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INTRODUCTION 
 

Bone volume inadequacy is a crucial problem among 

aged patients requiring dental implants. Mesenchymal 

stem cells (MSCs) possess multi-potentiality and self-

renewal properties, which have been extensively  

 

applied in the treatment of different degenerative 

conditions, including bone defects [1]. Human bone 

marrow mesenchymal stem cells (HBMSCs) are the 

best characterized multipotent adult stem cells; 

HBMSCs possess self-renewal capacity, low anti-

inflammatory properties, and less risk of malignant 
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ABSTRACT 
 

Bone volume inadequacy is an emerging clinical problem impairing the feasibility and longevity of dental 
implants. Human bone marrow mesenchymal stem cells (HBMSCs) have been widely used in bone remodeling 
and regeneration. This study examined the effect of long noncoding RNAs (lncRNAs)-H19 on the human 
amnion-derived mesenchymal stem cells (HAMSCs)-droved osteogenesis in HBMSCs. HAMSCs and HBMSCs 
were isolated from abandoned amniotic membrane samples and bone marrow. The coculture system was 
conducted using transwells, and H19 level was measured by quantitative real-time reverse transcription-
polymerase chain reaction (RT-PCR). The mechanism was further verified. We here discovered that 
osteogenesis of HBMSCs was induced by HAMSCs, while H19 level in HAMSCs was increased during coculturing. 
H19 had no significant effect on the proliferative behaviors of HBMSCs, while its overexpression of H19 in 
HAMSCs led to the upregulated osteogenesis of HBMSCs in vivo and in vitro; whereas its knockdown reversed 
these effects. Mechanistically, H19 promoted miR-675 expression and contributed to the competitively 
bounding of miR-675 and Adenomatous polyposis coli (APC), thus significantly activating the Wnt/β-catenin 
pathway. The results suggested that HAMSCs promote osteogenic differentiation of HBMSCs via H19/miR-
675/APC pathway, and supply a potential target for the therapeutic treatment of bone-destructive diseases. 
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transformation during in vitro amplification [2]. 

However, HBMSCs also have various disadvantages, 

such as high traumatic response, limited availability 

and reduced stemness during ageing [3]. Some 

pathological status also has direct detrimental effects 

on HBMSCs, which remarkably influence the cell 

retention and survival at the target region. Studies have 

suggested that human amnion-derived mesenchymal 

stem cells (HAMSCs) may be characterized by MSCs 

features, but also show embryonic stem cells-like 

phenotypic characteristics [4]. Besides, the process of 

isolation of HAMSCs from the abandoned amniotic 

membrane is considered very safe, noninvasive, and 

ethical [5]. Our previous research has shown that 

HBMSCs may be differentiated to osteoblast lineage 

when co-culturing with HAMSCs [6]. Therefore, 

HAMSCs could be regarded as an alternative method 

for bone regeneration. 

 

Long non-coding RNAs (lncRNAs) are a class of non-

coding RNAs with about 200-300 long nucleotides, 

which activate the transcription and post-transcription 

levels [7]. lncRNAs are involved in many biological 

and pathological processes, including cellular prog-

ression, differentiation, carcinogenesis, and chronic 

diseases [8]. Osteogenesis-related lncRNAs exert their 

biological functions by activating multiple molecules, 

while they also have a unique role in the osteogenic 

differentiation of various types of cells [9]. For 

example, studies have reported that lncRNA H19 has an 

important role in activating osteogenic differentiation as 

a highly conserved noncoding transcript with a shallow 

mutation rate during evolution [10, 11]. In this study, 

we investigated the roles of H19 in HAMSCs-droved 

osteogenic differentiation. 

 

MicroRNAs (miRNAs) are a class of small non-coding 

RNAs about 18–24 nucleotides long that activate gene 

expression at a posttranscriptional level by binding to 

the (3’ UTR) of the target mRNAs, and subsequently 

causing mRNA repression or activation [12]. Several 

miRNAs have been proved to be involved in the process 

of osteogenesis [13, 14]. Previous studies have shown 

that LncRNA could serve as a primary miRNA 

precursor or competing endogenous RNA, thus 

acquiring functionality and influencing target gene 

expression [15, 16]. H19 is a primary miRNA precursor 

for microRNA-675 (miR-675) and the H19/miR-675 

axis has been found in multiple biological processes, 

such as diabetic cardiomyopathy and tumorigenesis [17, 

18]. Despite the previous achievement, the role of the 

H19/miR-675 axis in the HAMSCs-droved osteogenic 

differentiation remains unknown. In this paper, we 

explored whether H19 promotes the HAMSCs-droved 

osteogenic differentiation while miR-675 increased. 

Moreover, miR-675 performed its inhibitory effect on 

Adenomatous polyposis coli (APC), an inhibitor of β-

catenin [19], thus inducing β-catenin translocate to the 

nucleus and activating Wnt/β-catenin signaling. This 

study provides references for the lncRNA-miRNA-

mRNA analysis and proposes a therapeutic target for 

the treatment of bone deficiency. 

