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Abstract

Polycystic ovary syndrome (PCOS) is a common endocrine disorder in reproductive-aged

women that is comprised of two out of the following three features: hyperandrogenism,

oligo- or amenorrhea, or polycystic ovaries. In addition to infertility, many women with PCOS

have metabolic dysregulation that increases the risk of developing type 2 diabetes, hyper-

tension, and non-alcoholic fatty liver disease. Changes in the gut microbiome are associated

with PCOS and gut microbes may be involved in the pathology of this disorder. Since PCOS

often manifests in the early reproductive years, puberty is considered to be a critical time

period for the development of PCOS. Exposure to sex steroid hormones during develop-

ment results in permanent, organizational effects, while activational effects are transient

and require the continued presence of the hormone. Androgens exert organizational effects

during prenatal or early post-natal development, but it is unclear whether androgen excess

results in organizational or activational effects during puberty. We recently developed a

letrozole-induced PCOS mouse model that recapitulates both reproductive and metabolic

phenotypes of PCOS. In this study, we investigated whether letrozole treatment of pubertal

female mice exerts organizational or activational effects on host physiology and the gut

microbiome. Two months after letrozole removal, we observed recovery of reproductive and

metabolic parameters, as well as diversity and composition of the gut microbiome, indicating

that letrozole treatment of female mice during puberty resulted in predominantly activational

effects. These results suggest that if exposure to excess androgens during puberty leads to

the development of PCOS, reduction of androgen levels during this time may improve repro-

ductive and metabolic phenotypes in women with PCOS. These results also imply that con-

tinuous letrozole exposure is required to model PCOS in pubertal female mice since

letrozole exerts activational rather than organizational effects during puberty.
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Introduction

Polycystic ovary syndrome (PCOS) is a common endocrine disorder that affects approximately

10–15% of reproductive-aged women worldwide [1]. Diagnosis of PCOS is based on the 2003

Rotterdam Criteria that comprises at least two of the following features: hyperandrogenism,

oligo- or amenorrhea and polycystic ovaries [2]. Women with PCOS have a higher incidence

of infertility and pregnancy complications, as well as an increased risk for type 2 diabetes,

hypertension and non-alcoholic fatty liver disease [3–5]. Although the etiology of PCOS is

poorly understood, heritability and twin studies indicate that there is a strong genetic compo-

nent that is likely polygenic [6–8]. Environmental factors, including prenatal exposure to

androgens, may also play a role [9]. PCOS often manifests in the early reproductive years, sug-

gesting that puberty may be a critical time for the onset of PCOS [9, 10].

Numerous animal models have been used to study PCOS [11–16] including rodent models

based on the fact that many characteristic features of PCOS correlate with excess androgen lev-

els [17]. Hyperandrogenism in these models is induced using treatment with testosterone,

dihydrotestosterone (DHT; a non-aromatizable androgen) or letrozole (an aromatase inhibi-

tor). Sex steroids were originally shown to result in both organizational and activational effects

on behavior [18]. Organizational effects are considered to be permanent and often occur early

in development although they can also occur later on in life. Activation effects, on the other

hand, are transient and depend upon the continued presence of steroid hormone. While pre-

natal and early post-natal exposure of female rodents to androgens has been shown to result in

organizational effects on the reproductive axis that are evident in adulthood [19, 20], it is not

clear whether hyperandrogenism initiated during puberty results in organizational or activa-

tional effects.

Since DHT models do not recapitulate both reproductive and metabolic phenotypes of

PCOS [21–25], we developed a pubertal mouse model of PCOS that uses letrozole, a nonsteroi-

dal aromatase inhibitor, to limit the conversion of testosterone to estrogen, leading to

increased testosterone and decreased estrogen levels. Letrozole treatment resulted in many

reproductive hallmarks of PCOS including hyperandrogenism, acyclicity, polycystic ovaries,

and elevated luteinizing hormone (LH) levels [26]. This model also exhibited metabolic dysre-

gulation including weight gain, abdominal adiposity, increased fasting blood glucose (FBG)

and insulin levels, and insulin resistance [27]. In addition, we demonstrated that changes in

the gut microbiome were associated with letrozole treatment [28]. Furthermore, our studies

showed that letrozole treatment did not alter food intake or energy expenditure, even though

locomotion was decreased [27], suggesting that other mechanisms contribute to the metabolic

dysregulation in this model.

