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Introduction
Older age is an adverse prognostic factor that correlates 
with inferior survival in diffuse large B-cell lymphoma 
(DLBCL).1–4 This is likely in part attributable to poorer 
performance status and inability to tolerate therapy5; how-
ever, potential molecular perturbations that may contribute 
to inferior outcomes are not well defined. In addition, the 
impact of sex has been shown to be prognostic in DLBCL,6,7 
including recent data of improved survival for females 
receiving rituximab-based therapy.8,9 Molecular perturba-
tions that may be associated with sex-related pathogenesis 
are largely unexplored.10,11

We performed a comprehensive global transcriptome 
analyses from The Cancer Genome Atlas (TCGA) on data from 
pretreatment/baseline DLBCL samples to investigate poten-
tial molecular alterations based on age and sex. Furthermore, 
a novel unbiased method12 of a systems biology approach13–16 
was used to identify key genes and the related signaling net-
works that were most strongly associated with age and sex that 
predicted tumor progression.

Methods
TCGA transcriptome analysis. Results are based on data 

from the TCGA research network (cancergenome.nih.gov). 
Specifically, DLBCL mRNA level 3 data type with a total of 
48 data sets from untreated DLBCL patients was available with 
33 data sets containing relevant age and sex. Since the median 
age was 58 years for these data, we defined older patients as 
$59 years (versus #58 years as younger patients); data were 
further segregated based on sex (Supplementary Table 1). Data 
were imported into MultiExperiment Viewer,17 and statistically 
significant genes were determined by t-test with a P-value ,
0.05 for all comparisons to take forward for pathway analysis. 
Independent and separate analysis was done for each compari-
son mentioned in this article using these conditions.

Pathway analysis of the selected genes was performed 
by using a fold-change $1.2 (or #-1.2) and then comparing 
old to young patients and observing pathway relationships 
using Ingenuity Pathway Analysis (IPA) software (Ingenuity 
Systems). Upstream regulator analysis from IPA identified 
any molecule that affected the expression or function of the 
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measured downstream target genes. The activation state of 
each upstream regulator from the experimental data set is 
determined by calculating the z-score ($2, activated or #−2, 
inhibited). Similar analysis through IPA was done predicting 
biofunctional activity. Gene set enrichment analysis (GSEA)18 
was performed using the entire list of genes and with leading 
edge analysis as defined by Subramanian et  al.18 Significant 
gene sets between age groups were considered with false dis-
covery rate (FDR) ,0.05. Network representation of GSEA 
functions was done using Cytoscape.19 Key genes were deter-
mined as previously reported in Beheshti et  al.12 and Wage 
et al.20 by finding the overlapping genes involved in predicting 
the significant upstream regulators, biofunctions, and GSEA 
C2 gene sets. More specifically, for each set of genes under 
analysis, the association with statistically significant pathways 
and functions were determined through both IPA and GSEA. 
Common genes were determined to be involved in the analysis 
of both IPA upstream regulators and biofunctions. These sets 
of genes were further compared to the GSEA’s leading edge 
genes (FDR  ,  0.05). The overlapping genes between these 
two analyses were considered to be the key genes involved and 
in control of the majority of predicted functions and activity 
with the system being analyzed. In previous publications, 