 

RESULTS 
 

LncRNA-H19 expression in HAMSCs increases with 

the HAMSCs-droved osteogenesis 

 

Expression level of H19 was detected and the stably 

expressing cells (HAMSCsNC, HAMSCsH19, 

HAMSCsshNC and HAMSCsshH19) were sorted for 

subsequent experiments (Supplementary Figure 1A and 

1B). Previous studies have indicated that HAMSCs 

stimulates osteogenic differentiation of HBMSCs [20]. 

In order to verify these findings, we built a transwell co-

culture model of HAMSCs/HBMSCs and examined the 
 

 
 

Figure 1. Osteogenic differentiation of HBMSCs cocultured with HAMSCs, lncRNA-H19 expression in HAMSCs and effects 
of lncRNA-H19 in HAMSCs on the proliferation of HBMSCs. (A) Relative mRNA expressions of ALP, RUNX2 and OCN in HBMSCs 
cocultured with HAMSCs were measured by RT-PCR analysis. (B) LncRNA-H19 expression in HAMSCs during coculturing was measured 
by RT-PCR analysis. (C) HBMSCs proliferation was demonstrated by flow cytometry. Data are shown as mean ± SD. *P < 0.05 and  
**P < 0.01. 
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expression of early- and late-stage osteogenic markers. 

Compared with the HBMSCs group, 1, 3 and 7 days of 

HAMSCs coculturing gradually upregulated the mRNA 

expressions of ALP, RUNX2 (early-stage osteogenic 

markers) and OCN (late-stage marker) in HBMSCs 

(Figure 1A). Likewise, RNA samples derived from 

HAMSCs expressed significantly increased levels of 

H19 in a time-dependent manner along with the 

osteogenic differentiation of HBMSCs (Figure 1B). 

 

LncRNA-H19 expression in HAMSCs has no effects 

on HBMSCs proliferation 

 

To examine the effects of lncRNA-H19 in HAMSCs on 

HBMSCs proliferation, lentivirus containing H19 was 

transfected in HAMSCs. Flow cytometry analysis 

revealed distinct differences in S-phase checkpoints 

between HBMSCs group and HAMSCs/HBMSCs 

group. On the other hand, no significant difference was 

found in the proliferative index among HAMSCs/ 

HBMSCs, NC, H19, shNC and shH19 group (Figure 

1C), which further suggests that lncRNA-H19 in 

HAMSCs does not increase HBMSCs proliferation in 

HAMSCs/HBMSCs coculture system. 

 

LncRNA-H19 in HAMSCs promotes osteogenesis of 

HBMSCs 

 

HAMSCs transfected with lentivirus were coclutured 

with HBMSCs and induced in osteoblast differentiation 

medium. Stably transfected cells were assigned into NC: 

HAMSCsNC/HBMSCs, H19:HAMSCsH19/HBMSCs, 

shNC: HAMSCsshNC/HBMSCs and shH19: 

HAMSCsshH19/HBMSCs. The effect of H19 in HAMSCs 

on the osteogenic differentiation of HBMSCs was further 

examined. Western blot assay showed that the protein 

levels of ALP, RUNX2, OCN and OSX were markedly 

higher in H19 group compared with those in HBMSCs 

and NC groups, whereas the H19 knockdown reversed 

the positive effects of HAMSCs (Figure 2A). As shown 

by RT-PCR, the mRNA levels of ALP, RUNX2, OCN, 

and OSX were increased by H19 overexpression, 

 

 
 

Figure 2. LncRNA-H19 in HAMSCs promotes osteogenic differentiation of HBMSCs. (A) Protein levels of ALP, RUNX2, OCN, and OSX 
were assessed by western blot assay in HBMSCs, NC, H19, shNC and shH19 groups. (B) Relative mRNA expressions of ALP, RUNX2, OCN and 
OSX were measured by RT-PCR analysis in HBMSCs, NC, H19, shNC and shH19 groups. (C) ALP staining and activity in HBMSCs, NC, H19, shNC, 
and shH19 groups. Scale bar, 100 μm. (D) Alizarin red staining and quantification in HBMSCs, NC, H19, shNC, and shH19 groups. Scale bar, 
1cm. Data are shown as mean ± SD. *P < 0.05 and **P < 0.01. 
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whereas H19 knockdown obtained the opposite effects in 

shH19 group (Figure 2B). The ALP staining and activity 

were enhanced in the H19 group and decreased by H19 

knockdown (Figure 2C). Besides, Alizarin red staining 

and quantification showed upregulated matrix 

mineralization in the H19 group compared with those in 

HBMSCs and NC groups, whereas H19 knockdown 

showed the opposite effects (Figure 2D). These results 

indicated that H19 in HAMSCs promotes osteogenesis of 

HBMSCs. 

