represent circRNA sequence similarity and GIP similarity, re-
spectively, and SDds and SDGIP represent disease semantic similarity and GIP similarity,
respectively.

2.6. Feature Initialization of circRNAs and Diseases with RWR

As mentioned above, SCFus and SDFus, as the similarity profile of circRNA and disease,
can be used as the feature vector of circRNA and disease, respectively. However, due to the
limitation of the similarity calculation method of circRNA and disease, SCFus and SDFus
alone may not be sufficient and may lead to missing the structure of the network. Therefore,
we apply RWR to obtain topological context vectors of circRNAs and diseases from SCFus
and SDFus. RWR aims to capture the overall structure of the graph information, which
starts from a node in the graph. Each step is faced with two choices: randomly select
adjacent nodes or return to the start node; we apply the RWR algorithm to process SCFus
and SDFus, respectively, and its formula can be expressed as:

Pk+1
i = (1− θ)Pk

i Ŝ + θP0
i (10)
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where Pk
i represents the ith row vector after k update operations. θ represents the restart

probability; based on previous research, we set it to 0.9 [31]. Ŝ represents the one-step
probability transition matrix after normalizing the similarity matrix SCFus (or SDFus) by
column, P0

i is a binary vector and P0
i,i = 1, else, 0. Finally, SC and SD are used to represent

the new feature after the RWR algorithm.

2.7. CircRNA-Disease Heterogeneous Network Construction

Based on the above data processing, we constructed a heterogeneous network (called
GHet) consisting of circRNA-disease association network, circRNA feature vector and
disease feature vector. The edges between circRNAs (or diseases) represent their similarity,
and the edges between circRNAs and diseases represent associations. Meanwhile, we
introduced a penalty factor µ to control the contribution of similarity to the model. The
construction expression of the heterogeneous network GHet ∈ R(nc+nd)×(nc+nd) can be
shown as Equation (11), and its representation is shown in Figure 1.

GHet =

[
µ·SD A

AT µ·SC

]
(11)
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Figure 1. Illustration of the heterogeneous network.

2.8. The Framework of the Proposed GGCDA

To obtain potential circRNA-disease associations, relying on the above heterogeneous
network, we constructed a hybrid model based on multi-head GAT and GCN, as shown
in Figure 2. The framework of GGCDA contains four parts. Firstly, multiple similarities
are integrated, and RWR is used to introduce the topological context of each circRNA
and disease node into its initial feature representation. Secondly, based on the known
association matrix between circRNAs and diseases, and the initial feature of the circRNA
and disease node, a heterogeneous network is constructed. Thirdly, a combination of the
multi-head GAT and GCN is proposed to extract different weight features of circRNA
and disease features using the multi-head GAT, and then GCN is applied to aggregate the
features of adjacent nodes and the features of the nodes themselves to obtain multi-view
circRNA and disease features. Finally, we implemented a fully connected layer network to
identify potential associations. As the first two parts of the framework are given above, we
present the key issues in the last two parts in the following.
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Figure 2. The framework of GGCDA, composed of four parts: (I) feature fusion and initialization;
(II) circRNA-disease heterogeneous network construction; (III) features representation based on the
combination of multi-head GAT and GCN; (IV) fully connected layer for prediction.

2.8.1. Features Representation Based on the Combination of Multi-Head GAT and GCN

A graph neural network (GNN) is aimed at learning high-level feature representation
vectors from a graph structure [32]. In applications in the field of bioinformatics, GNN
methods are widely used, such as drug-target associations (DTA) [33] and ncRNA-protein
interactions (NPI) [34]. In this study, we use the GAT [35] and GCN [36], which can learn
the embedding of nodes more effectively.

Based on the heterogeneous graph GHet, we define adjacency matrix M and feature
matrix X as follows:

M =

[
0 A

AT 0

]
(12)

X =

[
µ·SD 0

0 µ·SC

]
(13)

GAT introduced the self-attention mechanism, which represents the weight of adjacent
nodes by the attention coefficient, so as to learn the hidden representation of nodes on
the graph. To be specific, to learn the importance of the first-order neighbor nodes to a
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particular node, GAT calculates the attention coefficient for each node through a forward
linear transformation, where the attention coefficient eij between circRNA ci and disease dj
can be expressed as the following formula:

eij(ci, dj) = f (Wbi, Wbj) (14)

where f represents a single-layer neural network, W is a weight matrix, b is the feature rep-
resentation of the current node and b0 is the initial feature matrix X. Then, the normalized
attention coefficient αi,j is obtained by computing the softmax function as follows:

αij =
exp(eij)

∑l∈Ni
exp(eil)

(15)

where Ni represents the first-order neighbors of the node i.
The output result of the final node was shown as follows:

