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Abstract

In many data classification problems, a number of methods will give similar accuracy. How-

ever, when working with people who are not experts in data science such as doctors, law-

yers, and judges among others, finding interpretable algorithms can be a critical success

factor. Practitioners have a deep understanding of the individual input variables but far less

insight into how they interact with each other. For example, there may be ranges of an input

variable for which the observed outcome is significantly more or less likely. This paper

describes an algorithm for automatic detection of such thresholds, called the Univariate

Flagging Algorithm (UFA). The algorithm searches for a separation that optimizes the differ-

ence between separated areas while obtaining a high level of support. We evaluate its per-

formance using six sample datasets and demonstrate that thresholds identified by the

algorithm align well with published results and known physiological boundaries. We also

introduce two classification approaches that use UFA and show that the performance

attained on unseen test data is comparable to or better than traditional classifiers when con-

fidence intervals are considered. We identify conditions under which UFA performs well,

including applications with large amounts of missing or noisy data, applications with a large

number of inputs relative to observations, and applications where incidence of the target is

low. We argue that ease of explanation of the results, robustness to missing data and noise,

and detection of low incidence adverse outcomes are desirable features for clinical applica-

tions that can be achieved with relatively simple classifier, like UFA.

Introduction

Classifiers can be evaluated by multiple parameters, including accuracy, robustness, sensitivity

to missing data, or ease of interpretability. Good predictive accuracy is often by far the most

important evaluation metric. However, many practitioners are hesitant to use machine learn-

ing classifiers as they struggle to explain the results and understand a classifiers ‘reasoning’

behind a solution. In the analysis of clinical data, this hesitation is particularly pronounced–
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doctors need to be able to interpret the prognosis and analyze which of the variables and their

combination led to a prediction.

Donoho and Jin [1] have demonstrated that the use of very simple univariate discriminant

analysis, making no use of covariance matrices, led to a similar performance on a standard

series of datasets [2] compared to much more sophisticated popular machine learning meth-

ods (including Boosted decision trees, Random Forests, SVM, KNN, PAM and DLDA). The

authors argue that whenever useful, such methods provide better explanatory power and visi-

bility of contributing factors than more complex methods. Similarly, authors of the Mas-o-

Menos algorithm [3] compared their simplified approach to more sophisticated algorithms for

treatment predictions of bladder, breast, and ovarian cancers, and came to the conclusion that

model interpretation and validation were more important than complexity.

A number of recent studies focused on building predictive models that are highly accurate,

and yet also highly Interpretable. One of the proposed solutions includes decision sets of inde-

pendent if-then rules, which can be applied independently [4]. Such a univariate approach

allows easy interpretation of the results, and has been demonstrated to achieve high accuracy.

Many nonlinear classifiers, such as Decision Trees [5] or Support Vector Machines (SVM)

[6], are designed to find “optimal” cutpoints, typically defined as cutpoints that minimize

some measure of node impurity. Such measures include misclassification rate, Gini index, or

entropy/information gain [5, 6]. Supervised clustering works similarly, minimizing impurity

while adding a penalty for the total number of clusters [7]. Alternatively, Williams, et al (2006)

put forth a minimum p-value approach for finding optimal cutpoints for binary classification

[8]. Their algorithm uses a chi-squared test to find the cutpoint that maximizes the difference

in outcomes between both sides.

These approaches are similar in that they consider the entire input space, both false posi-

tives and false negatives, to select the optimal cutpoint. In certain applications, however, one

may care more about a subspace of increased incidence of a target. Under certain conditions,

it might be important to identify separation thresholds that are associated with a high preva-

lence of the target, while the overall solution is not optimized. Examples include medical con-

ditions where values outside clinically defined thresholds are associated with high mortality,

while more normal values may not provide much information. In clinical decision making,

doctors identify ranges of laboratory tests values that may identify patients’ higher risk of

developing or having a disease [8, 9]. In earth science, amount of rainfall thresholds can be

used to develop early warning systems for landslides or flooding [10, 11].

For example, in individuals with sepsis, low body temperature is associated with illness

severity and death [12]. Fig 1 displays average body temperature for 512 septic patients, with

an overall death rate of 30.9%. Patients who died are denoted in red, while patients who sur-

vived are denoted in blue. International guidelines for sepsis management define low body

temperature as 36˚ C [13]. For patients below this threshold the death rate stands at 57.1%,

nearly twice the overall death rate, while little can be said about patients above the threshold

(Fig 1).

