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Purpose: Central serous chorioretinopathy (CSC) is a retinal disease that frequently
shows resolution and recurrence with serous detachment of the neurosensory retina.
Here, we present a deep learning analysis of subretinal fluid (SRF) lesion segmentation
in fundus photographs to evaluate CSC.

Methods:We collected 194 fundus photographs of SRF lesions from the patients with
CSC. Three graders manually annotated of the entire SRF area in the retinal images.
The dataset was randomly separated into training (90%) and validation (10%) datasets.
We used the U-Net segmentation model based on conditional generative adversarial
networks (pix2pix) to detect the SRF lesions. The algorithms were trained and validated
using Google Colaboratory. Researchers did not need prior knowledge of coding skills
or computing resources to implement this code.

Results: The validation results showed that the Jaccard index andDice coefficient scores
were 0.619 and 0.763, respectively. In most cases, the segmentation results overlapped
with most of the reference areas in the annotated images. However, cases with excep-
tional SRFs were not accurate in terms of prediction. Using Colaboratory, the proposed
segmentation task ran easily in a web-based environment without setup or personal
computing resources.

Conclusions: The results suggest that thedeep learningmodel basedonU-Net from the
pix2pix algorithm is suitable for the automatic segmentation of SRF lesions to evaluate
CSC.

Translational Relevance: Our code implementation has the potential to facilitate
ophthalmology research; in particular, deep learning–based segmentation can assist in
the development of pathological lesion detection solutions.

Introduction
Central serous chorioretinopathy (CSC) is charac-

terized by neurosensory detachment of the retina
with an accumulation of subretinal fluid (SRF) in

the posterior pole.1 Patients with CSC generally
experience decreased visual acuity, blurred central
vision, metamorphopsia, and relative central scotoma.
CSC predominantly affects middle-aged adults and
more commonly occurs in men than in women.2
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CSC is generally categorized into acute and chronic
conditions. In acute cases, spontaneous resolution is
common within several months, with a good visual
prognosis. In contrast, SRF usually does not resolve
spontaneously without therapeutic intervention in
chronic cases. There could be a significant reduction
in visual acuity with diffuse retinal pigment epithelium
changes.3 The pathogenesis of recurrent and chronic
conditions is poorly understood. Therefore, proper
interventions are recommended for chronic CSC to
improve its long-term outcomes. Patients with CSC
should be followed up for a long time to evaluate the
status of SRF and to predict the transition from acute
to chronic CSC.3

Color fundus photography is a basic modality for
diagnosing ocular diseases and has been widely used
in eye clinics and health checkup centers. However, it
could be difficult to detect CSC in fundus photographs,
especially by young ophthalmologists,4 because CSCs
appear as various features such as blurred SRF
areas and exudative yellowish deposits. Currently, the
diagnostic workup for CSC relies on posterior segment
optical coherence tomography (OCT).5 The use of
OCT enables ophthalmologists to effectively evaluate
SRF by capturing cross-sectional views and whole
three-dimensional volume of the macular-centered
retina. However, OCT imaging requires bulky equip-
ment and an experienced examiner, which is not appro-
priate in a disease screening setting. Owing to the good
performance of OCT in the diagnosis of CSC, previous
deep learning studies have focused on the OCT image
domain rather than fundus photography.6,7

A previous study using a large dataset demon-
strated that a classification model using the Incep-
tionV3 architecture was able to detect CSC accurately
from fundus photographs.4 However, previous studies
using deep learning have not shown the ability to
identify detailed pathological lesions to monitor the
conditions of SRF in the fundus photographs with
CSC.4,8 Recently, deep learning–based segmentation
tasks have improved the diagnostic and decision-
making process in various imaging domains.9 U-Net
is a well-established deep learning architecture for
the detection and segmentation tasks for biomedical
imaging domains.10 Because the single U-Net model
does not consider the detailed features of the output
images, generative adversarial network (GAN) frame-
work can improve the performance of the U-Net
model.11,12 In GAN architecture, the generator and
discriminator operate as adversaries to synthesizemore
realistic output images.13 Pix2pix is a popular GAN
technique using U-Net for image-to-image transla-
tion. U-Net, based on pix2pix and its variants, has
been successfully applied to retinal vessel segmenta-

tion,11 microscopic image segmentation,14 and virtual
staining.15

The segmentation of SRF lesions is needed to objec-
tively evaluate the severity or status of CSC using
fundus photography. In this study, we developed a
deep learning–based segmentation model that simpli-
fies the use of pix2pix for segmentation of the SRF
area in fundus photography to evaluate CSC.We used a
dataset of manually segmented fundus photographs of
pathological SRF lesions and nonpathological lesions.
After the dataset files were prepared, researchers
trained and validated the U-Net model based on
pix2pix with a few mouse clicks using Google Colabo-
ratory, which requires only aweb browser and aGoogle
account; it does not need personal graphical processing
units (GPUs). This studymay serve as a guide for lever-
aging deep learning–based segmentation of ophthal-
mology imaging domains to optimize patient care.