BNi = Relu( ∑
t∈Ni

αijWbt) (16)

where Ni represents the neighbor nodes of the current node, and α represents the normal-
ized attention coefficient. In order to improve its robustness, multi-head attention GAT was
used in the proposed model; the results are expressed through N-head multi-head GAT
layer as follows:

BNi = Relu(
1
N

N

∑
i=1

∑
t∈Ni

αi
itW

ibt) (17)

However, different from GAT, GCN can learn the representation of nodes on the graph
level. Its basic idea is to conduct convolution operations on the graph to obtain node
embedding. After obtaining the attention features through the GAT, GCN is used to fully
aggregate node information from its neighbors and its own node information on circRNA
and disease feature, so as to update node features and generate embedding. The specific
embedding representation is shown as follows:

Hl+1 = Relu(D̃−
1
2 M̃D̃−

1
2 HlW l)

M̃ = M + I
D̃ii = ∑j M̃ij

(18)

where I represents the identity matrix, M represents the circRNA-disease adjacency matrix,
W represents the weight matrix, Hl represents the feature of the lth layer of circRNA and
disease and H0 is the initial feature matrix X.

2.8.2. Fully Connected Layer for Prediction

The above GAT layer and GCN layer can be performed multiple times. Through the
hybrid GNN of GAT and GCN, we obtain the potential feature representation of diseases
and circRNA. To predict potential circRNA-disease associations, we use fully connected
neural networks as classifiers for prediction, as they are widely used in classification. In
the previous l − 1 layer, we calculate the circRNAs (or diseases) results using the following
formula:
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F(x+1) = Relu(WxFx + bx) (19)

where x should be less than or equal to l − 2, and W and b represent weight parameters
and bias, respectively. The output result of layer l can be expressed as: S(c, d) = Fl =
sigmoid(W l−1Fl + bl), where sigmoid = 1

1 + e−x ; it maps the result variable between 0 and 1.
According to the previous study [37], we set l = 3 in our model.

2.8.3. Loss Function

In the process of model training, we optimize the loss function by cross entropy loss
and L2 regularization; here, we randomly select negative sample data with an equal number
of positive samples from the association matrix, which may be potential candidates but are
labeled as 0, where the loss function defined as follows:

Loss = − 1
N
(∑

i,j
yij log S(ci, dj) + (1− yij) log(1− S(ci, dj))) +

λ

2
||Θ||2 (20)

where N represents the number of training sets, y is the actual label, S(ci, dj) is the prediction
result, λ is the control factor, Θ represents all the parameters in the model, and W is the
weight matrix that can be learned in the forward neural network.

3. Results
3.1. Evaluation Criteria

In this study, fivefold cross-validation (FFCV) was used to evaluate the performance
of the GGCDA model. Specifically, we randomly divided all samples into five subsets. In
each fold, four subsets are used as training sets and one subset is used as the test set. Here,
the known circRNA-disease pairs are regarded as positive samples, whereas the randomly
selected unknown circRNA-disease pairs with the same number of positive samples are
negative samples.

We adopted evaluation indexes that are frequently used to evaluate the performance
of the machine learning model, including Accuracy (ACC), Precision (PRE), Recall (REC)
and F1-Score. The larger the above evaluation index value is, the more outstanding the
performance of the model is. In order to further explore the model effect, we describe the
receiver operating characteristic curve (ROC) and precision-recall curve (PR). From these,
the area under the receiver operating characteristic curve (AUC) [38] and the area under
the precision-recall curve can be calculated (AUPR) [39] to fully reflect the performance of
the model.

3.2. Prediction Performance

Since the random allocation of negative samples may lead to slight errors in the
experimental results, we repeated the experiment 10 times. From the experimental results
listed in Table 2, on the CircR2Disease database, the AUC and AUPR of FFCV using
GGCDA can reach 0.9726 and 0.9620, respectively, and ACC, PRE, REC and F1-Score results
are 0.9063, 0.8511, 0.9861 and 0.9134, respectively. Furthermore, we drew the ROC curve
and PR curve of the model under the CircR2Disease database, as shown in Figure 3. From
Table 2, we also can see the average results of the 10 FFCVs: the values of AUC, AUPR,
ACC, PRE, REC and F1-Score obtained by GGCDA are 0.9625, 0.9422, 0.9172, 0.8700, 0.9822
and 0.9224, respectively.



Biomolecules 2022, 12, 932 10 of 17

Table 2. Results of FFCV on CircR2Disease achieved by GGCDA.