We propose an algorithm for identifying such thresholds in an automated fashion. In the

decision tree or SVM framework, cost functions penalizing for false positives or negatives will

shift the “optimal” cutoff to optimize the cost or other criterion. [5, 6]. In practice, however, it

is often difficult to quantify the costs associated with different types of errors, in particular in

the medical domain.

Friedman & Fisher’s (1999) Patient Rule Induction Method (PRIM) procedure finds rect-

angular subregions of the feature space that are associated with a high (or low) likelihood of

the outcome. The subregions are then slowly made smaller, each time increasing (or decreas-

ing) the rate of the outcome [14]. With this method and others like it, there is an inherent

UFA, interpretable approach to modeling
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tradeoff between the number of data points within the subregion (the support) and the propor-

tion of the data points that are associated with the outcome (purity), where smaller supports

generally have higher purity. With PRIM, the user is responsible for defining the “optimal”

subregion, by specifying the preferred trade off for the application. While this may work well

in some situations, identifying the appropriate tradeoff is challenging, suggesting the need for

an algorithm that requires less user input.

We decided to consider each explanatory variable separately as in Donoho and Jin [1]. In

line with expectations of interpretability for methods to be adopted and used by emergency

room medical professionals, we aimed to avoid using correlation between variables and to try

to find methods more related to how doctors evaluate individual explanatory variables, and

only then treat them as a group. Since doctors tended to notice the very high and/or very low

values of each explanatory variable, we developed methods to relate very high and/or low

values to the chances of surviving or dying. The result is the flagging algorithm, called the

Univariate Flagging Algorithm (UFA), which directly relates the higher or lower values of an

explanatory variable to chances of survival or death and is easily understood.

UFA optimizes over subregions of the input space but performs the tradeoff between sup-

port and purity in a well-defined way. We show that UFA can identify the existence of

Fig 1. Body temperature for adult sepsis patients.

https://doi.org/10.1371/journal.pone.0223161.g001
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thresholds for individual variables. We demonstrate that these thresholds can be used to clas-

sify previously unseen test cases with performance equal to or better than many commonly

used classification techniques when confidence intervals are considered. The surprising accu-

racy in predictive power of such an approach is also boosted by a good tolerance to noise and

missing data. With each variable treated independently, there is no need to compute complex

interaction parameters that are sensitive to missing data. In clinical data analyses, data imputa-

tions are not desirable and this feature of the proposed algorithm becomes attractive.

Methods

UFA is designed to identify an optimal cutpoint for a single explanatory variable that is associ-

ated with a significantly higher or lower likelihood of the target. UFA identifies up to two such

thresholds, one below the median and one above the median. The algorithm is intended for a

binary or continuous target y (e.g. [0, 1]) and a continuous explanatory variable. At its most

basic level, UFA finds the value x = xopt that maximizes the difference in the outcome rate for

observations that fall outside xopt and a baseline rate, while maintaining a good level of support.

Formal specification

The following variables are necessary for the formal specification of the UFA algorithm

(Table 1). For the purpose of formulation, we consider candidate thresholds below the median

value of x.

For each x̂i, we conduct the following hypothesis test to check for a significant difference in

the outcome rate below the threshold and the outcome rate in the interquartile range:

H0 : pi� � piqr ¼ 0

Ha : pi� � piqr 6¼ 0
ð1Þ

We are using a binomial proportion test [15] with test statistic Zi:

Zi ¼
pi� � piqr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pwai� � ð1 � pwai� Þ �
1

niqr
þ 1

ni�

� �r ð2Þ

where pwai� is the weighted average of the outcome rates, calculated:

pwai� ¼
ðpiqr � niqr þ pi� � ni� Þ

niqr þ ni�
ð3Þ

Table 1. List of variables for specification of UFA algorithm. For the purpose of formulation, we consider candidate

thresholds below the median value of x.