Methods

Image Acquisition

We developed a pix2pix deep learning model for
automatic segmentation of the SRF area in fundus
photographs to detect CSC. To perform our experi-
ment, we retrospectively reviewed the diagnostic codes
and fundus photographs of patients with CSC at the
Aerospace Medical Center. Patients with CSC who
presented to the hospital between January 1, 2010,
and December 31, 2020, were included in the study.
However, because the amount of data was small, we
also used publicly accessible web data to improvemodel
generalizability including the Retinal Fundus Multi-
Disease Image Dataset and other studies providing
fundus photographs of posterior serous retinal detach-
ment.16,17 In particular, the Retinal Fundus Multi-
Disease Image Dataset had 98 fundus photographs of
patients with CSC, which were labeled by two ophthal-
mologists. This process also aimed to further de-
identify the materials. Therefore, the image data were
collected in a variety of settings. We used only macula-
centered fundus photographs of the posterior pole
of the eyes. Fundus photographs of vitreous haziness
and other retinal diseases were excluded from this
study. Considering the workload of manual segmen-
tation and the proper number of training images
provided by previous studies using U-Net or condi-
tional GANs,11,18,19 a dataset with more than 100 cases
was considered sufficient to train the U-Net segmen-
tation model.20 Finally, the total dataset included
fundus photographs and a segmentation image dataset
from 194 eyes with CSC from medical centers and
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Figure1. Flowchart of theproposedmethod for pathological lesion segmentation to evaluateCSC. (A)Definitionof SRF lesions. (B) Annota-
tion process and examples of manual segmentation. (C) Automatic segmentation of SRF lesion by U-Net.

publicly accessible datasets. Additionally, we collected
93 fundus photographs of healthy eyes from the same
sources to build a classification model to discrimi-
nate between CSCs and normal retinas. The retrospec-
tive data collection and analysis of anonymized data
were approved by the Ethics Committee of Aerospace
Medical Center (application no. ASMC21IRB001R)
and followed the tenets of the Declaration of Helsinki.
We confirm that this study was conducted only for
noncommercial and academic purposes.

Annotation

A flowchart of the proposed method is shown
in Figure 1, including the definition of SRF lesions,
automatic segmentation of SRF lesions by U-Net, and
examples of manual segmentation. U-Net and pix2pix
must be trained using paired inputs and corresponding
target images. Manual segmentation is a tedious and
time-consuming task requiring domain-specific knowl-
edge. Initially, an ophthalmologist manually screened
the fundus photography images with CSC. We asked
three ophthalmologists including two licensed ophthal-
mologists (graders 1 and 2) and one ophthalmology
resident (grader 3) to segment the entire SRF area
in the retinal images. To decrease the workload, the
task was performed by drawing polygons through
mouse clicks with binary segmentation or free-hand
drawing via a mouse that allowed small errors. Because
there could be errors in manual segmentation, another
ophthalmologist reviewed and corrected it manually

in case the pixels were classified incorrectly. The
segmentation was mainly targeted at the edges of an
SRF area, blurred SRF area, yellowish deposits, and
surface texture changes; however, subjective judgments
were also made when boundaries were ambiguous.
The final annotated mask images were created by
post-processing to align the images. To train the
pix2pix model, the source (fundus photographs) and
corresponding target (binary mask image obtained
from ophthalmologist drawing) images were placed
side by side in a single image file to maintain the
paired relationship across the two domains after
random cropping. The codes for automated combi-
nation of two images side by side are shown in
Supplementary Table S1. According to a previous
study, labeling noise in weak annotations is induced
by human annotators unintentionally during their
movement or clicking a mouse, or by inconsisten-
cies between different graders concerning ambiguous
lesions.21 Therefore, our annotation including polygon
labeling and noisy drawing using a mouse may be
classified as a weak annotation, which may degrade
the segmentation performance usingU-Net.We sought
to overcome the problem caused by weak annotations
using a GAN. For reproducibility of this experimen-
tal code implementation, an example dataset including
fundus photography and annotated mask images for
segmenting SRF lesions for training and validation is
available online at https://data.mendeley.com/datasets/
4k64fwnp4k, which can be downloaded as zip files. To
evaluate the segmentation performance, standard refer-

https://data.mendeley.com/datasets/4k64fwnp4k
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Figure 2. Diagram of the pix2pix architecture used in this study. (A) Pix2pix consists of the U-Net generator and PatchGAN discriminator
networks. (B) The U-Net model was used for an image generator in the pix2pix architecture.

ence images were created by merging the annotations
from the three graders using majority voting.