we have validated key genes determined with this method 
through experimental approaches involving Western blots, 
qPCR, and other functional methods.12,20 These experiments 
proved that the key genes determined with this bioinformatics 
interrogation are indeed involved in the system being stud-
ied. For male-specific analysis, only the overlapping genes for 
upstream regulators and biofunction predictions were used 
since no overlap occurred with GSEA. This unbiased method 
to determine key genes produces molecular factors that are 
involved in all the significantly regulated functions and 
pathways and are key regulators involved in age-associated 
DLBCL. The impact of both the upstream regulators and key 
genes was associated with tumor progression by determining 
through the literature how each factor impacts tumor pro-
gression (ie, tumor promoter or tumor suppressor). The overall 
impact was used to determine the global effect on tumor pro-
gression based on the specific regulation of each gene. Tumor 
progression in this manuscript is defined as the predictability 
of assessing the tumor dynamics based on the biology, rather 
than clinical data. Specifically, tumor progression describes 
the outcome of tumor growth predicted from biological fac-
tors. This study was performed in accordance with the prin-
ciples of the Declaration of Helsinki.
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Figure 1. Global gene regulation changes as a function of age and sex. Hierarchical clustering of genes by average linkage (UPGMA or Unweighted Pair Group 
Method with Arithmetic Mean) and Euclidean distance calculation from the DLBCL TCGA mRNA data for (A) older ($59 years old) versus younger (#58 years old) 
DLBCL patient comparisons combining all sexes, (B) male-only comparison in old and young patients, (C) female-only comparison in old and young patients, and 
(D) average mRNA signal log2 fold-change comparing sex-independent analysis to male and female-specific analyses. Whiskers show the range of the outliers, 
with max and min values as Ο and the 1 and 99th percentile outliers as X. (E) The average signal log2 fold-change for the seven common genes between the 
three different sets of analysis. (F) Venn diagrams of the genes with 1.2 fold-change for comparisons between sex-independent analyses and male and female-
specific analyses. Separate Venn diagrams for only the up- and downregulated genes are also included. The numbers in the parenthesis indicate the overall 
number of genes in each group. (G) Network representation of only Reactome-related gene sets from GSEA C2 gene set annotations. Leading edge analysis 
with an FDR , 0.05 determined significant gene sets enriched for each group. The size of each node reflects the amount of molecules involved in each gene set. 
The edge (green lines) represents the number of genes associated with the overlap of two gene sets (or nodes) that the edge connects. Clusters were named 
according to common function in each grouping. Upregulated gene sets were denoted with red color and downregulated gene sets were denoted by blue color.
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Results and Discussion
Age- and sex-based differences and interactions. In 

comparing old versus young DLBCL patients independent of 
sex (Fig. 1A–C), there was an equal distribution of upregulated 
and downregulated genes (Fig.  1D). There were, however, 
several distinct genes associated with older age (Fig.  1E–F). 
These included JUN (log2 fold-change = 0.967), CR1 (log2 fold-
change = 1.036), and DNAH10 (log2 fold-change = 0.946) being 
most upregulated, while C20orf54 (log2 fold-change = −1.017) 
was the most downregulated in older DLBCL patients 
(Fig.  1E). Furthermore, GSEA demonstrated that older age 
was associated with decreased metabolism and telomere func-
tions21 and also increased immune-related pathways as shown 
using a network representation of the gene sets associated with 
these functions (Fig. 1G/Supplementary Tables 2–4).

Nine distinct genes were modulated by sex, regardless of 
age. This included XIST (log2 fold-change = 10.189), which was 
significantly upregulated in females, and DDX3Y (log2 fold-
change = −9.996), KDM5D (log2 fold-change = −9.322), and 
PRKY (log2 fold-change = −6.554) that were downregulated 

in females (Fig. 2E–F). GSEA demonstrated that female sex 
was associated with decreased interferon signaling, transcrip-
tion, cell cycle, PD-1 signaling, and meiosis with concurrent 
increases in mitotic cell cycle and DNA synthesis that are 
illustrated in a network representation of the gene sets asso-
ciated with each of these functions (Fig. 2G/Supplementary 
Tables 2–4).

We next examined the impact of sex and age in combina-
tion (Fig. 2). There was an overall downregulation of genes for 
older females (versus older males) with an overall upregulation 
of genes for younger females (versus younger males) (Fig. 2B–D 
and F). This provides indication of an overall global difference 
in the biology signature occurring with age. Older females 
(versus older males) had downregulation of functions related 
to cell maintenance (ie, interferon signaling, translation, cell 
cycle, metabolism, and meiosis), while young females (versus 
young males) had upregulation in translation (Fig. 2G).