Next, we examined the effect of H19 on in vivo bone 

formation in a rat critical-sized mandibular defect model 

(4 rats in each group) for 8-week growth (Figure 3A). The 

results were expressed as a percentage of mineralized 

volume fraction (bone volume/total volume, BV/TV). 

H19-overexpressing increased BV/TV compared with the 

NC group, while a significant decreased BV/TV was 

detected in the shH19 group compared with shNC group 

(Figure 3B). Histological examination by H&E and 

Masson staining was consistent with the results of 

 

 
 

Figure 3. LncRNA-H19 in HAMSCs promotes osteogenesis in vivo. (A) NC, H19, shNC and shH19 groups were transplanted 
subcutaneously into a rat critical-sized mandibular defect model for 8 weeks. (B) Reconstructed 3D micro-CT images of the tissue-engineered 
bone and percentages of BV/TV. (C) H&E staining, Masson staining and immunohistochemical staining of RUNX2 in NC, H19, shNC and shH19 
groups. b: bone-like tissues, h: HA/TCP scaffold, f: fibrous. Scale bar, 200 μm. Data are shown as mean ± SD. **P < 0.01. 
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BV/TV. More organized bone matrix was formed in the 

H19 group compared to the NC group, whereas there was 

a significant amount of fibrous tissue in the shH19 group 

compared with shNC group. Furthermore, the abundance 

of RUNX2 was upregulated in the H19 group compared 

to NC group and downregulated in the shH19 group 

compared to shNC group, which was confirmed by 

immunohistochemistry (Figure 3C). 

 

MiR-675 serves as a downstream of LncRNA-H19 in 

HAMSCs-droved osteogenesis 
 

To investigate how H19 promotes the HAMSCs-droved 

osteogenesis, miR-675, whose primary precursor is 

H19, was determined. The transfection efficacy of miR-

675 was detected by RT-PCR (Figure 4A). Along with 

H19 level, 1, 3 and 7 days of coculturing upregulated 

the expression of miR-675 in HAMSCs in a time-

dependent manner (Figure 4B). Meanwhile, the 

expression of miR-675 was increased by H19 

overexpression, whereas the H19 knockdown showed 

the opposite effects in the shH19 group (Figure 4C). 

After that, miR-675 mimics and inhibitor were used to 

transiently transfect HAMSCs. Stably transfected cells 

were assigned into NC: HAMSCs miR-675 NC/HBMSCs, 

mimics: HAMSCs miR-675 mimics/HBMSCs, iNC: 

HAMSCs miR-675 iNC/HBMSCs and inhibitor: HAMSCs 
miR-675 inhibitor/HBMSCs. Western blot assay showed that 

several osteogenic marker proteins were markedly 

higher in mimics group compared with those in NC 

groups, whereas the miR-675 knockdown obtained 

opposite effects (Figure 4D–4F). In addition, mRNA 

levels of several osteogenic marker genes were 

increased by miR-675 overexpression and decreased 
 

 
 

Figure 4. MiR-675 in HAMSCs is activated by lncRNA-H19 and promotes osteogenic differentiation of HBMSCs. (A) Transfection 
efficacy of miR-675 was detected by RT-PCR. (B) MiR-675 expression in HAMSCs during coculturing was measured by RT-PCR. (C) MiR-675 
expression was measured by RT-PCR in NC, H19, shNC, and shH19 groups. (D–F) Protein levels of ALP, RUNX2, OCN and OSX were assessed by 
western blot assay in NC, mimics, iNC and inhibitor groups. (G, H) Relative mRNA expressions of ALP, RUNX2, OCN, and OSX were measured 
by RT-PCR analysis in NC, mimics, iNC and inhibitor groups. (I) ALP staining and activity in NC, mimics, iNC and inhibitor groups. Scale bar, 100 
μm. (J) Alizarin red staining and quantification in NC, mimics, iNC and inhibitor groups. Scale bar, 1 cm. Data are shown as mean ± SD. *P < 
0.05 and **P < 0.01. 
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when miR-675 knockdown (Figure 4G and 4H). 

Furthermore, ALP staining and activity were enhanced 

in the mimics group and decreased in the inhibitor 

group (Figure 4I). Moreover, Alizarin red staining and 

quantification also confirmed that overexpression of 

miR-675 led to increased calcified nodules, while miR-

675 knockdown alleviated the effects in the committed 

differentiation of HAMSCs/HBMSCs (Figure 4J). 

Collectively, the above findings indicated that miR-675 

in HAMSCs serves as a downstream of LncRNA-H19 

and promotes osteogenesis of HBMSCs. 