Segmentation Algorithms

Figure 2 shows a diagram of the pix2pix architec-
ture and U-Net structure used in this study. U-Net is
the most popular fully convolutional network (FCN)
architecture for image segmentation tasks for anatom-
ical segmentation.22 It learns a segmentation ability
from the pixel distribution from the provided input
and annotation datasets. The basic structure of U-Net
consists of two convolutional neural network (CNN)
parts: an encoder, which is similar to a typical convo-
lutional network capturing low-level representations,
and a decoder, which contains up-convolutions for
high-level feature map generation. In addition, the skip
connection between the encoder and decoder ensures
that the network can preserve the detailed informa-
tion of the input images. However, U-Net is unable to
correct for low-quality manual annotations.10 Pix2pix
is a conditional GAN mapping pixels to pixels for
image translation tasks.23 In the pix2pix architecture,
U-Net serves as an image generator, and a convolu-
tional PatchGAN classifier is used for the discrim-
inator, which can perform a quality check for the

output images generated by U-Net. Several studies
have demonstrated that GAN frameworks can improve
the segmentation performance of the U-Net model in
fundus photography and dermatoscopy.11,24,25 A previ-
ous study using pelvic computed tomography images
showed that pix2pix outperformed U-Net and other
GAN techniques.12 In this manner, we performed an
experiment using U-Net based on pix2pix for patho-
logical lesion segmentation in fundus photography.

We also adopted the original U-Net without GAN
architecture and classic FCN-8s models to compare
the segmentation performance of the U-Net based
on pix2pix. FCN-8s is a popular algorithm that
uses a basic convolutional network architecture for
segmentation without skip connection.26 Previous
studies have used FCN-8s as a baseline model to
compare segmentation performance.25,27 The codes
for the original U-Net and FCN-8s are available
in a publicly accessible source (https://github.com/
divamgupta/image-segmentation-keras).

Discrimination Algorithm

In our pilot experiment during the development of
the segmentation model (Supplementary Fig. S1 and
Supplementary Table S2), we calculated the segmen-

https://github.com/divamgupta/image-segmentation-keras
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tation performance for each of the two training
scenarios; one was a dataset consisting of only CSC
cases and the other consisted of both healthy and
CSC cases. Because the segmentation performance
decreased significantly when training a mixture of
normal and CSC retinas, we decided to build a CNN
model that discriminated normal and abnormal retinas
before inputted the fundus photographs to the U-
Net, and then input the images classified as abnor-
mal to U-Net in the two-stage cascade network. Incep-
tionV3, which is the most well-known CNN archi-
tecture, was trained via standard transfer learning
using a pretrained network as the feature extractors.28
The training was performed using CSC images in the
training dataset and additional healthy retinal images.
Because our study focuses on the segmentation and use
of InceptionV3 via transfer learning, which is the most
popular method for image classification, the code for
the discriminator is not included in our Colaboratory
code file.

Software Summary

Code Implementation

In this study, we focused on the implementa-
tion of U-Net based on pix2pix around Google
Colaboratory, which provides an appropriate range
of computing resources (GPUs), memory, and disk

space for free. A previous study already showed
that Google Colaboratory can be an easy platform
to study multiple biological imaging domains using
deep learning.29 The web browser–based Jupyter
Notebooks provided by Colaboratory can interac-
tively run Python code, which is currently the most
widely used language to deploymachine learning appli-
cations. The original pix2pix code is available on
the TensorFlow webpage (https://www.tensorflow.org/
tutorials/generative/pix2pix) under the Apache License
v2.0, which allows users to use, modify, and redis-
tribute the source code, and we modified it to use our
sample dataset. Our code generated for segmenting
SRF lesions for CSC is also available online at https:
//data.mendeley.com/datasets/4k64fwnp4k. The code
file tiled “pix2pix_csc_segmentation.ipynb" provides
users with Jupyter Notebooks for Google Colabora-
tory and a dataset for training and validation. To
use this code implementation, researchers do not need
prior knowledge of coding skills, and they can run the
codes in a log-in to Google Drive and a few mouse
clicks. As summarized in Figure 3, this process could be
implemented in the following way: First, we prepared
the example dataset in Google Drive. Second, we
uploaded the code file inGoogleDrive and open the file
on the Google Drive page on the web browser. Third,
we prepared the dataset in Google Drive and match
the folder locations of the code with the address of
the actual folders. For example, in our experiment, we
saved the training dataset at “csc/segmentation/train/”

Figure 3. Process for using the Google Colaboratory to run the deep learning–based segmentation to evaluate CSC. (A) Dataset prepa-
ration. (B) Graphic user interface of the Google Colaboratory notebook. (C) Google Drive for storing and connecting the dataset. (D) Click
button for the code execution. The original pix2pix code is available on the TensorFlow webpage (https://www.tensorflow.org/tutorials/
generative/pix2pix) under the Apache License v2.0 (Copyright 2019 The TensorFlow Authors), which allows users to use, modify, and redis-
tribute the source code.

https://www.tensorflow.org/tutorials/generative/pix2pix
https://data.mendeley.com/datasets/4k64fwnp4k
https://www.tensorflow.org/tutorials/generative/pix2pix
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and the test dataset at “csc/segmentation/test/” on our
own Google Drive. Fourth, click the play button to
the left of the code cell one by one. The second code
cell links the datasets to this Colaboratory notebook
using Google Drive. The size of the input and annota-
tion images was set to a resolution of 256 × 256
pixels to use the original architecture of the pix2pix
and U-Net models. In this experiment using pix2pix,
we set lambda, a weight term for regularizing, to
100, and we set the number of training iterations
to 20,000. In this experiment, augmentation was not
performed except for right-to-left flipping and jittering
(using “random_jitter” function in the code) because it
focused on the description of our annotated data and
code implementation.