Since puberty may be an important time period in the development of PCOS and it is cur-

rently unknown whether androgen excess induces activational effects during puberty, it is

important to determine whether hyperandrogenic rodent models such as the letrozole model

result in organizational or activational effects during puberty. To address this question, we

investigated whether reproductive, metabolic and gut microbiome phenotypes induced by

letrozole treatment of pubertal female mice persisted after letrozole removal or if they were

transient. Removal of the letrozole pellet resulted in substantial recovery of reproductive and

metabolic parameters as well as the composition of the gut microbiome, indicating that letro-

zole had predominantly activational effects during puberty. These results suggest that letrozole

treatment needs to be maintained to model the effects of hyperandrogenism during puberty

and adulthood. In addition, this study suggests that if exposure to excess androgens during

puberty causes PCOS, reproductive and metabolic dysregulation may be improved if girls with

PCOS receive treatment to decrease their androgen levels.
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Materials and methods

PCOS mouse model

Twenty-three day old C57BL/6N female mice were purchased from Envigo. Mice were housed

in a vivarium with a 12h:12h light/dark cycle (light period: 06.00–18.00). Mice were given ad

libitum access to water and food (Teklad Global 18% Protein Extruded Diet, Envigo). All of

the experiments were approved by the University of California San Diego Institutional Animal

Care and Use Committee (Protocol S14011). At four weeks of age, 22 mice (with an average

weight of 13.5 g) were subcutaneously implanted with either a placebo or continuous release

letrozole pellet (3 mg, 50 μg/day, Innovative Research of America) (n = 10 placebo; n = 12

letrozole). Letrozole was purchased from Fitzgerald. After 5 weeks of treatment, the placebo

and letrozole pellets were surgically removed. Mice were then monitored for an additional 8

weeks which resulted in a total of 13 weeks in the study design. Mice were weighted weekly

throughout the experiment.

Estrous cycle assessment

The estrous cycle of the mice was assessed during weeks 4–5 and 10–11 of the study. Estrous

cycle stage was determined by light microscopy analysis of vaginal epithelial cells for seven days

as previously described [29]. Proestrus consisted predominantly of nucleated epithelial cells;

estrus of cornified epithelial cells; metestrus of cornified and nucleated epithelial cells and poly-

morphonuclear leukocytes; diestrus of predominantly polymorphonuclear leukocytes.

Insulin tolerance test (ITT)

Mice were fasted for 5 hours with access to water. Tail vein blood was collected to measure

fasting insulin levels. Blood glucose was measured using a handheld glucometer (One Touch

Ultra2, LifeScan, Inc.). Fasting glucose levels were measured prior to time point 0. At time

point 0, a single intraperitoneal injection of insulin (0.75 U/kg in sterile saline; Humulin R U-

100) was administered. Glucose was measured subsequently at 15, 30, 45, 60, 90, and 120 min-

utes post administration of insulin.

Fecal sample collection

Fecal samples were collected from mice prior to pellet implantation and each week afterwards

until they were sacrificed. Fecal samples were stored at -80˚C.

Tissue collection and histology

At the end of the experiment, mice were euthanized with 2.5% isoflurane delivered with a pre-

cision vaporizer followed by a physical method. Terminal blood was collected through the

inferior vena cava. Ovaries and parametrial fat pads were dissected and weighed. Ovaries were

fixed overnight in 4% paraformaldehyde at 4˚C and stored in ethanol. Fixed ovaries were seri-

ally sectioned at 10 μm and then stained with hematoxylin and eosin. The total number of

non-overlapping corpora lutea and cystic follicles were counted from four sections from the

middle of each ovary.

Hormone assays

Hormone levels were assessed from weeks 4–5 and 10–13 of the study. Total testosterone was

measured with 35 μL serum using a mouse ELISA (reportable range 10–1600 ng/dL) and LH

was measured with 60 μL serum using a radioimmunoassay (reportable range 0.016–4.0 ng/
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mL) by the University of Virginia Center for Research in Reproduction Ligand Assay and

Analysis Core. Insulin was measured with 10 μL serum using a mouse ELISA (ALPO) by the

University of California, Davis Mouse Metabolic Phenotyping Center.

