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Abstract: Schizophrenia is a disease affecting up to 1% of the population. Current therapies 

are based on the efficacy of chlorpromazine, discovered over 50 years ago. These drugs block 

dopamine D2-like receptors and are effective at primarily treating positive symptoms in a subset 

of patients. Unfortunately, current therapies are far from adequate, and novel treatments require 

a better understanding of disease pathophysiology. Here we review the dopamine, gamma-

aminobutyric acid (GABA), and glutamate hypotheses of schizophrenia and describe a pathway 

whereby a loss of inhibitory signaling in ventral regions of the hippocampus actually drives a 

dopamine hyperfunction. Moreover, we discuss novel therapeutic approaches aimed at attenuating 

ventral hippocampal activity in a preclinical model of schizophrenia, namely the MAM GD17 

rat. Specifically, pharmacological (allosteric modulators of the α5 GABA
A
 receptor), neurosur-

gical (deep brain stimulation), and cell-based (GABAergic precursor transplants) therapies are 

discussed. By better understanding the underlying circuit level dysfunctions in schizophrenia, 

novel treatments can be advanced that may provide better efficacy and a superior side effect 

profile to conventional antipsychotic medications.
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Introduction
Schizophrenia is a severe psychiatric disorder for which there is currently no cure. 

Affecting approximately 1% of the population,1,2 schizophrenia is believed to be a 

developmental disorder with symptoms typically appearing during adolescence and 

early adulthood.3 There are three major symptom clusters associated with this disease: 

positive (psychosis, disorganized thinking and speech, hallucinations, delusions), 

negative (anhedonia, social withdrawal), and cognitive deficits (reversal learning, 

working memory deficits).4,5 Common pharmacological interventions for the treatment 

of schizophrenia include typical and atypical antipsychotic drugs which primarily 

act to decrease positive symptoms by the blockade of D2-type dopamine receptors.6,7 

Unfortunately, antipsychotic drugs are not always effective at reducing positive 

symptoms,8,9 are largely ineffective at treating negative and cognitive deficits,10–13 

and are associated with debilitating adverse side effects such as movement14,15 and 

metabolic disorders.4 For these reasons, the rates of discontinuance are relatively 

high4 and novel therapeutic approaches are required to better treat this devastating 

neuropsychiatric disease. Here we review some basic theories of schizophrenia and 

attempt to provide an integrated hypothesis that combines gamma-aminobutyric acid 

(GABA)ergic, glutamatergic, and dopaminergic theories to provide a framework by 
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which therapeutic approaches targeting the hippocampus 

as a novel region can be established for the treatment of 

schizophrenia.

Antipsychotic drugs
While there are numerous adjunct therapies, antipsychotic 

drugs have been the first line of treatment for schizophre-

nia since the advent of chlorpromazine in the 1950s.16 

Chlorpromazine largely replaced surgical and electroconvul-

sive approaches for the treatment of psychiatric symptoms 

and has been heralded as one of the most significant advances 

in the field of psychiatry.16,17 Since this time, there has been 

extensive research into the mechanisms underlying the 

effects of antipsychotic medications. It has been established 

that all antipsychotic drugs are dopamine D2-like recep-

tor antagonists and produce effects by blocking dopamine 

receptors.6,18,19 The typical, or first generation, antipsychotic 

drugs are effective at reducing positive symptoms,20 likely 

attributable to their ability to block dopamine receptors in 

the mesolimbic dopamine system.21 Unfortunately, they also 

cause dopamine receptor blockade in the nigrostriatal, meso-

cortical, and tuberoinfundibular dopamine systems, which is 

associated with a number of debilitating extrapyramidal side 

effects including Parkinson’s-like symptoms (tremors, muscle 

rigidity, tardive dyskinesia) and hyperprolactinemia.22

Atypical or second-generation antipsychotics were 

approved by the FDA in the late 1980s, as they were believed 

to be more effective at treating symptoms of schizophrenia 

without the motor side effects.23 Much like typical antipsy-

chotics, atypical antipsychotics bind to dopamine receptors; 