Variable Definition

y 2 {0, 1} Binary target

x 2 [xmin, xmax] Continuous explanatory variable

xiqr 2 [xP25, xP75] Values of x in the interquartile range, defined as 25th to 75th percentile

niqr Number of observations in xiqr
piqr Percent of niqr with y = 1

x̂ i Candidate threshold below median of x
ni− Number of observations below candidate threshold

pi− Percent of ni− with y = 1

https://doi.org/10.1371/journal.pone.0223161.t001
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We define x̂opt as the candidate threshold x̂i with the maximum Zi in absolute value:

x̂opt ¼ max
x̂ i
½absðZiÞ� ð4Þ

Zi provides an inherent trade-off between providing a chosen support level and maximizing

(or equivalently, minimizing) the outcome rate. The proposed measure does not minimize the

overall misclassification rate; instead it is designed to identify areas enriched with the target

outcome cases. The same applies to finding areas with a specifically low rate of the target.

Procedure to find optimal threshold for variable x.

1. Generate a list of potential thresholds x̂i� between the median value of x and the minimum

value of x, excluding those with low support.

• For the purpose of this paper, we excluded the five lowest values of x, assuming that thresh-

olds with a support of fewer than five are of no interest. In future versions we will recon-

sider this assumption in order to include possibly outlying observations.

• Currently, we identify potential thresholds x̂i� by dividing the range of values between the

median and minimum value of x into 50 segments of equal length. Future research should

evaluate whether a more sophisticated method for selecting possible thresholds can further

improve the performance of UFA.

2. Calculate Zi as specified in Eq (2). Define x̂opt according to Eq (4).

3. Check x̂opt for statistical significance by comparing its Z-value to a chosen critical value.

Keep the threshold if it is significant and discard it otherwise.

• For the purpose of this paper, we used a critical value of 2.576 to establish significance,

which is associated with a p-value of 0.01. We address issues related to multiple testing by

validating the thresholds on previously unseen data.

Through this procedure, UFA finds the near-optimal threshold below the median for each var-

iable x. The procedure can then be repeated for area above the median.

UFA is a univariate algorithm that does not take into account interactions between vari-

ables. However, known interactions can be incorporated into the UFA framework by intro-

ducing new variables that are combinations of existing features. Some other single variable

approaches are contained in Donoho and Jin [1]. We found our approach to be especially use-

ful and transparent in medical settings.

Classification using UFA

There are many approaches to incorporate UFA-designed thresholds into a multi-dimensional

classifier, and we present two possibilities in this paper. Both create an indicator variable or

“flag” for each significant threshold, which takes the value of one if the value of the variable

under consideration exceeds the threshold and zero otherwise.

Given the flags on each of hundreds of explanatory variables, it is necessary to develop a

scoring mechanism that is as transparent as possible. Since we had two dimensions (survival

and mortality), it is natural to make a scatterplot of the number of mortality flags against the

number of survival flags for the training data and then denote which patients survived to day

four and which had died by day four. When data from the second day is available for a new

patient, the doctor can see where the patient is located on the scatterplot. There are many pos-

sible ways to draw some form of boundary for a decision to be made about the chances of the

new patient surviving to day four. Again, thinking about visual transparency, we decided on a

UFA, interpretable approach to modeling
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linear boundary based on linear discriminant function analysis. Other methods are clearly pos-

sible (support vector machines, near-neighbors, etc.) but are harder to explain or lead to com-

plex boundaries or both.

Number of Flags algorithm (N-UFA). The first classifier aggregates the number of “high

risk” and “low risk” flags for each observation, creating a two-dimensional vector for each

observation. Then, a linear decision boundary is drawn to separate one class from the other

along these two dimensions. Throughout the paper, this approach will be denoted as the Num-

ber of Flags algorithm (N-UFA). Fig 2 shows an example of the N-UFA classifier’s perfor-

mance in predicting adult sepsis patients’ mortality. For each patient, we count the number of

flags that are associated with a high likelihood of mortality and the number of flags that are

associated with a low likelihood of mortality; the solid line represents the linear decision

boundary that minimizes the misclassification rate along these two-dimensions. Throughout

this paper, each flag receives an equal weight of one, though future research could investigate

the impact of assigning flags different weights.

Fig 2. Number of high mortality and low mortality flags for adult sepsis patients. Patients who died are indicated by red squares

while patients who lived are indicated by blue triangles. For each patient, we counted the number of flags that are associated with a

high likelihood of mortality and the number of flags that are associated with a low likelihood of mortality; the solid line represents a

prototype of a linear decision boundary that would be designed to minimize the misclassification rate along these two dimensions.

https://doi.org/10.1371/journal.pone.0223161.g002
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UFA-created thresholds as features in Random Forest (RF-UFA). The second classifier

uses UFA-identified flags as independent dummy features in a Random Forest model [5].