Interestingly, older male DLBCL patients had an over-
all upregulation of genes, while older female patients had 
an overall downregulation of genes (Fig.  1B–D); this was 
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Figure 2. Global gene regulation changes as a function of age and gender. Hierarchical clustering of genes by average linkage (UPGMA) and Euclidean 
distance calculation from the DLBCL TCGA mRNA data with a t-test, P-value , 0.05, for (A) female-to-male patient comparisons combining all ages, (B) old 
patient (.58 years old) only comparisons for female and male patients, and (C) young patient (,58 years old) comparison for female and male patients. (D) The 
average mRNA signal log2 fold-change comparing age-independent analysis to young and old-specific analyses. Whiskers show the range of the outliers, with 
max and min values as Ο and the 1 and 99th percentile outliers as X. (E) The average signal log2 fold-change for the nine common genes between the three 
different sets of analysis. (F) Venn diagrams of the genes with 1.2 fold-change for comparisons between age-independent analysis and old and young-specific 
analyses with separate Venn diagrams for only the upregulated and downregulated genes. The numbers in the parenthesis indicate the overall number of genes 
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verified on sex-specific GSEA analyses (Fig.  1G). As with 
age differences, this difference indicates an intrinsic biologi-
cal difference occurring in DLBCL patients with sex. Older 
male patients had downregulation of structural functions (eg, 
muscle contraction, telomere, collagen formation), while older 
female patients had downregulation of cellular maintenance 
functions (eg, telomere, translation, apoptosis, metabolism, 
cell cycle) (Fig. 1G/Supplementary Tables 2–4).

Discovery of key genes. We subsequently determined 
the most prominent upstream regulators predicted to impact 

tumor progression. Age-specific molecular analyses (Fig. 3A) 
predicted that older age was associated with promotion of 
tumor growth (Supplementary Table 5). Sex-specific analyses 
(Fig. 3B) predicted females to have increased tumor progression 
versus males. Analyzing the impact of age within females, how-
ever, there was an even balance of both tumor oncogenes and 
suppressors (Fig. 3D), and in males, older age predicted tumor 
progression (Fig. 3C). Genes associated with the predictions of 
the upstream regulators are shown as a network with the key 
genes discussed below circled (Figs. 3A–D and 4A and B).
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Figure 3. The impact of predicted upstream regulators and key genes from DLBCL patients on tumor progression. (A–D) The top panel shows network 
representation of the upstream regulators for each type of analysis with the genes involved for each prediction. The second panel shows schematic of 
the activation states of the upstream regulators from Supplementary Table 2, illustrating the balance between the tumor promoters (black text) and tumor 
suppressors (white text and underlined) with a predicted activation (orange) or predicted inhibition (blue). The upstream regulators with both promoter 
and suppressor effects or not determined (ND) effects are shown in the middle of the balance (yellow text). (E–H) The third panel shows gene network 
analysis for the key genes involved in each type of analysis. The predicted relationships between all genes are also shown. Log2 fold-changes (with a 
cutoff of 1.2 fold-change) to the gene expression were used to obtain different shades of green for fold-change in downregulated genes, while different 
shades of red depict fold-change in upregulated genes. The darker the shade of green or red, the greater the fold-change. The bottom panel shows 
a schematic of the key significant genes (see also Supplementary Table 4) determined to be significant in regulating functions for each comparison 
illustrating the balance between the tumor promoters (blue text) and tumor suppressors (black text and underlined) with the log2 fold-change color coded 
as before. Genes with both promoter and suppressor effects or ND effects are shown in the middle of the balance (black text). JUN is circled in red, and 
CYCS is circled in blue throughout the networks.
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Through an unbiased systems biology approach,12 we 
determined the key genes predicted to influence tumor pro-
gression (Supplementary Table  6). For age (Fig.  3E), JUN, 
FOS, HMOX, PAK3, and SRC were the key genes involved 
in the most interactions in tumor progression. For sex, CYCS, 
JUNB, and FCER1G oncogenes were upregulated in males 
predicting tumor progression (Fig.  3F), while several genes 

demonstrated an inhibitory effect on tumor progression in 
females (Fig. 3H).

