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Abstract: Due to the large amount of old hardened cement mortar attached to the surface of aggregate
and the internal micro-cracks formed by the crushing process, the water absorption, apparent density,
and crushing index of recycled coarse aggregate are still far behind those of natural coarse aggregate.
Based on the performance requirements of different qualities of recycled coarse aggregate, the
performance differences of recycled coarse aggregate before and after physical strengthening were
observed. The results showed that the physical strengthening technique can remove old hardened
mortar and micro powder attached to the surface of recycled coarse aggregate by mechanical action,
which can effectively improve the quality of recycled coarse aggregate. The optimum calcination
temperature of the recycled coarse aggregate was 400 ◦C and the grinding time was 20 min. The
contents of the attached mortar in recycled coarse aggregates of Class I, II, and III were 7.9%, 22.8%,
and 39.7%, respectively. The quality of recycled coarse aggregate was closely related to the amount of
mortar attached to the surface. The higher the mortar content, the higher the water absorption, lower
apparent density, and higher crushing index of the recycled coarse aggregate.

Keywords: recycled coarse aggregate; attached mortar; calcination temperature; grinding time;
microhardness

1. Introduction

Construction waste treatment and recycling is an important part of the circular econ-
omy, and its significance is beyond doubt. Recycled coarse aggregate prepared by crushing
and screening construction waste and applied to recycled concrete [1] can consume a large
amount of accumulated construction waste, which is conducive to the promotion of a
sustainable development strategy. Compared to the natural aggregate, the surface of the
recycled coarse aggregate prepared from waste concrete is attached with a large number of
hardened cement stones with low strength, high water absorption, and weak combination
with aggregate [2], resulting in the existence of multiple interface structures in recycled
concrete, resulting in significant deterioration of the mechanical properties and durability
of recycled coarse aggregate concrete [3,4]. In order to improve recycled coarse aggregate,
researchers worldwide have carried out a large number of experiments on the modifi-
cation [5–8] and ratio [9,10] of recycled coarse aggregate, which can be summarized as
physical technology, chemical technology, carbonization technology, and nanotechnology.

(1) Physical technology [11–14] is the basic idea of removing the waste cement paste
attached to the recycled coarse aggregate by kneading, heating, particle forming, micro-
heating, ultrasonic cleaning, and other processes. (2) Chemical technique [15–20] consists of
immersing the recycled coarse aggregate in different kinds of chemical grouting and can be
mixed with additive gold powder, silica powder, fly ash, and any other fine ore powder or
slag. (3) Carbonization technology [21–25] is when newly collected aggregates are put into
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the atmosphere with high CO2 concentration, CaCO3 is formed by the reaction of the cement
slurry with CO2, and CaCO3 is deposited in the pores or cracks to improve the performance
of recycled coarse aggregate or strengthen recycled coarse aggregate by microbial induced
mineralization deposition of calcium carbonate [26]. (4) Nanotechnology [27–29] is the
use of nano-materials to promote hydration, reactions with cement-based materials, filling
pores, and controlling the crystallization process. Compared with other methods, the
physical strengthening method is more economical and practical, and more conducive to
the promotion and applications of industrialization.

There is a great difference in the thermal expansion coefficient between the aggregate
and mortar [30]. Attached mortar and coarse aggregate will produce thermal strain due to
temperature change. At the same time as thermal strain, there is thermal stress between
the aggregate and slurry, and the old interface of the recycled coarse aggregate surface will
be damaged due to the development of thermal stress. With the increase in temperature,
the damage will gradually accumulate between the old interface and produce obvious
microcracks, which will significantly reduce the bonding force of the old interface. At
the same time, the C–S–H gel will also produce large shrinkage after high temperature
dehydration [31,32]. Cao Beibei [33] studied the difference in thermal expansion of cement
mortar and aggregate at different temperatures. Linear expansion was used to represent
the elongation of different materials affected by temperature and it was found that the
expansion coefficient of each component would also change with the change in temperature.
When the temperature reaches 700 ◦C, the expansion rate of coarse aggregate is twice that of
the linear expansion rate of mortar, and the waste mortar becomes brittle and its hardness
value decreases significantly after high-temperature calcination, while the hardness value
of the old aggregate does not change significantly. The waste mortar attached to the surface
of the recycled coarse aggregate can be easily separated by an external force [34–36].