Fold AUC AUPR ACC PRE REC F1-Score

1 0.9753 0.9743 0.8969 0.8421 0.9771 0.9046
2 0.9718 0.9608 0.9346 0.8951 0.9846 0.9377
3 0.9665 0.9555 0.9077 0.8581 0.9769 0.0136
4 0.9863 0.9847 0.8885 0.8217 0.9923 0.8989
5 0.9631 0.9349 0.9038 0.8387 1.0000 0.9123

Average 0.9726 0.9620 0.9063 0.8511 0.9861 0.9134
Average (10) 0.9625 0.9422 0.9172 0.8700 0.9822 0.9224
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3.3. Parameter Analysis

In this part, we discuss the impact of model parameters on the performance of GGCDA
based on the CircR2Disease database, including the number of attention heads, the number
of GAT layers, the number of GCN layers, embedding numbers and the penalty factors.

Specifically, the attention model using multiple heads in the GAT layer will be more
robust. As shown in Figure 4a, we set the number of heads as (2, 4, 8, 16, 32). It can
be seen that GGCDA can achieve better performance with the increase in the number of
attention heads, but the performance will decline when the number exceeds 16. So, we set
the number of heads of GAT to 16. In addition, the number of layers of GAT and GCN will
also have an impact on the model. We set the number of layers for these two components,
and the experimental results as shown in Figure 4b,c. It can be seen that GAT and GCN
both perform best when the number of layers is 1. When the number of layers increases,
GGCDA cannot learn much information. Finally, we explore the impact of embedding on
the model effect. Different from previous studies, we set the embedding number as (64,
128, 256, 512). As shown in Figure 4d, when the embedding number is 256, GGCDA can
achieve the best performance. We also set the penalty factors from 0.1 to 0.9, and the results
from Figure 4e show that when µ is equal to 0.6, it contributes the most to the performance
of the model.
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3.4. Model Ablation Study

Since our model is composed of several sections, in this part, ablation studies were
conducted based on the CircR2Disease database. In order to judge the influence of each
component on the overall performance of the model, FFCV was performed, and ablation
studies were mainly conducted on the following variants.
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1. GGCDA without RWR: only circRNA similarity matrix and disease similarity matrix
are used instead of features calculated after RWR.

2. GGCDA without GAT: only the convolution features extracted by GCN are used.
3. GGCDA without GCN: only features with attention mechanisms extracted by GAT

are used.
4. GGCDA without FC: use the inner product instead of FC to predict.

Figure 5 shows the performance comparison between each model variant and GGCDA.
Compared with only GAT or GCN, after combining GAT and GCN, GGCDA can achieve
better performance. At the same time, for GGCDA without FC, the performance of the
model is also relatively low, indicating the important role of distillation. Moreover, the
performance degradation after GGCDA without RWR also shows that introducing RWR as
part of the model is an important choice.
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3.5. Comparisons with Existing Methods

So far, a growing number of researchers have designed numerous models to predict
circRNA-disease associations. To demonstrate the superiority of GGCDA, we calculated
the AUC values against recently published models on the CircR2Disease dataset, including
DMCCDA [21], NCPCDA [40], GCNCDA [24], RWRKNN [22] and GATCDA [39].

In this section, we also used the value of AUC as a comparison indicator. It can be
seen from Table 3 that on the dataset CircR2Disease, GGCDA had the best AUC value of
0.9625; other models’ AUC values were 0.9598, 0.9201, 0.9090, 0.9333 and 0.9011. We found
that the results of DMMCDA are similar to ours, but the results are still slightly behind
ours. So, it can be inferred that GGCDA based on the combined GAT and GCN achieves
optimal performance and is a promising approach.

Table 3. The FFCV AUC values achieved by the various models.

Methods DMMCDA NCPCDA GCNCDA RWRKNN GATCDA GGCDA

AUC 0.9598 0.9201 0.9090 0.9333 0.9011 0.9625

3.6. Performance on a Larger Dataset

In order to further verify the robustness of the model and explore the performance on
a large dataset, we performed FFCV on the DATA dataset.

In this experiment, the composition of the model we adopted is the same as the
previous one, and there are only differences in the data. The detailed results can be seen
in Table 4. The ROC curve and PR curve of the model is shown in Figure 6. It can be seen
from the experimental results that the change in the amount of data does not affect the
performance of the model to a certain extent. AUC, AUPR, ACC, PRE, REC and F1-Score
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reach 0.9485, 0.9266, 0.9116, 0.8827, 0.9505 and 0.9150, respectively. The analysis of the
experimental results shows that although the amount of data may affect the performance
of the model, GGCDA still has certain robustness.

Table 4. Results of FFCV on DATA achieved by GGCDA.