however, atypical antipsychotics also display an affinity for 

the serotonin-2A (5HT-2A) receptor.24,25 Indeed, the ratio of 

5HT-2A to dopamine D2 receptor affinity distinguishes typical 

and atypical antipsychotic drugs better than any known phar-

macological feature.24 Given that 5HT-2A receptors are located 

presynaptically on dopamine terminals in the nigrostriatal and 

mesocortical pathways, atypical antipsychotics augment dop-

amine release in these regions to counteract the effects of D2 

antagonism.26–28 The net result is that atypical antipsychotics 

maintain efficacy against positive symptoms by transiently 

occupying D2 receptors and rapidly dissociating to allow for 

normal dopamine neurotransmission, while providing fewer 

extrapyramidal side effects.29 Additionally, 5HT-2A receptors 

are not only localized on dopamine terminals but are widely 

expressed throughout the cortex, where these receptors also 

contribute to the beneficial effects of atypical antipsychotics.30 

Indeed, patients who take atypical antipsychotics also report 

mild improvements in cognition and reductions in suicidal 

thoughts and negative symptoms, which are not commonly 

observed with typical antipsychotics.10,11,30–33 It should be 

noted that while atypical antipsychotics produce fewer motor 

side effects associated with blockade of dopamine receptors, 

they often cause severe metabolic side effects, including 

weight gain and glucose intolerance.34

To evaluate the effectiveness of various antipsychotic 

drug treatments, a number of large trials have been 

undertaken, including the Clinical Antipsychotic Trials of 

Intervention Effectiveness (CATIE) study, the Cost Utility 

of the Latest Antipsychotic Drugs in Schizophrenia Study 

(CUtLASS) and the European First-Episode Schizophrenia 

Trial (EUFEST).4,35 These studies, and others,36 have demon-

strated that there are no dramatic differences in the efficacies 

of typical and atypical antipsychotic treatments.37 However, 

a striking observation was that the vast majority of patients 

(∼74%), independent of the type of antipsychotic treatment, 

discontinued their treatment during Phase I due to ineffec-

tiveness or intolerable side effects, clearly demonstrating 

that current therapeutic approaches are far from adequate.4 

For these reasons, it is essential to identify novel therapeutic 

approaches for the treatment of schizophrenia. To do this, 

one must start with a more complete understanding of the 

pathophysiology of schizophrenia.

The dopamine hypothesis
The dopamine hypothesis of schizophrenia is one of the 

more predominant theories advanced to explain symptoms 

of the disease.38 It posits that hyperactivity of mesolimbic 

dopamine transmission underlies positive symptoms of 

schizophrenia.39–41 Observations that validate this hypothesis 

include the finding described above that all antipsychotic 

drugs bind to and block dopamine D2 receptors.20 In addi-

tion, indirect dopamine agonists, such as amphetamine, 

have been demonstrated to induce psychosis in the general 

population,42 whereas individuals with schizophrenia are 

significantly more sensitive to the dopamine-releasing effects 

of amphetamine.39,41 Additional evidence for the dopamine 

hypothesis stems from human imaging studies providing 

evidence for region-specific increases in dopamine trans-

mission in individuals with schizophrenia, particularly in 

the associative areas of the striatum.43 Specifically, positron 

emission topography (PET) studies demonstrate a higher 

occupancy of striatal dopamine D2 receptors by dopamine 

in individuals with schizophrenia, predictive of antipsychotic 

effectiveness,44,45 whereas 18F-DOPA PET studies have dem-

onstrated an elevated dopamine synthesis capacity in striatal 

regions.46,47 It should be noted that while studies examining 
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D2 receptor availability are not entirely consistent, changes in 