Next generation sequencing and bioinformatics analysis of 16S rRNA genes

DNA was extracted from fecal samples using the DNeasy PowerSoil Kit (Qiagen). 16s ribo-

somal RNA genes were amplified by PCR using 16S primers (515F and 806R) that target the

V4 hypervariable region [30]. The reverse primers also contained unique 12 base pair Golay

barcodes that were incorporated into the PCR amplicons [31]. The resulting amplicons were

submitted to The Scripps Research Institute NGS core facility where they were used to prepare

libraries that were sequenced on an Illumina MiSeq as previously described [28]. Sequences

were analyzed using the open source software pipeline Quantitative Insights Into Microbial

Ecology (QIIME version 1.9.1) [32]. The 16S rRNA sequence data was demultiplexed and then

quality filtered using default QIIME parameters with the split_libraries.py script. This resulted

in an average of 20,890 sequences per sample. The 16S rRNA sequences generated in this

study were deposited into the European Nucleotide Archive (Study Accession Number

PRJEB31499). Sequences were clustered using a denovo operational taxonomic unit (OTU)

picking approach (pick_de_novo_otus.py) with usearch. Sequences were assigned to OTUs

with an assumed 97% threshold of pairwise identity for bacterial species by comparison with

the Greengenes reference database using the RDP classifier. OTUs present in less than 25% of

the samples were discarded from the dataset to minimize the effect of spurious, low abundance

sequences using the filter_otus_from_otu_table.py script resulting in 1451 OTUs. Faith’s Phy-

logenetic Diversity (Faith’s PD) [33], which measures the biodiversity of an ecosystem by cal-

culating the total branch lengths on a phylogenetic tree of all members of the ecosystem, was

calculated using the alpha_diversity.py script. The R package phyloseq (1.26.0) was used to

compute weighted UniFrac distances [34, 35]. DESeq2 [36] (version 1.14.1) in the microbio-

meSeq package was used to identify bacterial genera that were differentially abundant between

placebo and letrozole-treated mice.

Statistical analysis

Data is expressed as the mean ± standard error of the mean (SEM) for each group. Data residu-

als were checked for normality and data underwent Box Cox transformation if residuals were

not normal. If transformation did not result in normality, a non-parametric test was used.

Group differences were analyzed by Student t-test, Welch t-test or Wilcoxon rank-sum test.

Insulin tolerance was analyzed with a repeated measures (RM) ANOVA. Faith’s PD was ana-

lyzed with a simple linear regression model (LM) and a RM-ANOVA. Weighted UniFrac was

analyzed through an Analysis of Similarities test (ANOSIM). Statistical calculations were per-

formed with the R statistical package (version 3.5.1). Statistical significance was defined as

p< 0.05. Data is available at https://doi.org/10.6084/m9.figshare.9502403.v1.

Results

Letrozole removal resulted in testosterone and LH levels similar to placebo

mice

As illustrated in Fig 1A, female mice were implanted with placebo or letrozole pellets at 4

weeks of age (week 0), the pellets were removed at 9 weeks of age (week 5) and the study con-

cluded 2 months later (week 13). Removal of the placebo pellet controlled for the effect of sur-

gical removal of the pellet. Since testosterone levels could not be measured prior to pellet
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removal due to the amount of serum needed for the assay, we measured LH levels as a proxy

for testosterone. Similar to previously published studies [26], 5 weeks of letrozole treatment

resulted in elevated LH levels compared to placebo treatment (Fig 1B). Serum LH and total tes-

tosterone levels were measured at the end of the experiment (8 weeks after removal of letrozole

or placebo pellets). There was no difference in LH and testosterone levels of placebo- and letro-

zole-treated mice after pellet removal (Fig 1C).