Therefore, based on the performance requirements of the recycled coarse aggregate
of different qualities, the performance differences of recycled coarse aggregate before and
after physical strengthening, and separated the attached mortar on the surface of recycled
coarse aggregate from the old aggregate by using the collision principle of high-speed
rotating ball grinding beads were investigated to determine the content of recycled coarse
aggregate attached mortar.

2. Experiment
2.1. Raw Materials

The recycled coarse aggregate was obtained from the waste concrete with a strength
grade of C40. The physical strengthening method of particle shaping can effectively
improve the quality of recycled coarse aggregate. The basic principle is to strip the attached
mortar on the surface of the recycled coarse aggregate by high-speed impact and grinding
between the aggregate and equipment and between the aggregate and aggregate. In this
way, high-quality recycled coarse aggregate with a low content of attached mortar and
good shape morphology can be obtained. The production principle of particle shaping
equipment is shown in Figure 1. The equipment can effectively reshape and strengthen
the low quality recycled coarse aggregate, pulverize and collect dust, prepare high-quality
recycled coarse aggregate and recycled micro powder for recycled concrete, and effectively
reduce dust emission.

After jaw crusher crushing screening, a 5–25 mm simple crushing of class I recycled
coarse aggregate can be obtained using a physical reinforced plastic device to a part of
the class I recycled coarse aggregate physical strengthening treatment after screening, a
5–25 mm physically strengthened class II recycled coarse aggregate can be collected, again
when recycled coarse aggregate physically reinforces a class II, one can obtain a high quality
of class III recycled coarse aggregate. Recycled coarse aggregate comes from discarded
concrete with a strength grade of C40, which uses physical strengthening technology [37]
to obtain class I, class II, and class III recycled coarse aggregates. The grading curve of
different recycled coarse aggregates is shown in Figure 2.
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Figure 2. Gradation curve of the different recycled coarse aggregates.

According to the national standard method (GB/T25177-2010), the performance in-
dexes of recycled coarse aggregate were measured. The influence of physical strengthening
technology on the quality and properties of recycled coarse aggregate was analyzed, and
the grade of different recycled coarse aggregates was evaluated. The obtained test results
are shown in Table 1.

After the physical strengthening process, the mortar and micropowder attached to
the surface of the recycled coarse aggregate were removed mechanically, and the grain
shape and basic properties of the aggregate were significantly improved, which effectively
improved the quality of the recycled coarse aggregate. Among them, the content of
micropowder was reduced by 68.4%, the water absorption was reduced by 69.8%, the
content of needle flakes was reduced by 80.3%, and the crushing index was reduced to
9.5%, and the apparent density reached 2474 kg/m3, fully meeting the standard for Class I
recycled coarse aggregate.
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Table 1. Basic performance and evaluation of different recycled coarse aggregates.

Items
Standard Requirements Recycled Coarse Aggregate Performance

Class I Class II Class III A B C

Particle grading Qualified Qualified Qualified Qualified Qualified Qualified
Micropowder content/% <1.0 <2.0 <3.0 1.9 1.2 0.6
Water absorption rate/% <3.0 <5.0 <8.0 7.3 4.2 2.2

Needle flake particle content/% <10.0 6.1 3.3 1.2
Sundries content/% <1.0 1.2 0.5 0.1

Robustness/% <5.0 <10.0 <15.0 14.3 7.6 3.8
Crushed index/% <12.0 <20.0 <30.0 28.4 18.3 9.5

Apparent density/(kg/m3) >2450 >2350 >2250 2307 2436 2474
Porosity/% <47.0 <50.0 <53.0 45.0 44.0 41.0

Alkali aggregate reaction Qualified Qualified Qualified Qualified

2.2. Principles and Solutions
2.2.1. Calcining-Grinding Principle

High temperature calcination produces the difference in linear expansion between the
aggregate and attached mortar. The large stress difference caused by thermal expansion
makes the thermal compatibility of the granite in the recycled coarse aggregate and the
old mortar worse, which results in greater damage in the interface transition zone, and the
overall structural performance of recycled coarse aggregate is destroyed.