Results

In this section, we apply the UFA system to a variety of different datasets and compare its per-

formance to other commonly used classification techniques. We present results for datasets

that vary greatly in terms of complexity and target/non-target ratio, allowing us to identify

conditions for which UFA is particularly well suited.

Benchmark datasets (Pima Diabetes, Wisconsin Breast Cancer, ALL/AML

Cancer)

Table 2 summarizes the performance of UFA for three well-known classification datasets. First

two datasets have relatively few attributes, little to no missing data, and a target/non-target

ratio of approximately one-third [16, 17]. For these datasets, the performance of UFA evalu-

ated using the out-of-sample error is in line with published results for other standard classifiers

[18, 19] and shows a similar or better performance in our experiments. The third dataset was

selected to evaluate UFA performance without any customization when the number of inde-

pendent variables is large. UFA has demonstrated excellent recognition accuracy on the ALL/

AML cancer dataset [20,21] that contains 7,167 independent variables (Table 2). The reported

results are the average of 1000 independent experiments performed for each setting.

Evaluated on robustness to missing data, UFA has shown a similar or better performance as

compared to a set of standard classifiers (Table 3).

Missing and noisy data (MIMIC II)

The publicly available MIMIC II database, version 2.6, contains de-identified clinical data for

over 30,000 adult intensive-care unit (ICU) stays [22]. Focusing on patients admitted with a

primary diagnosis of sepsis, we processed over 200 variables covering the first four days of

the patient’s stay. These variables included both static features like demographics, as well as

dynamic features such as trends in laboratory values or vital signs. As outlined in the introduc-

tion, our final dataset contained 512 patients with a mortality rate of 30.9%. In addition to

having a much larger number of attributes than the datasets presented in the last section, the

MIMIC II data comes directly from patients’ medical records and is subject to missing and

noisy values. More than 65% of the patients in the analysis have incomplete data.

We used the MIMIC II data to evaluate UFA in two different ways. First, we reviewed indi-

vidual thresholds (x̂opt) identified by the algorithm to determine whether they aligned with

known physiological boundaries for those variables for which such boundaries are known

(e.g. clinical tests are available). The majority of the created variables did not have such known

Table 2. Comparison of error rates on previously unseen data. Results show out of sample error rate averaged over 1000 runs.

Algorithm Pima Indian Diabetes Wisconsin Breast Cancer ALL/AML Cancer

N-UFA 18.2 ± 2.2 6.8 ± 1.6 0.9 ± 1.9

R-UFA 19.3 ± 2.3 7.2 ± 1.6 0.6 ± 1.6

Logistic Regression 23.0 ± 2.3 5.8 ± 1.9 44.9 ± 12.9

Random Forest 24.1 ± 2.5 4.1 ± 1.4 5.9 ± 5.8

Conditional Inference Tree 26.1 ± 3.0 6.7 ±1.9 9.9 ± 7.0

SVM 24.1 ± 2.4 2.7 ± 1.2 20.6 ± 11.4

k-NN 30.3 ± 2.5 7.5 ± 1.7 8.8 ± 5.5

https://doi.org/10.1371/journal.pone.0223161.t002
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boundaries, as they were derivatives from a patient’s vital signs or other ICU-recorded mea-

surements. Verifying known values, we extrapolated the assumption that UFA estimates have

clinical value to these variables’ boundaries as well.

Our analysis of UFA thresholds (x̂opt) suggests that the algorithm identifies logical break

points that align with subject matter expertise. For example, in this paper’s introduction, Fig 1

displays body temperature for patients with sepsis, and includes a cut-point at 36˚ C aligning

with the clinical definition of low body temperature. In sepsis, low body temperature is one of

the diagnostic criteria for severe sepsis and septic shock, and is known to be associated with

patient severity and death [8]. Applying UFA to the MIMIC II data for body temperature, we

identify a high-mortality threshold at 35.97˚C which aligns closely with the known physiologi-

cal limit. Below the threshold of 35.97˚C, sepsis patients in the MIMIC II dataset die at a rate

of 57.9%, nearly twice the overall death rate.