Performance Metrics

The dataset was randomly separated into training
(90%; n = 175) and validation (10%; n = 19) sets.
To improve the reliability of the segmentation results,
we fixed the data separation across the experiments
and included it in the released dataset. We compared
the predicted segmentation with standard reference
images provided in the annotation dataset. To validate
the segmentation ability, we calculated using standard
metrics, the intersection-over-union (IoU, also known
as the Jaccard index) and the Dice coefficient. The
detailed definitions of IoU and Dice coefficient are
provided, where Areference is the area of the standard
reference from annotation and Aprediction is the segmen-
tation result of the algorithm:

IoU = Jaccard Index = Are ference ∩ Aprediction

Are ference ∪ Aprediction

Dice coe f f icient = 2
∣
∣Are ference ∩ Aprediction

∣
∣

∣
∣Are ference

∣
∣ + ∣

∣Aprediction
∣
∣

Additionally, the precision, sensitivity, and speci-
ficity at the image pixel level were calculated to compare
the models. A detailed explanation of the metrics is
provided in a previous review article on deep learning–
based image segmentation.9

Experimental Results

The collected fundus photographs were prepro-
cessed to fit the segmentation task without distinguish-
ing the data source and disclosed to the aforementioned
publicly accessible web address. In the development of
U-Net based on pix2pix around the Google Colabo-
ratory, training and prediction could be performed by
clicking the play buttons to execute part of the code file.
The resources provided byColaboratory were sufficient
to train the pix2pix segmentation model. The training
times in the Colaboratory environment varied depend-
ing on the network used and assigned GPUs. When
we used the provided dataset (19 fundus photographs
for validation and 1050 augmented images [by flipping]
from 175 fundus photographs and 3 annotators for
training), the training session of pix2pix required 78
minutes using a Tesla K80 GPU.

The two-stage cascade network was designed to
input only CSC images in the segmentation model.
The discrimination performance for CSC detection is
shown in Figure 4. In the initial stage of discriminat-
ing between CSC and normal retina, the deep learning
model InceptionV3 achieved an AUC of 0.989 (95%
confidence interval [95% CI], 0.965–0.996). The deep
model using all factors gave an accuracy of 97.0%
(95% CI, 93.9%–98.8%), sensitivity of 95.5% (95%

Figure 4. Classification performance of the InceptionV3 model for CSC detection and the proposed process for SRF segmentation.
The classification performance was measured using five-fold cross-validation. The dataset for training the InceptionV3 included fundus
photographs from 194 eyes with CSC and 93 healthy eyes.
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Figure 5. Interagreement for three graders’ annotation and reference on the whole dataset. We calculated the scores of (A) IoU (Jaccard
index) and (B) Dice coefficient.

Figure 6. Performance of U-Net segmentation models to evaluate CSC in the test dataset validation. The segmentation results were
compared with standard reference (major voting of the graders). We calculated the scores of (A) IoU (Jaccard index) and (B) Dice coefficient.

CI, 91.0%–98.2%), and specificity of 100.0% (95% CI,
95.3%–100.0%).

The Dice scores of inter-agreements for the three
graders and the standard reference from majority
voting are shown in Figure 5. The annotations showed
a high correlation with each other, but they did not
match perfectly. The segmentation performance of the
U-Net models based on pix2pix is shown in Figure 6.
When the U-Net was trained using data of the three
graders at once, it showed better performance than the
models trained based on one grader. When the model
was validated in the test dataset, segmentation using the
annotation data from all graders achieved a mean IoU
of 0.619 and a mean Dice coefficient of 0.763. The IoU
values of the U-Net segmentation models from graders
1, 2, and 3 were 0.575, 0.577, and 0.587, respectively,
and there were no statistically significant differences
compared with the results of the model trained using

the data of all graders. Similarly, the dice coefficients of
the U-Net segmentation from graders 1, 2, and 3 were
0.733, 0.734, and 0.720, respectively, and there was also
no statistical significance.