 

MiR-675 targets APC and downregulates APC 

expression in HAMSCs 
 

To further explore the mechanisms of miR-675 in 

HAMSCs promoting osteogenesis of HBMSCs, the 

candidate target gene was searched by Target Scan 

software. APC was predicted as the potential target of 

miR-675 (Figure 5A). APC is a negative regulator in the 

activation of Wnt/β-catenin pathway, which is closely 

related to the osteogenesis of MSCs [21, 22]. Western 

blot results proved that APC was significantly 

decreased by miR-675 mimics and increased by miR-

675 inhibitor. RT-PCR also revealed that miR-675 

suppressed mRNA levels of APC in HAMSCs (Figure 

5B and 5C). Luciferase activity of APC wild-type 

reporter was successfully reduced by miR-675 mimics, 

and mutation of the putative miR-675 target sites 

rescued the previous suppressive effect (Figure 5D). 

These findings confirmed the binding condition 

between miR-675 and APC, thus suggesting that APC is 

a direct target of miR-675. 

 

APC overexpression inhibited Wnt/β-catenin 

pathway in HAMSCs and alleviated HAMSCs-

droved osteogenesis in HBMSCs 
 

The influence of APC in HAMSCs was further 

examined. Western blot assay determined proteins 

related to the Wnt/β-catenin pathway, including β-

catenin, Cyclin D1 and c-Myc, were remarkably 

downregulated by APC overexpression in HAMSCs 

(Figure 6A and 6B). Interestingly, the mRNA level of 

β-catenin showed no difference between the NC group 

and the APC group (Figure 6C). These results suggested 

that APC overexpression promoted β-catenin protein 

degradation, while the mRNA level of β-catenin was 

 

 
 

Figure 5. MiR-675 downregulates APC expression in HAMSCs. (A) The potential binding sites between APC and miR-675 predicted by 
biological software. (B) Protein level of APC was assessed by western blot assay in NC, mimics, iNC and inhibitor groups. (C) Relative mRNA 
expression of APC was measured by RT-PCR analysis in NC, mimics, iNC and inhibitor groups. (D) Luciferase reporter assay was used to 
validate the target in 293T cells. Relative Renilla luciferase activity was normalized to that of firefly luciferase. Data are shown as mean ± SD. 
**P < 0.01. 
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not influenced. Moreover, immunofluorescence staining 

showed that APC overexpression induced a reduction in 

nuclear β-catenin accumulation and strongly decreased 

the nuclear β-catenin protein level (Figure 6D). The 

above findings indicated that APC overexpression 

inhibited Wnt/β-catenin pathway in HAMSCs. 

 

To further explore whether the pro-osteogenic effect of 

HAMSCs was inhibited by APC, we assessed the 

committed differentiation of HBMSCs cocultured with 

HAMSCs. Western blot assay showed that several 

osteogenic marker proteins in HBMSCs were markedly 

higher in the NC group compared with those in APC 

groups. In addition, mRNA levels of several osteogenic 

marker genes in HBMSCs were decreased by APC 

overexpression in HAMSCs (Figure 6E–6G). In a word, 

APC overexpression in HAMSCs could reverse 

HAMSCs-droved osteogenesis. 

 

MiR-675 mimic can rescue the APC overexpression 

and osteogenesis deficiency caused by shH19 in 

HAMSCs 

 

To further determine the roles of miR-675 and APC 

involved in H19-mediated osteogenesis, the rescue assays 

were carried out. RT-PCR suggested that co-transfection 

with miR-675 mimicked and shH19 rectified APC 

overexpression compared to the shH19 group (Figure 7A). 

As shown in Figure 7B–7E, shH19-mediated osteogenesis 

suppression could also be rescued in co-transfected cells. 

Moreover, RT-PCR and Alizarin red staining suggested 

that MiR-675 mimic could rescue the APC overexpression 

mediated inhibitory effects (Figure 8A, 8B). Taken 

together, lncRNA-H19 increases the miR-675 level, 

targets APC transcription, and activates the Wnt/β-catenin 

pathway to promote the HAMSCs-droved osteogenic 

differentiation (Figure 9). 

 

DISCUSSION 
 

As a significant type of MSCs, HAMSCs derived from 

amniotic membrane have fewer ethical concerns [23]. 

Our recent studies have confirmed that HAMSCs are 

capable of driving osteogenesis of HBMSCs under 

physiological and pathological conditions [6, 24, 25]. 

LncRNAs, whose transcripts are over 200 nucleotides in 

length, are known to be involved in the multilineage 

differentiation of MSCs at the transcriptional and post-

transcriptional levels [26–29]. LncRNA-H19 abundant-

ly conserves non-coding transcripts, expresses very low 

mutation rate during fetal life, and participates in 

multiple biological processes [11, 30]. Hence, we 

examined the relationship between H19 and HAMSCs-

droved osteogenesis. 