Table 4 shows three other examples of variables in the MIMIC II database with known clin-

ical thresholds. For each variable, UFA identifies a significant threshold that is well within one

Table 3. Robustness to missing data. Results show out of sample error rate averaged over 1000 runs.

Full Set 10% Missing 50% Missing

Pima Indian Diabetes

N-UFA 18.2 ± 2.2 24.6 ± 2.4 28.0 ± 2.6

R-UFA 19.3 ± 2.3 26.7 ± 2.7 28.2 ± 2.7

Logistic Regression 23.0 ± 2.3 27.3 ± 2.7 33.7 ± 2.6

Random Forest 24.1 ± 2.5 25.1 ± 2.5 31.5 ± 2.6

Conditional Inference Tree 26.1 ± 3.0 27.1 ± 2.9 33.6 ± 3.0

SVM 24.1 ± 2.4 24.7 ± 2.6 32.8 ± 2.6

k-NN 30.3 ± 2.5 31.0 ± 2.6 33.9 ± 2.6

Wisconsin Breast Cancer

N-UFA 6.8 ± 1.6 7.0 ± 1.7 6.8 ± 1.8

R-UFA 7.2 ± 1.6 6.4 ± 1.6 6.2 ± 16

Logistic Regression 5.8 ± 1.9 8.1 ± 2.1 16.3 ± 2.4

Random Forest 4.1 ± 1.4 4.8 ± 1.6 7.4 ± 1.9

Conditional Inference Tree 6.7 ±1.9 8.8 ± 2.4 13.0 ± 2.5

SVM 2.7 ± 1.2 6.3 ± 1.8 12.4 ± 2.2

k-NN 7.5 ± 1.7 9.2 ± 1.8 13.3 ± 2.4

ALL/AML Cancer

N-UFA 0.9 ± 1.9 0.8 ± 1.8 0.0 ± 0.1

R-UFA 0.6 ± 1.6 0.8 ± 1.7 0.0 ± 0.0

Random Forest 5.9 ± 5.8 9.8 ± 8.7 27.2 ± 9.8

Conditional Inference Tree 9.9 ± 7.0 11.7 ± 7.3 34.3 ± 8.8

SVM 20.6 ± 11.4 27.6 ± 13.8 35.0 ± 8.3

k-NN 8.8 ± 5.5 18.5 ± 9.8 31.7 ± 8.8

https://doi.org/10.1371/journal.pone.0223161.t003

Table 4. Examples of UFA-defined thresholds, MIMIC II data. For each variable in the table, the UFA-identified threshold aligns with the known physiological bound,

as established by the National Institutes of Health. The mortality rates for patients who violated these thresholds range from 52.7% to 55.9%, much higher than the 30.9%

death rate in the septic population overall.

Variable Normal Range Threshold Support Mortality

Phosphorus Level 2.4–4.1 mg/dL More Than 4.5 93 52.7%

Sodium Level 135–145 mEq/L Less Than 134.9 59 55.9%

Mean Arterial BP 70–110 mmHg Less Than 67.4 86 55.8%

https://doi.org/10.1371/journal.pone.0223161.t004
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standard error of a known bound, as established by the National Institutes of Health [23].

Moreover, though UFA only identified one significant threshold for each variable in Table 4,

the directionality is consistent with clinical understanding of sepsis. For example, it is well-

known that hypotension, or lowered blood pressure, is associated with worsening sepsis [13],

which is consistent with our findings.

Next, we used the thresholds identified by UFA to predict mortality in sepsis patients and

compared our performance to other commonly used classification techniques. The classifiers

contained in Table 4 were implemented in the R computing package, using the built-in tuning

parameters [24,25,26,27]. While UFA does not require complete data for each observation to

make predictions, many other classifiers do. In these cases, missing values were imputed using

the sample average. While other imputation approaches exist, a full survey is outside the scope

of this paper.

Using ten-fold cross validation, on average, N-UFA correctly classifies 77.5% of test cases,

while RF-UFA achieves 78.1% accuracy. As seen in Table 5, when the confidence intervals are

considered, this performance is better than or comparable to classifying patients based on the

original, continuous data for a variety of commonly used linear and non-linear methods. Simi-

larly, the AUROC for the two UFA-based classifiers is significantly higher than all of the non-

UFA methods with the exception of random forest but overlaps RF when the confidence inter-

vals are taken into account.