We further compared the performance of the U-
Net based on pix2pix with that of the original U-Net
and FCN-8s as baseline models. Table 1 presents the
results of the pixel evaluation metrics for pathological
lesion segmentation in different settings.When segmen-
tation was performed by the U-Net based on pix2pix,
the pixel precision, sensitivity, specificity, IoU, and F1
scores were 86.2%, 70.2%, 98.8%, 0.619, and 0.763,
respectively. The original U-Net (U-Net only) achieved
a precision of 82.0%, sensitivity of 70.3%, specificity
of 97.4%, IoU of 0.581, and F1 value of 0.723. The
classic FCN (FCN-8s) achieved a precision of 82.4%,
sensitivity of 70.6%, specificity of 97.8%, IoU of 0.582,
andF1 value of 0.726. TheU-Net based on pix2pix had
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Table 1. Performance Comparison Between Different Segmentation Models in the Test Dataset Validation

Precision
(%)

Sensitivity
(%)

Specificity
(%)

IoU (Jaccard
Index)

F1 Score
(Dice

Coefficient)

P Value for
F1 Score

Comparison

U-Net based on pix2pix 86.2 70.2 98.8 0.619 0.763 Reference
Original U-Net (U-Net only) 82.0 70.3 97.4 0.581 0.723 0.044
Classic FCN (FCN-8s) 82.4 70.6 97.8 0.582 0.726 0.252

Figure 7. Examples of segmentation of pathological SRF lesions using the proposed U-Net model. We used retinal images from the ISBI
challenge 2021 and the Retinal Fundus Multi-Disease Image Dataset (RFMiD), which are publicly available.

better segmentation metrics than the original U-Net (P
= 0.044). However, there were no significant differences
compared with FCN-8s (P = 0.252).

Representative image segmentation examples of the
U-Net are shown in Figure 7. In most cases, the
segmentation results overlapped withmost of the refer-
ence areas in the annotated images.However, caseswith
exceptional SRFs, such as lesions in a wide area or oval
shape, were relatively inaccurate in prediction.

Discussion

CSC is considered an acute or chronic disease in
which the amount of SRF changes depends on the
condition and therapeutic intervention. We performed
a novel task of SRF lesion segmentation in fundus
photographs through simple code implementation of
U-Net based on the pix2pix algorithm. The dataset for
this study consisted of fundus photographs and mask
images of manually annotated SRF lesions. Our study
demonstrated that automated segmentation is effec-
tive in measuring the pathological area for objective
monitoring of CSC status. Our simple code implemen-
tation may provide significant progress toward broad-
ening the use of deep learning–based segmentation for

the ophthalmology imaging research community. The
main challenges for medical segmentation are the lack
of training data due to the low prevalence of diseases
and the high cost of annotations. In this study, using
our small dataset with weak annotation, we discov-
ered that different SRF patterns were well-segmented
in pathological fundus photographs with CSC.

The proposed segmentation model can be applied
to monitor SRF progression and assess the efficacy of
therapeutic treatments, such as oral medication, intrav-
itreal injection, or focal laser. The automated segmen-
tation algorithm accurately measured the pathological
area to determine whether it improved after treatment.
The clinical manifestations of CSC, including serous
retinal detachment and blurred central vision, may be
ignored or misdiagnosed in eye examinations without
OCT.30 Because most ophthalmic examinations are
based on fundus photographs, a newmethod for evalu-
ating CSC is needed for fundus photography. In previ-
ous studies, deep learning models for fundus photogra-
phy domain only classified pathological cases for CSC
diagnosis but did not focus on SRF lesion detection.4,8
In our experiment using a small dataset (Fig. 8), the
conventional saliency map based on Grad-CAM refers
to larger areas than the actual SRF and it is unable to
highlight the detailed features of CSC. Segmentation
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Figure 8. ComparisonofU-Net–based segmentation results and class activationmapbasedon the InceptionV3 classifiermodel. The Incep-
tionV3 model was trained via transfer learning to classify CSC and healthy classes. The classification performance of the model is shown
in Figure 4.

based on U-Net provided a more accurate pathological
area of CSC compared with the activation map from
Grad-CAM. A previous study demonstrated that the
saliency map may show the approximate location on
which the classifier model focuses, but it is unable to
highlight diagnostically relevant regions accurately.31
Therefore, our segmentation approach can be used to
assess the condition of a disease, as well as a more
useful diagnostic aid by providing detailed pathological

features in fundus photographs. However, we cannot
confirm that our segmentation algorithm outperforms
the conventional CNN classifiers due to our small
dataset.

According to the literature, previous artificial
intelligence–related studies on CSC have mainly used
CNNs for classification purposes (Table 2). In addition
to the model that simply distinguishes normal retina
from CSC,4 there was an attempt to diagnose by subdi-

Table 2. Summary of the Deep Learning–Based Techniques for CSC in Fundus Photography Imaging Domain

Study Algorithm Objective Summary

Wen, et al.
(2020)32

CNN classifier
(ShuffleNetV2)

To classify the two types of
chorioretinopathy

The deep learning model was
developed for distinguishing
normal, CSC, and central exudative
chorioretinopathy in fundus
photographs.

Komuku,
et al.
(2020)33

CNN classifier
(VGG16)

To estimate choroidal thickness from
fundus photography

Fundus photographs could be used
to estimate choroidal thickness
without OCT in eyes with CSC.

Zhen, et al.
(2020)4

CNN classifier
(InceptionV3)

To identify CSC The deep learning could detect CSC
on fundus photographs and it
showed better performance than
human experts.