 

 
 

Figure 6. APC inhibits Wnt/β-catenin pathway and HAMSCs-droved osteogenesis. (A, B) Protein levels of β-catenin, Cyclin D1 and 
c-Myc were assessed by western blot assay in NC and APC groups. (C) Relative mRNA expression of β-catenin was measured by RT-PCR 
analysis in NC and APC groups. (D) Immunofluorescence staining showed the β-catenin location in NC and APC groups. Scale bar, 20 μm. (E, F) 
Protein levels of ALP, RUNX2, OCN and OSX were assessed by western blot assay in NC and APC groups. (G) Relative mRNA expressions of 
ALP, RUNX2, OCN, and OSX were measured by RT-PCR analysis in NC and APC groups. Data are shown as mean ± SD. **P < 0.01. 
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We demonstrated that levels of H19 in HAMSCs 

increased along with the osteogenic differentiation in 

HBMSCs cocultured with HAMSCs. The regulatory 

proliferation of H19 has been widely reported, albeit 

with some inconsistencies in the observed results [31, 

32]. In this study, the proliferative rate of HBMSCs was 

enhanced by HAMSCs, while we did not observe the 

influence of H19 in HAMSCs on HBMSCs pro-

liferation. These results suggest that the underlying 

mechanism through which H19 activates cell 

proliferation is complicated. 

 

Next, we identified the influence of H19 in HAMSCs 

on HBMSCs osteogenic differentiation by rescue 

experiments in vitro. ALP represents an early marker of 

osteogenic differentiation in the initial stage of 

calcification [33]. RUNX2 has a primary function in 

bone tissue enrichment, where deficiency directly 

suppresses osteogenic specificity [34]. OSX, as the 

downstream of RUNX2, is closely related to morpho-

genesis and has great importance in bone regeneration 

[35]. OCN is primarily generated in the late stage of 

osteoblast differentiation, and therefore its expression 

could specifically display bone formation [34]. We 

found that the above osteogenic markers (ALP, 

RUNX2, OCN, and OSX) was upregulated by H19 

overexpression and downregulated by H19 knockdown. 

Besides, the promotion of osteoblast differentiation was 

detected in the H19 group, whereas the shH19 group 

showed the opposite effects. Moreover, in vivo study 

also demonstrated that H19-overexpressing HAMSCs 

induced bone formation and osteoblastic activity. 
 

H19 is a paternally imprinted gene that does not encode 

a protein, but rather a 2.3-kb H19 ncRNA [36]. 

Moreover, H19 performs a valuable biological function 

with a very low mutation rate in exons [10]. For 

instance, H19 has been identified as a key promotor 

associated with bone formation [37, 38]. In addition, it 

has been reported that H19 post-translationally pro-

motes different biological processes by increasing the 

expression of miR-675 as its precursor [17, 39, 40]. 

MiR-675 is partially responsible for the pro-osteogenic 

activity of H19 and enhances bone development in 

MSCs [11]. We found that the expression of miR-675 in 

HAMSCs increased in a time-dependent manner along 

with the H19 level. Thus, the critical roles of miR-675 

in the underlying pro-oncogenic mechanism were 

further explored. Initially, we demonstrated that miR-

675 expression was positively increased by H19. 

Secondly, our results verified that during coculturing, 

miR-675 in HAMSCs positively promoted HBMSCs 

osteogenesis. In addition, the promotion of osteoblast 

differentiation was observed in miR-675 mimics group, 

whereas miR-675 inhibitor group showed the opposite 

effects. 

 

 
 

Figure 7. MiR-675 mimic could rescue the shH19 mediated inhibitory effects. (A) Relative mRNA expression of APC was measured 
by RT-PCR analysis. (B, C) Protein levels of ALP, RUNX2, OCN, OSX, and APC were assessed by western blot assay. (D) Relative mRNA 
expressions of ALP, RUNX2, OCN, and OSX were measured by RT-PCR analysis. (E) Alizarin red staining analysis. Scale bar, 1 cm. Data are 
shown as mean ± SD. *P < 0.05 and **P < 0.01. 
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H19/miR-675 was proved to promote osteogenic 

differentiation by targeting several transforming growth 

factors in the TGF-βsignaling pathway [41]. 

Interestingly, other pathways play critical roles in 

cellular differentiation were not deeply investigated. 

Wnt/β-catenin pathway could be activated by a series of 

external stimuli, exerting a vital role in cellular 

behaviors [42, 43]. The nuclear localization of β-catenin 

intuitively reflects the activation level of Wnt/β-catenin 

pathway [44]. Notably, negative regulators such as 

GSK3β and APC target β-catenin as a protein complex, 

and directly inhibit β-catenin transferring into nuclear 

[45]. To explore the underlying mechanism of H19/ 

miR-675 axis, bioinformatics analysis, and luciferase 

activity assay were carried out. The obtained results 

revealed that miR-675 can directly bind to APC. Hence, 

we hypothesized that lncRNA-H19 increased miR-675, 

contributed to the competed sponging of miR-675 and 

APC, then decreased APC and released β-catenin into 

nuclear. To validate our hypothesis, we first performed 

western blot and RT-PCR, which revealed that APC 

was significantly decreased by miR-675 mimics and 

increased by miR-675 inhibitor. Second, we identified 

the relationship between the Wnt/β-catenin pathway and 

APC. As expected, a significant reduction in nuclear β-

catenin accumulation was detected by APC over-

expression. Moreover, we also confirmed that APC 

overexpression in HAMSCs could reverse HAMSCs-

droved osteogenesis in HBMSCs. The rescue assays 

showed that co-transfection with miR-675 mimic and 

shH19 rectified APC overexpression and rescued 

shH19-mediated osteogenesis suppression. Together, 

these results indicated that lncRNA-H19 epigenetically 

inhibited SPAG9 transcription via miR-675 generation. 