To further test UFA’s ability to make predictions in the presence of missing and noisy data,

we artificially introduced additional missing values and random deviances into the MIMIC II

data.

Table 6 compares the performance of N-UFA, random forest, and logistic regression for the

original MIMIC II data and a version of the MIMIC II data where 50% of observations were

replaced randomly with missing values. While N-UFA and random forest performed similarly

on the original MIMIC II dataset (Table 5), we see that N-UFA has more consistent perfor-

mance as the amount of missing data increases. Table 6 shows that the difference in accuracy

Table 5. Comparison of different classifiers for in-hospital mortality of adult sepsis patients. The two UFA-based

classifiers have predictive performance better than or equal to other commonly used classification techniques when

confidence intervals are considered.

Classifier Accuracy AUROC

N-UFA UFA-based 77.5% (75.1, 79.9) 0.819 (0.797, 0.841)

RF-UFA 78.1% (75.8, 80.3) 0.800 (0.779, 0.821)

Logistic Regression Other 68.7% (65.7, 71.6) 0.698 (0.642, 0.753)

Support Vector Machine 79.4% (76.2, 82.6) 0.555 (0.331, 0.780)

Decision Tree 68.8% (66.0, 71.7) 0.626 (0.575, 0.677)

Random Forest 79.0% (76.9, 81.1) 0.823 (0.796, 0.851)

https://doi.org/10.1371/journal.pone.0223161.t005

Table 6. Comparison of different classifiers with varying amounts of missing data. This table compares the performance of different classifiers for the original MIMIC

II data and a version of the MIMIC II data where 50% of observations were replaced randomly with missing values. We see that N-UFA is robust to missing data, with

accuracy decreasing just 1.3% as the amount of missing data increases to 50%. An expanded version of Table 6 including confidence intervals and results for 5–25% missing

data is available in the S1 Table.

Classifier Accuracy AUROC

0% 50% Δ 0% 50% Δ

N-UFA UFA-Based 77.5% 76.2% 1.3% 0.819 0.790 0.029

Random Forest Other 79.0% 71.9% 7.1% 0.823 0.771 0.052

Logistic Regression 68.7% 58.3% 10.4% 0.698 0.598 0.100

https://doi.org/10.1371/journal.pone.0223161.t006
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between no additional missing data and 50% additional missing data for the N-UFA approach

is only 1.3 percentage points, compared to 7.1 percentage points for random forest. Similarly,

AUROC decreases by 0.029 as opposed to 0.052.

Table 7 provides similar results for data accuracy. It presents accuracy and AUROC for

N-UFA, random forest, and logistic regression when 50% of the MIMIC II data is randomly

perturbed by a value �, distributed normally with mean zero and the empirical variance of the

variable in question. The results show that all three methods hold up well to the introduction

of random noise.

Rare events (landslide data)

In our last application, we use UFA to predict the rare event of landslides. This dataset

contains all reported landslides for Seattle, WA from 1965 to 1999 [28]. Each observation

represents one day, and contains information on precipitation, temperature, and wind,

along with whether a landslide was reported. Of the nearly 13,000 days in the dataset, only

2.3% had one or more landslide. Given the relative infrequency of the target, we focused our

analysis on identifying variables or groups of variables that were predictive of an increased

risk.

UFA identified 32 significant thresholds associated with an increased likelihood of land-

slide. For example, when precipitation for the last four days exceeds 3.2 inches, the percentage

of days with a landslide is 34.3%, nearly 15x the rate for a typical day. Moreover, as seen in Fig

3, thresholds can be combined to find conditions under which the relative risk of a landslide is

even higher. If one combines the rain threshold with a maximum daily wind of more than 7.8,

the percentage of days with a landslide jumps to 51.4%, more than 22x the rate for a typical

day.

In general, it is difficult to train classifiers when the incidence of the target is very low [29].

This is because the classifier can achieve very high accuracy by always predicting the more

likely outcome; in this case, a model that always predicts no landslide would have an accuracy

of 97.7%. One solution is to balance the training dataset, so that it has an equal number of days

with and without a landslide. However, this may be undesirable for a variety of reasons. In par-

ticular, for very rare events, balancing the dataset through under sampling may exclude a large

number of potentially useful majority-class examples, while balancing the dataset through

oversampling can lead to overfitting [30].