Xu, et al.
(2021)8

CNN classifier
(EfficientNet)

To classify SRF into macula-on or
macula-off subretinal detachment

The cascaded deep learning model
was developed to detect SRF and
discerning the macular status in
patients with CSC based on fundus
photographs.

Our study GAN (U-Net from
pix2pix)

SRF segmentation for evaluating
CSC

The U-Net segmentation model was
developed for automatic
segmentation of SRF lesions to
evaluate CSC.
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viding the types of lesions of chorioretinopathies using
an advanced CNN model.32 Because choroidal thick-
ness is closely associated with CSC, a previous study
targeted to estimate choroidal thickness from fundus
photographs using a deep learning approach.33 To
evaluate the severity of CSC in fundus photography,
a deep learning model was developed to classify the
SRF into macula-on or macula-off subretinal detach-
ment.8 However, because previous studies were based
on classification algorithms, the quantitative evalu-
ation of retinal involvement of SRF lesions could
not be performed in the fundus photography domain.
Our proposed segmentation model may overcome
drawbacks of the previous studies that investigated
CSC using fundus photography.

The insufficiency of high-quality annotations
remains a major problem in deep learning research.
Because CSC is a relatively rare disease, there is no
publicly accessible fundus photography database only
for CSC. Although our dataset is relatively small, this
study can contribute to the development of ophthal-
mology data by adding a fundus photography dataset
with CSC annotations to the community. Recently,
there has been an increase in terms of the environment
to analyze patterns of diseases more accurately by
disclosing data and codes as open sources.34 Users
with little to no coding expertise can interactively
work through the Colaboratory pipeline by clicking
the play buttons.29 We hope that this study will help
with this trend and our sample dataset and codes can
be improved upon by other researchers. For example,
because the code contains only random cropping and
side-to-side flipping, we expect that additional data
augmentation by simply replicating input images will
improve performance.20 Additionally, by changing the
dataset files in the cloud, the U-Net framework based
on pix2pix can be applied to other ocular imaging
domains and other tasks.

This study has several limitations. First, the small
available training dataset is a major limitation that
may affect performance. A previous study described
that the performance of U-Net stabilized after training
more than 200 radiographic images and data augmen-
tation provided an additional gain in segmentation
performance.20 The exploration of further data or
augmentation techniques may be required in future
work. Second, only three ophthalmologists performed
annotations using polygons or free-hand drawing.
A more sophisticated annotation using an advanced
drawing device will improve segmentation perfor-
mance. However, weak annotation is inevitable because
it is time consuming and laborious. Recent studies have
shown that it is possible to effectively train segmen-
tation models using weak annotations with additional

machine learning techniques,21 and future work should
validate these techniques. Third, there are no OCT
data for SRF segmentation. The manual segmentation
based on fundus photography is more inaccurate than
the segmentation based on volumetric OCT, which
means that the segmentation performed by ophthal-
mologists is not accurate enough. Fourth, the clini-
cal effectiveness of the segmentation method has not
been verified. We were unable to validate the algorithm
using an external validation design because of the
lack of both image data and medical record data.
Future research should focus on the application of the
proposed technique to real patients with CSC to evalu-
ate the efficacy of therapeutic interventions.

Conclusions

Our work suggests that the deep learning model
based on U-net from the pix2pix algorithm is suitable
for the automatic segmentation of SRF lesions to
evaluate CSC. The automated segmentation algorithm
can be used to monitor CSCs or determine whether
they are improved after treatment. The proposed
method can be further improved by incorporat-
ing additional data and advanced machine-learning
methods. Segmenting different lesions in medical
imaging is critical for improving decision-making.
Therefore, we believe that our code implementation
has the potential to facilitate ophthalmology research;
in particular, deep learning–based segmentation can
assist in the development of pathological lesion detec-
tion solutions.

Acknowledgments

Disclosure: T.K. Yoo, None; B.Y, Kim, None; H.K.
Jeong, None; H.K. Kim, None; D. Yang, None; I.H.
Ryu, VISUWORKS, Inc. (E)

References

1. WangM,Munch IC, Hasler PW, Prünte C, Larsen
M. Central serous chorioretinopathy. Acta Oph-
thalmol. 2008;86(2):126–145, doi:10.1111/j.1600-
0420.2007.00889.x.

2. Tsai DC, Huang CC, Chen SJ, et al. Central
serous chorioretinopathy and risk of ischaemic
stroke: a population-based cohort study. Br J
Ophthalmol. 2012;96(12):1484–1488, doi:10.1136/
bjophthalmol-2012-301810.

http://doi.org/10.1111/j.1600-0420.2007.00889.x
http://doi.org/10.1136/bjophthalmol-2012-301810


Fundus Photography Segmentation to Evaluate CSC TVST | February 2022 | Vol. 11 | No. 2 | Article 22 | 11

3. Mohabati D, Boon CJF, Yzer S. Risk of recur-
rence and transition to chronic disease in acute
central serous chorioretinopathy. Clin Ophthalmol.
2020;14:1165–1175, doi:10.2147/OPTH.S242926.