 

 
 

Figure 8. MiR-675 mimic could rescue the APC overexpression mediated inhibitory effects. (A) Relative mRNA expressions of 
ALP, RUNX2, OCN, and OSX were measured by RT-PCR analysis. (B) Alizarin red staining analysis. Scale bar, 1 cm. Data are shown as mean ± 
SD. **P < 0.01. 

 

 
 

Figure 9. The schematic diagram for lncRNA-H19/miR-675/APC/Wnt/β-catenin axis in this study. 
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The interaction between HAMSCs and HBMSCs might 

through multiple mechanisms, including growth factors, 

cytokines and exosomes. MSCs commonly secret 

numerous soluble growth factors and cytokines 

associated with angiogenesis, osteogenesis, chemotaxis 

and inflammation during incubation [46, 47]. Those 

growth factors and cytokines might be responsible for 

the signaling pathway transferring between two cells. 

One the other hand, exosomes secreted by mammalian 

cells are also potential medium. Exosomes are 

membrane-bound phospholipid vesicles (40–150 nm in 

diameter) of endocytic origin [48]. These vesicles may 

contain proteins, mRNAs, non-coding RNAs and other 

specific cargo [49, 50]. Upon secretion into the 

extracellular environment, exosomes have been 

demonstrated to carry their cargo to target cells, 

protecting the cargo from degradation during 

transportation [51]. Therefore, the H19/miR-675/APC 

axis in HAMSCs might be carried by exosomes and 

transferred to HBMSCs, which then promotes 

osteogenic differentiation. The detailed feedback loops 

in HBMSCs cocultured with HAMSCs need to be 

investigated in further study. 

 

In conclusion, H19/miR-675 downregulates APC 

transcription, which then degrades protein complex, 

directly drives β-catenin transferring into nuclear and 

activates the Wnt/β-catenin pathway. We elucidated the 

trans-regulatory function of “lncRNA-H19/miR-

675/APC/ Wnt/β-catenin axis” in promoting HAMSCs-

droved osteogenesis both in vitro and in vivo. Based on 

these results, we might attach HAMSCsH19 into scaffold 

biomaterials, such as gel or nanofiber, and implant them 

in the bone defects around dental implants to enhance 

osteogenesis of existing HBMSCs. Our findings 

highlight the application of lncRNA-H19 and HAMSCs 

in the field of bone regenerative medicine and propose a 

paramount therapeutic target for bone deficiency. 

 

MATERIALS AND METHODS 
 

Cell culture 

 

The Ethics and Research Committee of Nanjing 

Medical University approved the study protocols 

(Permit Number: 2018-190). Informed consent was 

obtained from all the participants. HAMSCs were 

collected from discarded amniotic membrane samples 

using the pancreatin/collagenase digestion method as 

previously described [52]. Mandible samples were 

collected from eight patients aged 20-30 years 

undergoing Sagittal Split Ramus Osteotomy (SSRO) at 

the Department of Oral and Maxillofacial Surgery, 

Affiliated Hospital of Stomatology, Nanjing Medical 

University. HBMSCs were collected from these 

samples following a previously described approach 

[53]. Isolated cells were maintained in Dulbecco’s 

Modified Eagle Medium (DMEM) (HyClone 

Laboratories Inc., Logan, UT, USA) supplemented with 

15% fetal bovine serum (FBS), 100 U/L penicillin and 

100 mg/L streptomycin (Gibco; Thermo Fisher 

Scientific, Inc., Waltham, MA, USA) in a humidified 

atmosphere containing 5%CO2/95% air at 37ºC. Culture 

medium was replaced every other day; 3-6 passages 

cells were harvested for the subsequent experiments. 

 

Co-culture system 
 

HBMSCs and HAMSCs were seeded at an initial cell 

density of 5 × 104 cells/cm2 in 6-well culture plates 

(Millipore®, Bedford, MA, USA) and in transwells (6-

Well Millicell Hanging Cell Culture Inserts, 0.4 μm, 

PET, Millipore®, Bedford, MA, USA), respectively. 

After the cells were attached, transwells containing 

HAMSCs were moved into the corresponding wells 

containing HBMSCs to create the HAMSCs/HBMSCs 

coculture system. 