We find that one advantage of N-UFA is that it can identify days that are at high risk of

landslide, even with unbalanced training data. Using 80% of our landslide dataset for training,

we find that days with 12 or more flags are 14.8x more likely to have a landslide. If we consider

this the definition of a “high risk” day, and apply the same criteria to the remaining 20% of the

data, we see that this definition generalizes well. The rate of landslides on high risk days in the

test set is 18.2%, almost 8x the typical rate.

Table 7. Comparison of different classifiers with varying amounts of imprecise data. This table compares the performance of different classifiers for the original

MIMIC II data and a version of the MIMIC II data where 50% of observations were randomly perturbed by a value �, distributed normally with mean zero and the empiri-

cal variance of the variable in question. We see that N-UFA is robust to imprecise data, with accuracy decreasing 1.7% as the amount of imprecise data increases to 50%.

An expanded version of Table 7 including confidence intervals and results for 5–25% imprecise data is available in the S2 Table.

Classifier Accuracy AUROC

0% 50% Δ 0% 50% Δ

N-UFA UFA-Based 77.5% 75.8% 1.7% 0.819 0.796 0.023

Random Forest Other 79.0% 76.3% 2.7% 0.823 0.802 0.021

Logistic Regression 68.7% 68.8% -0.1% 0.698 0.681 0.017

https://doi.org/10.1371/journal.pone.0223161.t007
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Discussion

Donoho and Jin [1] used a set of standard medical datasets proposed by Dettling [2] for evalu-

ation of machine learning algorithms to demonstrate that their very simple ‘clipping rule’ algo-

rithm performed as well as most commonly used algorithms, including Regression, Decision

Tree, Random Forest, SVM, and KNN. Our analysis suggests that further analysis of univariate

approaches is warranted, and, if accurate enough, these approaches have a number of advan-

tages when compared to other methods.

UFA automatically detects target-defined separation thresholds in data. In the results sec-

tion, we showed that the thresholds that it detects for variables for which such boundaries are

known align with published results and scientifically established boundaries and can be used

to classify previously unseen data with performance equal to or better than other standard clas-

sifiers. We also showed that the UFA system works well under certain challenging conditions

that often arise with big data.

Also, since UFA runs on each variable individually, it can easily be applied to datasets with

a very large number of features, including cases when the number of features is much larger

Fig 3. Landslide days stratified by precipitation and wind. The percentage of days with a landslide in each quadrant is displayed in

red. Thresholds can be combined to find conditions under which the relative risk of a landslide is significantly elevated.

https://doi.org/10.1371/journal.pone.0223161.g003
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than the number of observations. Thresholds for each variable can be identified in parallel,

allowing for efficient computing. Further, though UFA is univariate, the ability to quickly and

automatically consider a large number of features means that researchers can easily introduce

new variables that are interactions of existing features and evaluate whether they are important

for the application. For example, in the case of the Golub gene expression data, UFA was able

to identify approximately 1,200 meaningful thresholds/variables from a set of 7,129 without

any preprocessing which is in line with Golub’s original findings [20].

UFA extracts a clear decision rule for each variable that is identified as significant. These

rules take the simple form of:

For [variable], a value [above/below] [threshold] is associated with a significantly [higher/
lower] incidence of outcome [Y]

Thresholds of this type are easy to understand, interpret, and verify against pre-existing

domain knowledge, giving UFA a high level of interpretability. Classification is straightfor-

ward as well. As introduced in this paper, the N-UFA classifier distills information from poten-

tially thousands of independent variables to two dimensions, making results easy to visualize.

One can simply create a plot with high risk flags on one axis and low risk flags on the other,

along with the relevant decision boundary (example in Fig 2). New cases can then be added to

the same plot, and the user can easily see where the instance falls both in terms of its classifica-

tion, as well as its distance from the decision boundary.

Furthermore, N-UFA maintains this high level of interpretability and simplicity without

compromising predictive performance. For benchmark, MIMIC II, and landslide data,

N-UFA performed comparably to the state-of-the-art methods. However, in most cases it is

easier to interpret simple univariate rules than understand more complex relations, e.g rules

coming from Random Forest. Random Forest classifier averages over a large number of trees,

which may utilize different rules. In addition, while there are standard visualizations for Ran-

dom Forest, such as variable importance plots and proximity plots, it has been observed that

proximity plots tend to look similar across different datasets, leading some to question their

utility [5]. Therefore, N-UFA may be a preferable approach for certain applications where

visualization of results is required.