presynaptic dopamine function are more reliable with a recent 

meta-analysis demonstrating an effect size of d=0.8.48

An association between aberrant dopamine neurotrans-

mission is not only correlated with positive symptoms of the 

disease39,41 but has also been suggestive to be a contributing 

factor to cognitive deficits observed in patients.47,49 In con-

trast to that observed in the mesolimbic system, a decrease 

in dopamine transmission to the cortex may underlie deficits 

in working memory and executive function.50 Specifically, 

dopamine transmission in the dorsal lateral prefrontal 

cortex produces an inverted U-shaped dose response curve 

whereby both increases and decreases in dopamine signal-

ing can impair working memory and executive function.51 

Taken together, there is considerable evidence for aberrant 

dopamine signaling in individuals with schizophrenia that 

likely contributes to both positive and cognitive symptoms.38 

However, it is important to note that there appears to be a 

lack of an overt pathology within the midbrain dopamine 

system.52 This has led to the suggestion that it is the regula-

tion of dopamine neuron transmission that is dysfunctional 

in schizophrenia.53

The glutamate  
and GABA hypotheses
While considerable evidence indicates a dysregulation of 

dopamine signaling in schizophrenia, this is likely second-

ary to aberrant regulation by glutamatergic and GABAergic 

systems. The glutamate hypothesis of schizophrenia centers 

on hypofunctionality of glutamate signaling via N-methyl-

D-aspartate (NMDA) receptors. Thus, NMDA receptor 

antagonists, such as phencyclidine (PCP) and ketamine, 

produce both psychotomimetic effects as well as cognitive 

impairments in humans.54,55 For this reason, considerable 

preclinical work has been performed following either acute or 

subchronic administration of NMDA receptor antagonists.56–59 

Drugs like PCP inhibit signaling by the NMDA receptor and 

produce behavioral deficits in rodents that are analogous to 

positive (hyperlocomotion60) and negative (social interaction 

deficits61,62) symptoms as well as cognitive deficits (deficits 

in reversal learning and extradimensional set shifting63,64), 

which coincide with what is seen in the clinic. Additionally, 

perinatal PCP treatments have been used to model altered 

brain pathologies commonly observed in individuals with 

schizophrenia, such as altered expression of NMDA receptors 

and parvalbumin-containing interneurons.65 More recently, 

genetic studies have demonstrated the potential involvement 

of aberrant glutamatergic signaling in schizophrenia. Specifi-

cally, a transgenic mouse model with reduced NMDA receptor 

expression displays behaviors related to schizophrenia, such 

as increased locomotor activity and decreased social inter-

action, both of which were reversed by administration of 

the antipsychotic clozapine.66 Interestingly, it appears that 

the net effect of NMDA receptor antagonism is to augment 

glutamatergic transmission. While at first glance this may 

seem counterintuitive, it is thought that NMDA receptor 

antagonists preferentially alter GABAergic activity due to 

the more depolarized membrane potential and subsequent 

lack of Mg2+ block of the NMDA receptor.67,68 This would 

lead to increases in glutamatergic signaling. Indeed, magnetic 

resonance spectroscopy studies have demonstrated increased 

levels of glutamine in first-episode, untreated schizophrenia 

patients that provides in vivo evidence for enhanced gluta-

matergic activity.69

Deficits in GABAergic neurotransmission have been con-

sistently demonstrated in post mortem studies of individuals 

with schizophrenia.70 These studies have shown alterations in 

GABAergic markers, including glutamic acid decarboxylase, 

parvalbumin (PV), somatostatin, and calretinin, to name a 

few.71–75 Various subtypes of interneurons exist that provide 

inhibitory control and modulation of cortical and hippocam-

pal circuits.71 These interneuron subpopulations can be reli-

ably distinguished by the neurochemicals they express. The 

cortex and hippocampus both contain interneurons that dif-

ferentially express calcium binding proteins (PV, calretinin, 

calbindin) and neuropeptides (somatostatin, neuropeptide Y) 