 

Lentivirus infection 
 

Recombinant lentiviruses containing full-length H19 

(Gene Bank accession number, NR_002196.1) and 

scramble control (NC) were obtained from Integrated 

Biotech Solutions Company (Shanghai, China) and 

were named Lenti-H19 and Lenti-NC. Recombinant 

lentiviruses targeting H19 and scramble control named 

Lenti-shH19 and Lenti-shNC, respectively, were 

obtained from GenePharma Company (Shanghai, 

China). All lentivirus vectors contained the green 

fluorescent reporter gene (GFP). The viruses were used 

to infect HAMSCs and establish stably expressing 

transfectants. HAMSCs were exposed to viral 

supernatant containing 1 mL DMEM supplemented 

with 10% FBS and 8 μg /mL polybrene (POL) for 10 h. 

 

Transfection of miRNA mimics/ inhibitors 

 

MiRNA plasmids were obtained from Ribobio 

Company (Guangzhou, China). Transfection of 

HAMSCs with the miRNA duplexes was carried out 

with transfection reagent riboFECTTM CP (Ribobio, 

Guangzhou, China). The mutated binding sites of miR-

675 in luciferase reporter vectors containing APC were 

constructed by site-directed mutagenesis. Transient 

transfection was conducted using Lipofectamine 2000® 

(Invitrogen; Thermo Fisher Scientific, Inc.) according to 

the manufacturer's protocol. 

 

Proliferation assay 
 

The proliferation level of HBMSCs was performed 

using a FACScan flow cytometer (BD Biosciences, 
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Franklin Lakes, NJ, USA) as previously described [54]. 

Cell cycle fractions (G0, G1, S, and G2 M phases) were 

processed and analyzed using MODFIT LT 3.2 (Verity 

Software House, Topsham, ME, USA). 

 

Alkaline phosphatase (ALP) staining and activity 

assay 
 

Osteogenic differentiation was induced using 

osteogenic media containing 100 nM dexamethasone, 

10 mM β-glycerophosphate and 100 nM ascorbic acid 

(all Sigma Chemical Co., St. Louis, MO, USA) for 7 

days. ALP staining was detected using NBT/BCIP 

staining kit (CoWin Biotech, Beijing, China) as 

previously described [55]. ALP activity was measured 

using an ALP assay kit (Jiancheng Corp, Nanjing, 

China) based on the absorbance at 405 nm [56]. The 

total protein content of each sample was determined 

with a BCA kit (Beyotime, China). The enzyme activity 

was expressed as micromoles of reaction product per 

minute per total protein. 

 

Alizarin red staining and quantification 
 

Osteogenic differentiation was induced for 14 days. 

Mineralized matrix formation was determined by 40 

mM/L alizarin red (pH = 4.2, Sigma Chemical Co., St. 

Louis, MO, USA) at room temperature for 20 min. 

Alizarin red quantification was performed based on the 

absorbance at 570 nm. The final calcium concentration 

was normalized to the total protein content. 

 

RNA Isolation and quantitative real-time reverse 

transcription polymerase chain reaction (RT-PCR) 
 

Cellular RNA was isolated using TRIzol reagent 

(Invitrogen, New York, NY, USA) according to the 

manufacturer's protocol, and then reversely transcribed 

into cDNA using the Reverse Transcription Kit (Applied 

Biosystems, Foster City, CA). RT-PCR was conducted 

with SYBR Green Master (Roche, Indianapolis, IN, 

USA) and ABI Prism 7500 real-time PCR System 

(Applied Biosystems). The following thermal settings 

were performed: 95°C for 10 minutes followed by 40 

cycles of 95°C for 15 seconds and 60°C for 1 minute. 

Primers used in this study are listed in Table 1. Human 

U6 RNA was applied as an internal control for miRNA, 

and human GAPDH was used as a control for 

normalizing expressions of lncRNA and mRNAs. The 

data were calculated using the 2−ΔΔCt method. 

 

Western blot 
 

Western blot analysis was performed as previously 

described [57]. The primary antibodies were as follows: 

RUNX2 (D1L7F) Rabbit mAb #12556(1:1000), APC 

Antibody #2504(1:1000), β-Catenin (D10A8) XP® 

Rabbit mAb #8480(1:1000), Cyclin D1 (92G2) Rabbit 

mAb #2978(1:1000), c-Myc (E5Q6W) Rabbit mAb 

#18583(1:1000), β-actin (8H10D10) Mouse mAb 

#3700(1:1000) (All from Cell Signaling Technology, 

Danvers, MA, USA), anti-ALP (ab83259) (1:1000), 

anti-osteocalcin (OCN) (ab133612) (1:1000), anti- 

Osterix (OSX) (ab209484) (1:1000) (All from Abcam, 

Cambridge, MA, USA). β-actin served as an internal 

control. Western blot analysis was quantified using 

ImageJ software (http://rsb.info.nih.gov/ij/) and the 

signal of each target band was normalized to that of the 

β-actin band. 