This difference can be explained when integrating age 
into the analysis. Comparing upstream regulators, there was 
an overall inhibitory effect on tumor progression in older 
females versus older males (Fig.  4A). For younger females 
(versus younger males), there was only one upstream regulator  
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predicted to be activated (KRAS) impacting tumor 
progression (Fig.  4B). In men (Fig.  3G), JUN and BCL2 
were centrally involved in tumor progression, while in 
females (Fig. 3H), JUN, CTNNB1, and IRF7 were the cen-
tral genes. Collectively, this surprisingly indicated that older 
DLBCL females were predicted to have a favorable out-
come compared with not only older males but also younger 
females. This demonstrates the importance of not ignor-
ing either age or sex biological differences when studying 
tumor biology.

The same pattern was observed when studying the influ-
ence of key genes on tumor progression. Older females (versus 
older males) had an overall inhibition of tumor progression 
with CEBPB, CYCS, CCL4, ANXA2, TXN, and FCER1G 
being nodes interacting with the key genes having an inhibi-
tory effect (ie, downregulating tumor promoters) (Fig. 4C and 
Supplementary Table 6).

Through the DAVID Gene Functional Classification 
Tool22 that measures relationships among different biologically 
annotated terms based on degrees of co-association of genes, 
we found that key genes for most groups also strongly regu-
lated immune function activity (Supplementary Tables 7–11). 

Specifically, comparing old versus young groups, we observed 
functions related to the immune system (eg, immune system 
development, T-cell activation, immune response, etc.) 
appeared in the top 5 clusters; when comparing key genes 
from females to males, the immune response was observed in 
the top functional cluster with the greatest functional changes 
occurring in older populations.

In addition, the somatic form of cytochrome C (CYCS) 
was shown to be a critical inhibitory factor in older females 
versus older males (Fig.  4C), independent of age (Fig.  3F). 
CYCS plays a central role in the mitochondrial electron-
transport chain and is a factor released rapidly in apoptotic 
stimulus when a cell undergoes DNA damage or metabolic 
stress.23 Prior data have shown that increased CYCS expres-
sion is associated with inferior survival in DLBCL.24

The overall goal for the treatment of DLBCL is to pro-
vide improved individualized treatment strategies and/or to 
discover key conserved biomarkers for DLBCL. The global 
impact from these factors predicted that tumor progression 
should be promoted for older DLBCL patients (Fig.  5), 
which is in agreement with the epidemiological data.25 Our 
data also demonstrated that the older female population with 
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DLBCL should have a better outcome based on the biology 
(Fig.  5). Previous gender-based population studies have 
demonstrated that older female populations tend to have 
better outcome and lower incidence of DLBCL compared 
to male populations, but the biological reasons have not been 
previously investigated.10,11 Additionally, JUN was the only 
specific key gene that was commonly upregulated for both 
older male and female DLBCL patients when compared with 
younger patients and is also part of the seven common genes 
(Figs.  1E and 3). Blonska et  al recently showed that JUN 
signaling is key in promoting DLBCL growth through the 
interaction with the microenvironment.26 The current data 
expand on this finding and further demonstrate that JUN is 
a critical factor that is upregulated as a function of age, inde-
pendent of gender. An effective treatment strategy for older 
DLBCL patients may be via use of specific JUN small mol-
ecule inhibitors.27–29 A schematic of the overall predictions 
of tumor growth based on the biology is presented to sum-
marize the results (Fig. 5).

Conclusions
Collectively, findings herein reinforce the importance of 
biological understanding in DLBCL. JUN was a predicted 
upstream regulator, and it was the only commonly upregu-
lated key gene in older DLBCL patients, independent of sex. 
Treatment strategies targeting JUN should be investigated 
for older DLBCL patients.27–29 For sex, CYCS was shown 
to be a critically connected factor. Additionally, an exten-
sive literature search reveals that all differences and key 
factors reported between age and sex for DLBCL patients 
were not found to occur in normal sex and aged popula-
tions. Although this study is limited by a small sample size 
potentially increasing the false-positive rate, there is signifi-
cant association with additional molecular and epidemio-
logical data found in independent publications. Continued 
examination of the impact of sex-based molecular changes 
should be explored not only for DLBCL but also for all 
types of cancer. Altogether, understanding how molecular 
factors interact and change as a function of age and sex, 
and how this impacts tumor progression, may improve our 
understanding of carcinogenesis as well as lead to enhanced 
therapeutic strategies.
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