with distinct cell types playing a vital role in inhibitory 

control over pyramidal cell activity in both regions.71,76–78 This 

is important, as it appears that the GABAergic dysfunction in 

schizophrenia is restricted to subpopulations of interneurons; 

ie, those containing PV or somatostatin.78–80 PV containing 

interneurons are fast firing, perisomatic targeting, and are 

thus situated to regulate pyramidal cell firing.71,75,81 In addi-

tion, these cells contribute to large scale neuronal oscillations 

within and between brain regions that are thought to be 

essential for cognitive function, and are known to be altered 

in individuals with schizophrenia.75,82,83

Information from genetics studies
Arguably, the most widely replicated biological factor in 

regard to schizophrenia is a family history of the disease.84 

Over the years, researchers have studied the families of 

patients diagnosed with schizophrenia,85 along with fra-

ternal and identical twin studies,86,87 in order to determine 

whether genetics plays a role in the disease. A quantitative 

meta-analysis of published twin studies of schizophrenia 
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was conducted, and found that the heritability of the disease 

is very high (point estimate, 81%),88 consistent with prior 

summaries of literature on twins.89 It is important to note that 

no single gene has been identified as being solely responsible 

for the development of schizophrenia; rather, there are several 

candidate genes associated with an increased risk for the 

disease (ie, disrupted in schizophrenia 190–92 and neuregulin 

193–95). Thus, genome-wide association studies (GWAS) have 

been instrumental in identifying candidate genes that may 

play a role in the heritability of schizophrenia. Specifically, 

GWAS examine the entire genome to detect common genetic 

variants in different individuals in order to implicate spe-

cific variants in disease risk. Because schizophrenia is a 

heterogeneous disease, rare variants with large effects have 

a very low frequency in the population as a whole, and are 

consequently not detectable by population-based GWAS.96 

However, of relevance to the hypotheses detailed above, there 

have been reports implicating abnormalities in GABAergic 

and glutamatergic systems,97 as well as candidate genes 

involved in neurodevelopment (ie, EFHD1, RELN, ANK3, 

NRG1, etc,98–100). It should be noted, however, that individual 

results from GWAS have not identified overlapping polymor-

phisms nor do candidate genes consistently reach the level 

of genome-wide statistical significance,96,97,101 leaving many 

unanswered questions about the genetics of schizophrenia. 

This is not surprising, as it is commonly accepted that 

schizophrenia is associated with many genes that contribute 

modestly to the risk of developing the disease. However, when 

a combination of genetic alterations is placed in the context 

of environmental factors, they contribute to the pathophysiol-

ogy of the disorder.

Towards an integrated hypothesis
Post mortem studies have identified structural alterations 