Letrozole removal resulted in resumption of estrous cycling and ovulation

Similar to previous studies [26, 28], letrozole treatment of female mice resulted in acyclicity

with an arrest in diestrus (Fig 2A). Further analysis of the estrous cycle revealed that letrozole-

treated mice resumed cycling after removal of the letrozole pellet and that placebo- and letro-

zole-treated mice spent a similar amount of time in all four estrous cycle stages after pellet

removal (Fig 2A and 2B). As previously reported [26, 28], 5 weeks of letrozole treatment

resulted in ovaries that lacked corpora lutea (Fig 3B) and contained, on average, 6±2 cystic fol-

licles. After pellet removal, the ovaries of letrozole-treated mice had a similar number of cor-

pora lutea compared to placebo mice and did not contain any cystic follicles (Fig 3B). These
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results indicate that restoration of estrous cycling and ovulation occurred 7–8 weeks after

removal of the letrozole pellet.

Letrozole removal resulted in weight gain and abdominal adiposity similar

to placebo mice

In previous findings, letrozole treatment of female mice resulted in weight gain and abdominal

adiposity compared to placebo mice [26, 28]. In this cohort, 5 weeks of letrozole treatment also
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resulted in increased body weight (Fig 4A). When body weight and parametrial fat were mea-

sured at the end of the experiment, placebo and letrozole-treated mice had similar body

weights and amounts of parametrial fat relative to body weight post-pellet removal (Fig 4A

and 4B).
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Letrozole removal resulted in a minimal metabolic phenotype

Previous studies showed that letrozole treatment of female mice resulted in increased FBG and insu-

lin levels and insulin resistance [27]. Prior to pellet removal, FBG and insulin levels also increased in

this cohort of letrozole-treated mice compared to placebo mice (Fig 5). Eight weeks after pellet

removal, FBG levels were similar in placebo- and letrozole-treated mice (Fig 5A). In addition, fasting

blood insulin levels were less elevated in letrozole-treated mice after pellet removal than before pellet

removal (1.4 fold vs. 2.2 fold) (Fig 5B). Importantly, insulin sensitivity was restored in letrozole-

treated mice compared to placebo mice 8 weeks after removal of the letrozole pellet (Fig 5C).

Letrozole removal resulted in alpha diversity of the gut microbiome similar

to placebo mice

Since changes in the gut microbiome were reported to correlate with PCOS in both women

and in rodent models [28, 37–39], we investigated whether letrozole treatment resulted in
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organizational or activational effects on the composition of the gut microbiome. The species

richness (alpha diversity) of the gut microbiome in placebo and letrozole-treated female mice

was analyzed using Faith’s PD estimate before (weeks 1–5) and after (weeks 9–13) pellet

removal (Fig 6A). Similar to a previous report [28], placebo mice showed a significant positive

correlation with alpha diversity during the first 5 weeks of the study that corresponded with

puberty. In contrast, letrozole treatment of pubertal female mice did not result in a significant

change in alpha diversity over time (RM-ANOVA: p = 0.059) (Fig 6A). After pellet removal,

placebo mice did not demonstrate a positive correlation with alpha diversity over time and

letrozole mice demonstrated similar alpha diversity to placebo-treated mice (Fig 6A).

Letrozole removal resulted in beta diversity of the gut microbiome similar

to placebo mice

In addition to examining alpha diversity, UniFrac analyses were used to compare the similarity

of gut microbial communities (beta diversity) of placebo and letrozole-treated mice (Fig 6B).

Weighted UniFrac takes into account the abundance of bacterial OTUs in each fecal sample.

The weighted UniFrac results were visualized using Principal Coordinates Analysis (PCoA)

that displays a multi-dimensional matrix in low dimensional space (2D plot). Similar to our

previous study [28], letrozole treatment (weeks 1–5) resulted in significant differences in the

overall bacterial community composition compared to placebo mice (ANOSIM: p = 0.001).

After pellet removal, UniFrac analysis showed that there was no significant different in the gut

bacterial community composition between placebo and letrozole mice (ANOSIM: p = 0.0719).