4. Zhen Y, Chen H, Zhang X, Meng X, Zhang J, Pu
J. Assessment of central serous chorioretinopathy
depicted on color fundus photographs using deep
learning. Retina. 2020;40(8):1558–1564, doi:10.
1097/IAE.0000000000002621.

5. Han L, Carvalho JRL, de Parmann R, et al.
Central serous chorioretinopathy analyzed by
multimodal imaging. Transl Vis Sci Technol.
2021;10(1):15, doi:10.1167/tvst.10.1.15.

6. Yoon J, Han J, Park JI, et al. Optical
coherence tomography-based deep-learning
model for detecting central serous chori-
oretinopathy. Sci Rep. 2020;10(1):18852,
doi:10.1038/s41598-020-75816-w.

7. Yoo TK, Choi JY, Kim HK. Feasibility study
to improve deep learning in OCT diagnosis of
rare retinal diseases with few-shot classification.
MedBiol EngComput. 2021;59(2):401–415, doi:10.
1007/s11517-021-02321-1.

8. Xu F, Liu S, Xiang Y, et al. Deep learn-
ing for detecting subretinal fluid and discern-
ing macular status by fundus images in central
serous chorioretinopathy. Front Bioeng Biotechnol.
2021;9:651340, doi:10.3389/fbioe.2021.651340.

9. Rizwan I Haque I, Neubert J. Deep learning
approaches to biomedical image segmentation.
Informatics inMedicine Unlocked. 2020;18:100297,
doi:10.1016/j.imu.2020.100297.

10. Falk T, Mai D, Bensch R, et al. U-Net: deep learn-
ing for cell counting, detection, and morphome-
try. Nat Methods. 2019;16(1):67–70, doi:10.1038/
s41592-018-0261-2.

11. Son J, Park SJ, Jung KH. Towards accurate seg-
mentation of retinal vessels and the optic disc
in fundoscopic images with generative adversar-
ial networks. J Digit Imaging. 2018;31(6):923–928,
doi:10.1007/s10278-018-0126-3.

12. Zhang Y, Yue N, Su MY, et al. Improving
CBCT Quality to CT level using deep-learning
with generative adversarial network. Med Phys.
2021;48(6):2816–2826, doi:10.1002/mp.14624.

13. Creswell A, White T, Dumoulin V, Arulkumaran
K, Sengupta B, Bharath AA. Generative adversar-
ial networks: an overview. IEEE Signal Process-
ingMagazine. 2018;35(1):53–65, doi:10.1109/MSP.
2017.2765202.

14. Jerez D, Stuart E, Schmitt K, et al. A deep
learning approach to identifying immunogold par-
ticles in electron microscopy images. Sci Rep.
2021;11(1):7771, doi:10.1038/s41598-021-87015-2.

15. Levy JJ, Azizgolshani N, Andersen MJ, et al.
A large-scale internal validation study of
unsupervised virtual trichrome staining tech-
nologies on nonalcoholic steatohepatitis liver
biopsies. Mod Pathol. 2021;34(4):808–822,
doi:10.1038/s41379-020-00718-1.

16. Pachade S, Porwal P, Thulkar D, et al. Retinal
fundus multi-disease image dataset (RFMiD): a
dataset for multi-disease detection research. Data.
2021;6(2):14, doi:10.3390/data6020014.

17. Cen LP, Ji J, Lin JW, et al. Automatic detec-
tion of 39 fundus diseases and conditions
in retinal photographs using deep neural
networks. Nat Commun. 2021;12(1):4828,
doi:10.1038/s41467-021-25138-w.

18. Yoo TK, Choi JY, Kim HK. A generative
adversarial network approach to predict-
ing postoperative appearance after orbital
decompression surgery for thyroid eye dis-
ease. Comput Biol Med. 2020;118:103628,
doi:10.1016/j.compbiomed.2020.103628.

19. Tavakkoli A, Kamran SA, Hossain KF, Zucker-
brod SL. A novel deep learning conditional
generative adversarial network for produc-
ing angiography images from retinal fun-
dus photographs. Sci Rep. 2020;10(1):21580,
doi:10.1038/s41598-020-78696-2.

20. Nemoto T, Futakami N, Kunieda E, et al. Effects
of sample size and data augmentation on U-Net-
based automatic segmentation of various organs.
Radiol Phys Technol. 2021;14(3):318–327, doi:10.
1007/s12194-021-00630-6.

21. Tajbakhsh N, Jeyaseelan L, Li Q, Chiang JN,
Wu Z, Ding X. Embracing imperfect datasets:
a review of deep learning solutions for medical
image segmentation. Medical Image Analy-
sis. 2020;63:101693, doi:10.1016/j.media.2020.
101693.

22. Ronneberger O, Fischer P, Brox T. U-Net: con-
volutional networks for biomedical image segmen-
tation. In: Navab N, Hornegger J, Wells WM,
Frangi AF, eds. Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015.
Lecture Notes in Computer Science. New York:
Springer International Publishing; 2015;234–241,
doi:10.1007/978-3-319-24574-4_28.