in human patients that are largely associated with cortical 

and hippocampal regions.102–104 These regions are also those 

that display consistent decreases in the expression of the 

interneuron marker PV,78,105 as well as deficits in activation 

during task performance, as measured by functional imag-

ing studies.106 It is not currently understood how alterations 

within these specific neuronal systems contribute to the 

symptoms associated with schizophrenia. Thus, preclinical 

research is required that utilizes animal models that closely 

recapitulate several facets of the disease state. Animal 

models of schizophrenia can be generalized into three main 

categories: pharmacological, developmental, and genetic. The 

model which we typically utilize is a developmental disrup-

tion model that involves the administration of the mitotoxin 

methylazoxymethanol acetate (MAM) to pregnant dams on 

gestational Day 17.107 The offspring of these dams display 

anatomical, neurophysiological, and behavioral alterations 

consistent with those observed in individuals with schizo-

phrenia.108 The exact mechanism as to how MAM produces a 

schizophrenia-like phenotype in rodents is not clear; however, 

this short-acting deoxyribonucleic acid (DNA)-alkylating 

agent is thought to alter cell division and gene expression 

(via DNA methylation).107,109

Given the significant evidence for mesolimbic dopamine 

hyperfunction in schizophrenia (see above), we have exam-

ined the regulation of dopamine neuron activity in the MAM 

model of schizophrenia.110–113 Using in vivo extracellular 

recordings from dopamine neurons in the ventral tegmental 

area (VTA), it has been previously demonstrated that distinct 

brain regions can differentially modulate discrete dopamine 

neuron activity states.114,115 Of relevance to schizophrenia 

are the ventral subfields of the hippocampus (vHipp) and the 

medial prefrontal cortex. Activation of the vHipp has been 

demonstrated to increase dopamine levels in the forebrain115 

by increasing the number of spontaneously active dopamine 

neurons in the VTA (defined as population activity).116 In 

contrast, activation of the medial prefrontal cortex produces 

more selective alterations in dopamine neuron firing rate and 

pattern.114,117 Electrophysiological recordings in the MAM 

model of schizophrenia have demonstrated a pathological 

increase in dopamine neuron population activity without 

alterations in firing rate or pattern, thus implicating the 

vHipp.110–113 It is thought that alterations in dopamine neuron 

population activity provide a gain of function whereby phasic 

stimuli can be amplified or attenuated by hippocampal inputs 

in response to environmental context or novelty. A patho-

logical increase in dopamine neuron population activity 

would therefore lead to an abnormally high salience being 

ascribed to previously innocuous stimuli and may contribute 

to the delusions and paranoia exhibited by individuals with 

schizophrenia. Indeed, recent evidence from human imag-

ing studies supports the notion that aberrant hippocampal 

activity may underlie the dopamine dysregulation observed 

in individuals with schizophrenia.118 Specifically, elevated 

baseline activity is present in the anterior hippocampus 

of patients118,119 and in the analogous vHipp of rodent 

models.110 To demonstrate the involvement of the vHipp 

in this pathologically enhanced dopamine neuron activity 

in a rodent model, the vHipp was pharmacologically inac-

tivated by the administration of the Na+-channel blocker, 

tetrodotoxin.110 While having no significant effect in control 

animals, tetrodotoxin inactivation of the vHipp completely 
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reversed the elevated dopamine neuron population activity in 

MAM-treated rats.110 It is important to note that the effects 

of MAM on rodents are global and not simply restricted to 

the hippocampus. Therefore, it is likely that MAM produces 

alterations in afferents to the VTA and/or nucleus accumbens 

that also modulate dopamine activity and release in a freely 

behaving animal. Moreover, at face value, the hypothesis 

of hyperactivity within hippocampal subfields may appear 

inconsistent with one of the most well-known rodent models 

of schizophrenia, the neonatal ventral hippocampal lesion 

model.120 However, on the basis of work by Swerdlow et al, 

it has been suggested that behavioral abnormalities in the 

neonatal ventral hippocampal lesion model reflect, at least 

in part, aberrant function within spared elements of the hip-

pocampal complex.121 Specifically, rats with large lesions 

encompassing the entire vHipp do not display the augmented 

responses to psychomotor stimulants consistently observed in 

rodent models and individuals with schizophrenia.121 These 

data suggest that the hypothesis of aberrant vHipp drive of the 

dopamine system may not be specific to the MAM model and 

may actually reflect a common pathophysiology in a number 

of diverse rodent models. Indeed, we have also demonstrated 

a similar observation in the subchronic phencyclidine rodent 

model (unpublished observations).

As mentioned above, evidence from postmortem studies 

suggests a decrease in PV interneuron function in individuals 

with schizophrenia.70,122 Given that these interneurons are well 

situated to regulate pyramidal cell activity,70 we posit that a 

decrease in PV interneuron function may actually underlie the 

hippocampal hyperactivity, and consequent dopamine neuron 

hyperfunction in schizophrenia. Indeed, a loss of PV function 

induced by degrading the extracellular matrix support 

structure of the PV interneurons was sufficient to increase 

hippocampal pyramidal neuron activity and produce enduring 

changes in dopamine system function.123 Similar results have 

been obtained by hippocampal selective knockdown of PV 

itself (unpublished observations). Taken together, we suggest 

that schizophrenia may be associated, at least in part, with a 

loss of interneuron control over hippocampal activity. This 

results in a pathologically enhanced hippocampal drive of the 

dopamine system that is likely associated with the positive 

symptoms of the disease (see Figure 1).