Letrozole removal resulted in fewer differential gut bacterial abundances

between placebo and letrozole mice

In addition to analyzing the effect on overall bacterial diversity, we used DESeq2 to assess the

number of bacterial taxa that were differentially abundant in mice treated with placebo versus

letrozole. Ten bacterial genera or family (if genera unknown) were identified as having differ-

ential relative abundances in letrozole-treated mice compared to placebo-treated mice during

weeks 1–5 of treatment (Fig 7A). Similar to previous studies [28, 40, 41], the relative abun-

dance of Lactobacillus, Dorea, Lachnospiraceae spp., Ruminococcus, Roseburia, Sutterella, Bifi-
dobacterium, Parabacteroides, and Blautia were altered in letrozole-treated mice compared to

placebo mice. Interestingly, the number of bacterial genera that had a differential relative

abundance in letrozole compared to placebo-treated mice decreased from 10 to 4 genera two

months after pellet removal (Fig 7B).

Discussion

Our study clearly showed that letrozole treatment of pubertal female mice resulted in activa-

tional effects on the reproductive axis. As demonstrated in previous studies [26, 28], 5 weeks of

letrozole treatment resulted in hallmarks of PCOS including elevated testosterone and LH lev-

els, acyclicity, anovulation (indicated by a lack of corpora lutea in the ovaries), and the appear-

ance of cystic ovarian follicles. Discontinuation of letrozole treatment resulted in recovery of

testosterone and LH levels after 2 months as well as a resumption of estrous cycling and ovula-

tion (indicated by the appearance of corpora lutea and a lack of cystic follicles). These results

are in agreement with a previous study showing that letrozole-treated female mice were infer-

tile compared to placebo mice but that the reproductive deficit was reversible [26]. In the pre-

vious study, placebo- and letrozole-treated females were paired with a male mouse 4 months

after the expiration of the letrozole pellet. All control and letrozole-treated mice gave birth to a
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litter, with no difference in time to birth (latency) or litter size [26]. Given the transient effects

of letrozole on reproduction, these results support the idea that hyperandrogenism does not

result in permanent, organizational effects on the female reproductive axis during puberty.

The pubertal letrozole model stands in contrast to organizational effects of androgens during

the prenatal period which resulted in permanent changes in the brain including alterations in

GnRH neurons and anxiety-like behavior [19, 20, 42].

In addition to studying the activational versus organizational effects of letrozole on repro-

duction, we also investigated letrozole effects on metabolism. As previously demonstrated [27,

28], letrozole treatment of pubertal female mice resulted in many features of metabolic dysre-

gulation observed in women with PCOS including weight gain, increased FBG and insulin lev-

els, and insulin resistance. Interestingly, letrozole removal resulted in marked improvement in

all of the metabolic parameters examined. Two months after removal of the letrozole pellet,

placebo and letrozole-treated mice had statistically similar body weights, abdominal adiposity,

FBG levels, and insulin tolerance. In addition, fasting insulin levels were reduced in letrozole-

treated mice compared to placebo mice after removal of the letrozole pellet versus prior to pel-

let removal (1.4 vs. 2.4 fold). These results indicated that letrozole treatment of pubertal female

mice resulted in predominantly activational effects on metabolism. However, the slight eleva-

tion in insulin levels 2 months after removal of the letrozole pellet suggested that metabolism

did not completely recover during this time frame. Given studies demonstrating that long-

term exposure to androgens may result in permanent effects on metabolism [43], it would be

interesting to further investigate how quickly metabolism normalizes after discontinuation of

letrozole or androgen treatment and whether long-term androgen exposure can result in orga-

nizational effects on metabolism during adulthood.

Since studies have shown that obesity-induced alterations to the gut microbiome persist

even when metabolic parameters revert back to normal upon dieting [44], we investigated

whether letrozole treatment of pubertal female mice resulted in organizational or activational

effects on the gut microbial community. Similar to our previous study [28], our results showed

that letrozole treatment was associated with changes in the gut microbiome including a

decrease in bacterial species richness (alpha diversity) and a change in the overall bacterial

community composition (beta diversity). Moreover, we demonstrated that the relative abun-

dance of specific bacterial genera including Odoribacter, Lactobacillus, Dorea, Lachnospiraceae

spp., Ruminococcus, Roseburia, Sutterella, Bifidobacterium, Parabacteroides, and Blautia were

altered with letrozole treatment. These changes in the gut microbiome of the letrozole-induced