 

Immunofluorescence staining 

 

Transfected HAMSCs grown on 10 mm2 glass 

coverslips were fixed with 4% paraformaldehyde for 30 

minutes at room temperature, permeabilized with 0.1% 

Triton X-100 for 12 minutes, and then blocked with 3% 

bovine serum albumin (BSA; Sigma-Aldrich) for 45 

min at 37 °C. Thereafter, primary antibody [β-Catenin 

(D10A8) XP® Rabbit mAb #8480(1:100), Cell 

Signaling Technology, Danvers, MA, USA] were 

incubated and conducted at 4 °C overnight, followed by 

specified secondary antibody labeling for 30 min at 37 °C 

in dark. Nuclei were counterstained with DAPI. Images 

were observed with the inverted fluorescence 

microscope (Olympus, Japan). 

 

Dual luciferase reporter assay 

 

Luciferase assays were performed as previously 

described [58]. Briefly, the HEK293T cells cultured in a 

24-well plate were transfected with luciferase plasmids 

and miR-675 mimic or negative control using 

Lipofectamine 2000. Luciferase activities were 

measured 48 hours after transfection using Dual 

Luciferase Reporter Assay System (Promega). 

 

In vivo critical-sized mandibular defect model 

 

A total of 16 female nude rats (RNU, Charles River, 

Wilmington, MA), with an average weight of 280g, 

were obtained from Nanjing Medical University. All the 

animals were housed in an environment with a 

temperature of 22 ± 1 ºC, a relative humidity of 50 ± 

1% and a light/dark cycle of 12/12 hr. All animal 

studies (including the mice euthanasia procedure) were 

done in compliance with the regulations and guidelines 

of Nanjing Medical University institutional animal care 

and conducted according to the AAALAC and the 

IACUC guidelines. Under general anesthesia, a critical-

size mandible defect (5x5 mm) was made using a 5mm 

stainless steel tissue punch. Approximately 10 × 104 

cells (5x104 HAMSCs or HAMSCs shH19 and 5x104 

http://rsb.info.nih.gov/ij/
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Table 1. Primers used for quantitative real-time reverse transcription polymerase chain reaction. 

Genes Sense primer(5’-3’) Anti- sense primer(5’-3’) 

ALP AGAACCCAAAGGCTTCTTC CTTGGCTTTTCCTTCATGGT 

RUNX2 TCTTAGAACAAATTCTGCCCTTT TGCTTTGGTCTTGAAATCACA 

OCN AGCAAAGGTGCAGCCTTTGT GCGCCTGGGTCTCTTCACT 

OSX CCTCCTCAGCTCACCTTCTC GTTGGGAGCCCAAATAGAAA 

H19 CTTTCATGTTGTGGGTTCTGG CGGGTCTGTTTCTTTACTTCC 
APC AAAGTGAGCAGCTACCACG CCTGGAGTGATCTGTTAGTCG 
β-Catenin AGCTGACAACTTTCACACC AATGGGGATGTTGATCTTC 

 

HBMSCs) were attached to each HA/TCP biomaterial 

(Φ5×H2mm, Sichuan University, Chengdu, Sichuan, 

China). After 12 hours, the complexes were subcutaneously 

implanted into the mandibular defect area. Animals were 

then randomly allocated into cages; 3–4 animals were 

housed per cage in standard cages at 25°C. In addition, 

animals had free access to rodent chow and water. 

 

3D micro-computerized tomography (micro-CT) 

scanning 
 

Eight weeks after implantation, animals were sacrificed 

and mandibles were harvested for micro-CT analysis. 

The high-resolution micro-CT machine (Scanco USA, 

Inc., Southeastern, PA), Dolphin 3D software (Dolphin 

Imaging & Management Solutions, Chatsworth, CA) 

and CTAn (Skyscan, Kontich, Belgium) were used. For 

examining the bone structure, the bone volume ratio 

(BV/ TV, %) was calculated. 

 

Histological observation 
 

After micro-CT analysis, samples were harvested for 

histologic staining as previously described [59]. The bone 

matrix was analyzed by hematoxylin and eosin (H&E) 

and Masson trichrome. For immunohistochemistry, 

decalcified sections were blocked with goat serum, 

incubated with primary antibodies against RUNX2 (1:300 

dilution) at 4°C overnight, and immunohistochemical 

staining was captured under the microscope. 

 

Statistical analysis 

 

Representative data are presented as the mean and standard 

deviation (SD) of at least three independent samples. P 

values < 0.05 were considered as statistically significant 

using one-way analysis of variance (ANOVA). 

 

Abbreviations 
 

lncRNA: long noncoding RNA; HAMSCs: human 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Establishment of stably expressing transfectants. (A, B) Fluorescent photomicrographs and RT-PCR 
showed lentivirus transduction and relative H19 expression in NC, H19, shNC, and shH19 groups. Scale bar, 100 μm. Data are shown as mean 
± SD.**P < 0.01. 

 