The hippocampus as a  
potential therapeutic target
Given that a deficit in hippocampal GABAergic transmission 

may contribute to the pathophysiology of schizophrenia, it 

stands to reason that targeting this system may provide a 

novel approach for the treatment of schizophrenia. Indeed, 

we have evidence that pharmacological,124,125 neurosurgical,112 

and cell-based therapies115 are effective in reversing aberrant 

neuron activity and behaviors in the MAM rodent model of 

schizophrenia.

There is considerable preclinical and clinical data 

demonstrating a robust augmentation of GABAergic trans-

mission by allosteric modulators of the GABA
A
 receptor. 

NAc

mPFC

Ventral
pallidum

vHipp

VTA

PV

PV

Pyr

Dopamine

Figure 1 PV-positive interneurons primarily synapse on the axon initial segment of pyramidal neurons of the vHipp (inset). 
Notes: Individuals with schizophrenia exhibit lower levels of PV expression, which is suggested to lead to deficits in GABAergic signaling and subsequent hyperactivity of the 
vHipp. This hyperactivity is thought to underlie the dysregulation of dopamine transmission in schizophrenia. Adapted by permission from Macmillan Publishers Ltd: Nat Rev 
Neurosci, Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia, 2005;6:312–324, copyright 2005.70 Adapted with permission from Grace AA, 
Floresco SB, Goto Y, Lodge DJ. Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 2007;30(5):220–227.138 

Abbreviations: mPFC, medial prefrontal cortex; NAc, nucleus accumbens; PV, parvalbumin; vHipp, ventral hippocampus; Pyr, pyramidal neuron; VTA, ventral tegmental area; 
GABA, gamma-aminobutyric acid.
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Indeed, the benzodiazepine and barbiturate classes of 

drug are widely utilized in this regard. Benzodiazepines 

have also been prescribed alone and in conjunction with 

antipsychotic medication for the treatment of schizophrenia, 

but the evidence as to its effectiveness as a treatment for 

schizophrenia is lacking and inconclusive to date,126 and 

may even be associated with an increased mortality.127 In 

addition, the extensive distribution of the GABA
A
 receptor 

makes it difficult to target specific brain regions with con-

ventional medications. The GABA
A
 receptor is a pentameric 

structure consisting of a number of distinct subunits.128–130 

Interestingly, the α5 subunit is preferentially expressed in 

the hippocampus131,132 leading to the suggestion that posi-

tive allosteric modulation of α5 subunit containing GABA
A
 

receptors may be effective in treating symptoms associated 

with schizophrenia. Indeed, the systemic administration of 

a selective allosteric modulator of the α5GABA
A
 receptor, 

SH-053-2′F-R-CH3, attenuated hippocampal activity in the 

MAM-model of schizophrenia.124 Furthermore, this was 

associated with a restoration of aberrant dopamine neuron 

activity, as well as reversing the behavioral hyperactivity to 

amphetamine.124 These data provide preclinical evidence that 

allosteric modulators of the α5GABA
A
 receptor may be an 

effective therapeutic approach to reverse dopamine hyperac-

tivity by targeting aberrant hippocampal function.