23. Isola P, Zhu JY, Zhou T, Efros AA. Image-to-
image translation with conditional adversarial net-
works. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. Hon-
olulu, HI: July 21–26, 2017:1125–1134.

24. Zhao H, Qiu X, Lu W, Huang H, Jin X. High-
quality retinal vessel segmentation using genera-
tive adversarial network with a large receptive field.

http://doi.org/10.2147/OPTH.S242926
http://doi.org/10.1097/IAE.0000000000002621
http://doi.org/10.1167/tvst.10.1.15
http://doi.org/10.1038/s41598-020-75816-w
http://doi.org/10.1007/s11517-021-02321-1
http://doi.org/10.3389/fbioe.2021.651340
http://doi.org/10.1016/j.imu.2020.100297
http://doi.org/10.1038/s41592-018-0261-2
http://doi.org/10.1007/s10278-018-0126-3
http://doi.org/10.1002/mp.14624
http://doi.org/10.1109/MSP.2017.2765202
http://doi.org/10.1038/s41598-021-87015-2
http://doi.org/10.1038/s41379-020-00718-1
http://doi.org/10.3390/data6020014
http://doi.org/10.1038/s41467-021-25138-w
http://doi.org/10.1016/j.compbiomed.2020.103628
http://doi.org/10.1038/s41598-020-78696-2
http://doi.org/10.1007/s12194-021-00630-6
http://doi.org/10.1016/j.media.2020.101693
http://doi.org/10.1007/978-3-319-24574-41028


Fundus Photography Segmentation to Evaluate CSC TVST | February 2022 | Vol. 11 | No. 2 | Article 22 | 12

Int J Imaging Syst Technol. 2020;30(3):828–842,
doi:10.1002/ima.22428.

25. Lei B, Xia Z, Jiang F, et al. Skin lesion segmenta-
tion via generative adversarial networks with dual
discriminators. Med Image Anal. 2020;64:101716,
doi:10.1016/j.media.2020.101716.

26. Shelhamer E, Long J, Darrell T. Fully convolu-
tional networks for semantic segmentation. IEEE
Trans Pattern Anal Mach Intell. 2017;39(4):640–
651, doi:10.1109/TPAMI.2016.2572683.

27. Wang Z, Zhong Y, Yao M, et al. Automated
segmentation of macular edema for the diag-
nosis of ocular disease using deep learning
method. Sci Rep. 2021;11(1):13392, doi:10.1038/
s41598-021-92458-8.

28. Kermany DS, Goldbaum M, Cai W, et al.
Identifying medical diagnoses and treatable
diseases by image-based deep learning. Cell.
2018;172(5):1122–1131.e9, doi:10.1016/j.cell.2018.
02.010.

29. von Chamier L, Laine RF, Jukkala J, et al.
Democratising deep learning for microscopy with
ZeroCostDL4Mic.Nat Commun. 2021;12(1):2276,
doi:10.1038/s41467-021-22518-0.

30. Sahoo NK, Singh SR, Rajendran A, Shukla D,
Chhablani J.Masqueraders of central serous chori-

oretinopathy. Surv Ophthalmol. 2019;64(1):30–44,
doi:10.1016/j.survophthal.2018.09.001.

31. Saporta A, Gui X, Agrawal A, et al. Deep
learning saliency maps do not accurately high-
light diagnostically relevant regions for medical
image interpretation. medRxiv. Published online
March 2, 2021:2021.02.28.21252634, doi:10.1101/
2021.02.28.21252634.

32. Wen Y, Chen L, Qiao L, et al. On automatic detec-
tion of central serous chorioretinopathy and cen-
tral exudative chorioretinopathy in fundus images.
In: 2020 IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM). Seoul, South
Korea; December 16–19, 2020:1161–1165, doi:10.
1109/BIBM49941.2020.9313274.

33. Komuku Y, Ide A, Fukuyama H, et al. Choroidal
thickness estimation from colour fundus pho-
tographs by adaptive binarisation and deep learn-
ing, according to central serous chorioretinopa-
thy status. Sci Rep. 2020;10(1):5640, doi:10.1038/
s41598-020-62347-7.

34. ZarbinMA, Lee AY, Keane PA, ChiangMF. Data
science in translational vision science and tech-
nology. Transl Vis Sci Technol. 2021;10(8):20–20,
doi:10.1167/tvst.10.8.20.

http://doi.org/10.1002/ima.22428
http://doi.org/10.1016/j.media.2020.101716
http://doi.org/10.1109/TPAMI.2016.2572683
http://doi.org/10.1038/s41598-021-92458-8
http://doi.org/10.1016/j.cell.2018.02.010
http://doi.org/10.1038/s41467-021-22518-0
http://doi.org/10.1016/j.survophthal.2018.09.001
http://doi.org/10.1101/2021.02.28.21252634
http://doi.org/10.1109/BIBM49941.2020.9313274
http://doi.org/10.1038/s41598-020-62347-7
http://doi.org/10.1167/tvst.10.8.20