The old interface in the recycled coarse aggregate will produce tiny cracks after
calcination at high temperature. The separation efficiency of waste hardened mortar can be
improved by using these cracks and loose interfacial transition zone. The heated aggregate
was put into the planetary ball mill for ball grinding, and the waste hardened mortar
was stripped from the surface of the recycled coarse aggregate through the collision and
grinding between materials and materials, and between ball grinding beads and materials.
While removing the waste mortar, it also reduces the prominent edges and corners on the
surface of the recycled coarse aggregate, so that the aggregate particles tend to be smooth
to achieve the effect of ball grinding on the recycled aggregate.

Due to the irregular shape of the recycled coarse aggregate (as shown in Figure 3),
many parts of the aggregate (as shown in Figure 4b) cannot touch the grinding beads, and
the grinding effect cannot be achieved when using the ball mill beads with a larger particle
size. Only the waste mortar (as shown in Figure 4c) wrapped on the protruding part of the
original natural aggregate surface can be ground. Therefore, the continuous particle size
ball milling beads were used for grinding to completely remove the waste mortar on any
part of the original natural aggregate surface, and the accurate-attached content of recycled
coarse aggregate can be obtained.
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Based on the above discussion, in order to more efficiently separate the mortar attached
to the surface of the recycled coarse aggregate, the mortar attached to the surface of recycled
coarse aggregate was removed by a calcination-ball milling method. The morphological
changes of different quality recycled coarse aggregates at different temperatures were
observed, and the optimum calcination temperature and adequate ball milling time were
determined based on the removing rate of the sintered-grinding mortar, and the attached
mortar amount of different qualities of recycled aggregate mortars was eventually revealed.

2.2.2. Experimental Design

(1) Natural coarse aggregates with the size of 5–25 mm and recycled coarse aggregates of
class I, class II, and class III were calcined at different temperatures (100 ◦C, 200 ◦C,
300 ◦C, 400 ◦C, 500 ◦C, 600 ◦C, respectively), placed in a planetary ball mill after
cooling. Twenty batches of various coarse aggregates were randomly selected, and
the average value was taken after each batch was ground three times;

(2) The grinding time was sequentially controlled at 5 min, 10 min, 15 min, 20 min, 25 min,
and 30 min. After reaching the specified grinding time, we sieved and weighed the
remaining amount M of the aggregate at different grinding times, and calculated the
mass loss rate of two adjacent grinding time points;

(3) In order to eliminate the loss and influence of the original natural aggregate during
the grinding process, the natural aggregate was taken as a control group. Grinding
can be terminated when the quality loss rate of various recycled coarse aggregates
approaches the same as that of natural aggregates, and the amount of attached mortar
removed A is:

A =
Mnatural − MRCA

Msample
× 100% (1)

In the formula, A refers to the amount of attached mortar removed, %; MRCA refers
to the mass of recycled coarse aggregate after ball milling, g; Mnatural refers to the mass
of natural coarse aggregate after ball milling, g; and Msample refers to the mass of sample
before ball milling, g.

The morphology of the recycled coarse aggregate after high temperature calcination is
shown in Figure 5. Observing the appearance of the recycled aggregate after calcination, it
can be seen that there were obvious cracks in the old interface and the interface transition
zone and the mortar structure was relatively loose, but the appearance of the aggregate
had no obvious change. The aggregate morphology after ball milling is shown in Figure 6.
After different calcination temperatures and grinding times, the particle size of the recycled
aggregate and natural aggregate was close to pebble, and there was basically no mortar
attached to the surface of the recycled coarse aggregate.
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3. Results and Discussions
3.1. Interfacial Structure of Recycled Coarse Aggregate

It can be seen from Figure 7 that the old interface between the original aggregate and
the attached mortar was relatively clear. Figure 7a shows that the structure of the original
aggregate was uniform and compact, without micro cracks, while the attached mortar had
a large number of irregular microcracks and holes. The microstructure was relatively loose.
There was a large number of irregular micro-cracks in the mortar attached to the surface of
the recycled coarse aggregates, which were generated from the interface transition zone
and extended to the direction of the mortar matrix. These microcracks are the weak link
of recycled coarse aggregate concrete. The attached mortar on the surface of the coarse
aggregate was removed and Figure 7b shows that there was a big difference between the
microcracks L1 and L2. There were more hydration products inside L1, and there were
more fine cracks around and extending to the surroundings. It can be judged that this kind
of crack is caused by the original concrete itself and has nothing to do with the crushing
of the waste concrete. However, there was no hydration product filling in the L2, and the
crack form was single, indicating that this kind of crack was relatively dense in hydration,
but there was a lot of surface. The holes were prone to cracks at the edges and extended
to the outside. Nucleus crystals formed inside the holes, mainly in the form of floc-like
crystals. The image was caused by mechanical damage. Figure 7c shows that due to the
long hydration age of the mortar matrix, there were obvious cracks at the old interface, and
the hydration products were abundant and the structure was relatively loose at the cracks.
The hydration products were mainly flocculent. Enrichment of clumpy C–S–H gel and