In addition to the pharmacological targeting of hip-

pocampal transmission, surgical approaches may also 

be effective at altering hippocampal activity. Deep brain 

stimulation (DBS), although still a very controversial treat-

ment, has been gaining in popularity for the treatment of 

psychiatric disorders such as depression133 and obsessive 

compulsive disorder.134 It is thought that, in cortical regions, 

DBS acts to induce a functional lesion (likely by depolariza-

tion blockade of pyramidal neurons).135,136 For this reason, 

it was suggested that DBS of the vHipp may be a novel and 

effective therapeutic approach to treat the hippocampal 

hyperactivity thought to contribute to the symptoms of 

schizophrenia. Indeed, DBS of the anterior hippocampus has 

been demonstrated to be well tolerated in human patients 

(treated for epilepsy) with minimal side effects.137 We have 

recently demonstrated that vHipp DBS in MAM-treated rats 

is able to reverse aberrant dopamine neuron activity and the 

behavioral hyper-responsivity to psychomotor stimulants, 

thought to be an index of positive symptomatology.112 Given 

that current approaches are often ineffective at reducing 

cognitive symptoms, we examined the effect of vHipp DBS 

in a working memory task analogous to the Cambridge 

Neuropsychological Test Automated Battery in patients.112 

MAM-treated rats demonstrated deficits in reversal learning 

and extradimensional set shifting, consistent with deficits 

observed in patients.112,125 Interestingly, vHipp DBS was 

able to ameliorate these deficits in the MAM rodent model. 

These studies suggest that hippocampal DBS may represent 

a novel therapeutic approach, not only for the dopamine-

dependent symptoms but also for the cognitive deficits.112 It 

should be noted that this is based on our recent preclinical 

study in rodents and that DBS treatments in humans are still 

experimental; while the hippocampus has been targeted in 

epilepsy, underlying differences in pathology suggest that 

effects in schizophrenia may be variable.

As mentioned earlier, a central hypothesis is that a 

decrease in PV expression underlies deficits in GABAergic 

signaling that contribute to the symptoms of the disease. 

Thus, restoring PV interneuron function would be expected 

to directly reverse the pathophysiology of the disorder. To 

test this hypothesis, we have used a cell-based therapy in 

an attempt to replace the deficient interneurons in the hip-

pocampus.113 GABAergic precursor cells were obtained from 

the medial ganglionic eminence (MGE) and transplanted in 

the vHipp of MAM-treated rats. The transplanted cells were 

shown to display a GABAergic phenotype and migrate away 

from the site of injection to integrate within existing circuitry. 

In addition, MAM-treated rats transplanted with vHipp MGE 

neurons demonstrated a restoration of hippocampal function 

and consequent normalization of aberrant dopamine neuron 

activity.113 Finally, the increased sensitivity to amphetamine 

was also reversed following MGE transplants.113 Thus, 

interneuron transplants were effective in treating aberrant 

neurophysiology and behavior in the MAM model of schizo-

phrenia and may provide the framework for a more permanent 

therapeutic approach for the treatment of schizophrenia.

Summary
For the last 50 years or so, the treatment of schizophrenia has 

relied on dopamine receptor antagonists that are not always 

effective and are often associated with debilitating side 

effects. For this reason, it is essential to develop novel thera-

peutic approaches. To do this, one must better understand the 

underlying pathophysiology of this disease. Here we report 

on an integrated hypothesis of schizophrenia that, while it 

may not be all encompassing, provides a potential novel site 

of intervention. Specifically, it is suggested that the aberrant 

dopamine system function, thought to underlie the positive 

symptoms of the disease, is secondary to hyperactivity within 

hippocampal subfields. Furthermore, this hyperactivity is 

likely attributable to a decrease in intrinsic GABAergic 
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signaling by PV interneurons within the hippocampus. 

Therefore, approaches aimed at restoring hippocampal 

function may provide a novel approach for the treatment 

of schizophrenia. Indeed, here we provide preclinical data 

demonstrating the effectiveness of three distinct experimental 

approaches (pharmacological, neurosurgical, and cell-based) 

in a rodent model of schizophrenia. Future experiments in 

additional rodent and primate models are warranted before 

such novel approaches are translated to the clinic.
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