The UFA system does not require complete data, which makes it easy to implement on data

with a large number of missing values. If an observation is missing data for a particular vari-

able, it can simply be excluded from the calculation of that variable’s threshold, but remain

included in calculations for which data are present. This gives UFA an advantage over classifi-

ers that require complete data for prediction, as those classifiers must impute data or ignore

incomplete observations, significantly decreasing the amount of data available for analysis.

Formal specification of conditions under which the UFA system breaks down was outside

the scope of this paper. However, our empirical results show that N-UFA has performance

equal to or better than other standard classifiers on the MIMIC II data, a real-world dataset

where nearly 65% of patients have incomplete data. Furthermore, the results show that N-UFA

is comparable to or better than other classifiers as the amount of missing data is increased

(Tables 3 and 6).

Another challenge often observed in large, real-world datasets is a low target/non-target

ratio. However, there is often a high level of interest in predicting atypical events, such as rare

disease, or an unusual disease outbreak. As demonstrated using the Seattle landslide data, the

UFA system can easily be used to focus on variables that increase the relative risk of a rare

event. In fact, we found that N-UFA could successfully identify days with a high likelihood of

landslide even when the training data were unbalanced.

One of the limitations of the UFA system is that it conducts nk statistical tests in the train-

ing phase in order to identify the optimal thresholds, where n is the number of variables and k
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is the number of potential thresholds. As is well documented, multiple hypothesis testing can

inflate the type I error rate and lead to significant results, even when none exist [8, 5]. This

drawback is also present in related methods, such as the minimum p-value approach to finding

optimal cut points, and a variety of solutions have been suggested. In this paper, we address

the issue through validating the thresholds on previously unseen data. Another possibility is

to adjust the p-values in the training phase for multiple testing, using an approach such as the

well-known Bonferroni method [5] or the false discovery rate [31], though these approaches

were not explored here.

Conclusion

This paper presents a simple algorithm for identifying univariate thresholds in data. Following

the approach proposed by Donoho and Jin [1] and Leskovec, et al. [32] we demonstrate that

the univariate approach to the analysis of clinical data achieves similar predictive accuracy

compared to more sophisticated machine learning algorithms, while providing easily inter-

pretable results and stability against missing data without the need for data imputation, a

highly undesirable operation in clinical data analysis. UFA builds on previous work in

this area by only considering a subset of the input space, while simultaneously being fully

automated.

The thresholds generated by UFA can easily be combined to predict outcomes for previ-

ously unseen cases. Though a variety of methods for combining the thresholds exist, in this

paper, we introduce N-UFA which classifies observations based on their number of high risk

and number of low risk flags. N-UFA greatly reduces the dimensionality of the problem and

has similar or better performance than many other commonly used classification techniques,

including random forest when confidence intervals are considered. In addition to strong pre-

dictive performance, this paper highlights several other key advantages of the UFA:

1. Fully automated; can be used with little a priori knowledge of the data

2. Scales to a large number of variables, even if the number of variables exceeds the number of

observations

3. Provides the user with simple rules characterizing relationship between individual variables

and the outcome

4. Stable against noise and missing data

5. Useful when the incidence of the target is low

6. Displays results in two dimensions making it easy to interpret and visualize

Future work should focus on better capturing the uncertainty inherent to the thresholds,

potentially through methods such as bootstrapping. Future work is also needed to formalize

the conditions in which the UFA system performs well, which are explored empirically in this

initial paper.

Supporting information

S1 Table. Comparison of different classifiers with varying amounts of missing data with

confidence intervals. S1 Table compares the performance of the number of flags classifier to

random forest, and logistic regression. For each row of the table an increasing percentage of

each variable in the MIMIC II dataset was randomly replaced with missing values.

(PDF)
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S2 Table. Comparison of different classifiers with varying amounts of noisy data with con-

fidence intervals. S2 Table compares the same three classifiers for varying amounts of impre-

cise data. For each row, an increasing percentage of each variable in MIMIC II is randomly

perturbed by a value �, distributed normally with mean zero and the empirical variance of the

variable in question.

(PDF)
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