PCOS mouse model were consistent with changes identified in the gut microbiome of women

with PCOS compared to healthy controls [37–39, 45]. Similar to host metabolism, removal of

the letrozole pellet resulted in substantial recovery of the gut microbiome with regards to bio-

diversity, community composition and relative abundance of specific bacterial genera, indicat-

ing that letrozole exerted predominantly activational effects on the gut microbiome. Since

letrozole treatment during puberty exerted activational effects on the gut microbiome, and

these changes appear to be tightly linked with changes in reproduction and metabolism, our

Fig 6. Letrozole removal resulted in gut microbial diversity similar to placebo mice. Alpha diversity of the gut microbiome

according to Faith’s phylogenetic diversity (Faith’s PD) estimate was graphed over time for placebo and letrozole-treated female mice

before (Pre; weeks 0–5) and after (Post; weeks 9–13) pellet removal (n = 10 placebo, n = 12 letrozole) (A). Results of simple linear

regression model (LM) and Repeated Measures (RM) ANOVA are in the box inset, while the gray shaded area indicates the 95%

confidence interval for the line of best fit. Beta diversity was estimated using weighted UniFrac distances and a Principal Coordinates

Analysis (PCoA) was used to demonstrate changes in the gut bacterial community in placebo and letrozole-treated mice before (Pre;

weeks 1–5) and after (Post; weeks 9–13) pellet removal (B). Centroid of placebo samples (black solid circle) and centroid of letrozole

samples (red solid circle) are indicated on the graph. The proportion of variance explained by each principal coordinate axis (PC) is

shown with the corresponding axis. Analysis of Similarity (ANOSIM) test is shown in the box inset.

https://doi.org/10.1371/journal.pone.0223274.g006
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results suggest that therapeutic approaches targeting the gut microbiome may be worth devel-

oping to treat PCOS. It should be noted that the 16S rRNA gene sequencing employed in this

study provided information about the taxonomic composition of the gut microbiome but not

about functional changes. Given that a longer duration of androgen exposure may result in

permanent effects on metabolism [43], it would be informative to employ metagenomic,
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Fig 7. Letrozole removal resulted in fewer differentially abundant bacterial genera in placebo versus letrozole

mice. DESeq2 differential abundance results were expressed as log2 fold change to compare placebo- and letrozole-

treated female mice before (A) and after pellet removal (B). Positive log2 fold change represents bacterial genera

increased in letrozole relative to placebo mice. Negative log2 fold change represents bacterial genera increased in

placebo relative to letrozole mice. p< 0.05.

https://doi.org/10.1371/journal.pone.0223274.g007
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transcriptomic or metabolomics analyses to understand whether exposure to excess androgens

for a short or long duration can result in organizational or activational effects on gut microbial

function.

In summary, our study demonstrated that letrozole treatment of pubertal female mice

resulted in mostly activational effects on reproduction, metabolism and gut microbiome.

Although organizational effects of steroids during puberty have been reported in rodents [46],

our results indicate that exposure to excess androgens during puberty as a result of treatment

with the aromatase inhibitor, letrozole did not result in substantial organizational effects on

the female reproductive axis, metabolism or gut bacterial diversity and composition. Given

that puberty may be a critical time period in the development of PCOS, this study supports the

idea that reducing hyperandrogenism during puberty may be an important therapeutic tool to

improve reproductive and metabolic dysfunction in girls predisposed to develop PCOS. More-

over, although testosterone, DHT and letrozole are commonly employed to induce PCOS-like

characteristics in pubertal or adult female rodents, it is not well understood whether androgen

excess during these time periods results in organizational or activational effects. Indeed, sev-

eral recent studies have assumed that letrozole treatment of pubertal female rodents causes

organizational effects [47–50]. Given that our study demonstrated that letrozole treatment

exerted mostly activational effects during puberty, this finding implies that letrozole treatment

needs to be present for the entire duration of the study to effectively model PCOS. Additional

studies should be performed with other hyperandrogenic rodent models to determine whether

excess androgen exposure during puberty or adulthood result in organizational or activational

effects on host physiology or the gut microbiome.
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