Fold AUC AUPR ACC PRE REC F1-Score

1 0.9608 0.9522 0.9312 0.9095 0.9577 0.9330
2 0.9553 0.9375 0.9339 0.9100 0. 9630 0.9357
3 0.9503 0.9174 0.9339 0.9184 0.9523 0.9351
4 0.9685 0.9620 0.9206 0.8804 0.9735 0.9246
5 0.9511 0.9537 0.9069 0.8964 0.9202 0.9081

Average 0.9572 0.9446 0.9253 0.9029 0.9534 0.9273
Average (10) 0.9485 0.9266 0.9116 0.8827 0.9505 0.9150
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3.7. Results on the Independent Test Set

To investigate the generalization of the model, we tested the model on an independent
test set, the dataset MNDR, which is described in detail in Section 2.1 and Table 1. We
use the GGCDA model to predict the samples of the dataset MNDR, and the results are
shown in Table 5. It can be seen from the results that although the performance on the
independent test set is lower than the performance on the fivefold cross-validation on the
other two datasets, there is not a big gap; that is, the model has a certain generalization in
predicting potentially associated circRNA-disease pair ability.

Table 5. Results of the GGCDA on the independent test set.

AUC AUPR ACC PRE REC F1-Score

0.8227 0.7836 0.7832 0.7651 0.8173 0.7903

3.8. Case Study

To further validate the superiority of GGCDA, case studies on multiple diseases
were implemented. Specifically, we set all circRNA-disease samples to be validated as
unknown and then used GGCDA to generate all association scores for three common
diseases: hepatocellular carcinoma, breast cancer and colorectal cancer. Then, we sorted
them in descending order according to the scoring of the model, and finally screened out
the top 10 circRNAs corresponding to these diseases.

The results of case studies on hepatocellular carcinoma [41], breast cancer [42] and
colorectal cancer [43] after implementing GGCDA are shown in Tables 6–8. It can be
seen that among the results, 8, 8 and 9 out of 10 circRNAs for hepatocellular carcinoma,
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breast cancer and colorectal cancer were successfully predicted and could be retrieved in
the literature, respectively. The results of these experiments illustrate GGCDA’s effective
performance in exploring unknown circRNA-disease associations.

Table 6. The top 10 hepatocellular carcinoma-related candidate circRNAs.

Disease circRNA PMID

Hepatocellular
Carcinoma

hsa_circ_0000284 29415990
hsa_circ_0001141 28636993
hsa_circ_0001946 28892615
hsa_circ_0001649 26600397

hsa_circRNA_102049 28710406
hsa_circ_0001445 29378234
hsa_circ_0001821 unconfirmed
hsa_circ_0067934 29458020
hsa_circ_0023404 unconfirmed

hsa_circRNA_103387 28710406

Table 7. The top 10 breast cancer-related candidate circRNAs.

Disease circRNA PMID

Breast
Cancer

hsa_circ_0000284 27050392
hsa_circ_0001141 unconfirmed
hsa_circ_0001946 28049499
hsa_circ_0007534 29593432
hsa_circ_0001821 27928058
hsa_circ_0001313 28249903

circ-Foxo3 27886165
hsa_circ_0014717 unconfirmed
hsa_circ_0002113 28803498
hsa_circ_0004771 28484086

Table 8. The top 10 colorectal cancer-related candidate circRNAs.

Disease circRNA PMID

Colorectal
Cancer

hsa_circ_000753 29364478
hsa_circ_000114 26110611
hsa_circ_000131 28249903
hsa_circ_000182 30591054
hsa_circ_000194 28174233
hsa_circ_000028 27050392
hsa_circ_000164 29421663
hsa_circ_0067934 unconfirmed
hsa_circ_001471 29571246
hsa_circ_000050 28656150

4. Conclusions

Identifying associations between circRNAs and diseases has important implications
for disease diagnosis, treatment and identification of biomarkers. In this work, we propose
an effective method based on multi-head GAT and GCN for predicting potential circRNA-
disease association, and use three datasets to evaluate the performance of GGCDA. More-
over, we conducted case studies on hepatocellular carcinoma, breast cancer and colorectal
cancer. The experimental results demonstrate that our method has suitable performance
and can effectively detect more circRNA-disease associations.

The superior performance of the GGCDA model can be attributed to several factors.
Firstly, GGCDA makes full use of circRNA sequence information and integrates various
information to construct a heterogeneous network. Secondly, the graph-based neural
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network method is used to learn the topology structure and internal information in the
network of circRNAs and disease, GAT learns features on bipartite networks and GCN is
embedded on weighted similarity networks, so as to obtain the representation of depth
features of nodes. Moreover, the random walk with restart algorithm is used to capture
the overall structure of the graph information to enhance the feature representation of the
similarity network.

However, there are some limitations of our model. Firstly, GGCDA only uses circRNA
sequence similarity, disease semantic similarity and Gaussian kernel similarity. In the future,
we will combine more biomarkers, such as miRNA and protein, to construct more complex
heterogeneous networks. With the development of the graph neural network, more and
more advanced models have been proposed to learn the low-dimensional representation
of graph structure, such as heterogeneous graph attention network, heterogeneous graph
transformer and so on. In future research, we will continue to explore the positive role of
these graph-embedding methods to identify circRNA-disease associations.
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