Materials 2022, 15, 257 7 of 14

flake Ca(OH)2 led to large crystal particles [38] and high porosity at the interface junction,
which was also the main weak link of recycled concrete.
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3.2. Determination of Calcination Temperature

The natural coarse aggregates were calcined at 100 ◦C, 200 ◦C, 300 ◦C, 400 ◦C, 500 ◦C,
600 ◦C, and normal temperature, respectively. Three samples for each temperature level
was selected, and the testing samples were cut into 10 mm slices. These were then subjected
to grinding and polishing treatment to meet the requirements of the microhardness test
specimens (Figure 8). Six measurement areas were taken for each sample, each measure-
ment area had 16 measurement points, so that the microhardness of each measurement
point could be calculated, the six maximum and six minimum values of the 96 microhard-
ness values were removed before taking the average value. The distribution of measuring
points is shown in Figure 9.

Calculation of the loss rate of natural aggregate microhardness at different temperatures:

S =
HV(T0)− HV(T1)

HV(T0)
× 100% (2)

In the formula, S is the microhardness loss rate, %; HV(T0) is the normal environ-
mental hardness value, MPa; and HV(T1) is the hardness value after T1 high temperature
calcination, MPa.
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Figure 10 shows the microhardness loss rate of natural aggregates at different calci-
nation temperatures. The calcination temperature below 100 ◦C had little effect on the
aggregate. At 400 ◦C, the microhardness decreased to 245 MPa, the hardness loss rate was
14.6%, and the hardness of the aggregate was gradually damaged. When the temperature
rose to over 400 ◦C, the microhardness value of the natural aggregate changed rapidly,
and the hardness loss rate increased to 41.2%. After calcining the natural aggregate to
700 ◦C, the cracks and collapse that appeared around the indentation were obvious in
the microhardness test, and the diagonal line was not obvious to read for the data. It
can be concluded that excessive temperature will damage the hardness of the aggregates.
Therefore, considering the high energy consumption and the damage to the hardness of the
coarse aggregate, it was finally determined that the calcination temperature of the recycled
coarse aggregate could not be higher than 400 ◦C.
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3.3. Quantitative Analysis of Attached Mortar

Due to the different calcination temperature, the grinding time of the attached mortar
on the surface of the recycled coarse aggregate was different. After the calcination temper-
ature exceeded 400 ◦C, the damage to the old aggregate in the recycled coarse aggregate
was more serious. Therefore, in order to research the content of the attached mortar on the
surface of the aggregate, the temperature was controlled in the range of 100–400 ◦C, and by
adjusting the grinding time, testing, and analyzing the content of the attached mortar, the
calcination temperature and grinding time can eventually be determined.

It can be seen from Figure 11 that when the calcination temperature of class I recycled
coarse aggregate was below 200 ◦C, the removal rate of waste mortar was relatively small,
and when the calcination temperature reached 300 and 400 ◦C, the removal of the attached
mortar became more obvious. After 20 min of grinding time, the removal rate of the two was
roughly equal and tended to be stable, and the contents of the attached mortar were 7.5%
and 7.9%, respectively. The class II and III recycled coarse aggregates changed significantly
with the calcination temperature. The removing rates after calcination at 400 ◦C and
grinding for 20 min were 22.8% and 39.7%, respectively. Therefore, the calcination-grinding
method was used to remove the attached mortar on the surface of the recycled aggregates,
the calcination temperature of class I, class II, and class III recycled coarse aggregates
should be controlled below 400 ◦C, and the optimum grinding time was 20 min.

After the low-quality recycled coarse aggregate underwent particle shaping and
strengthening treatment, the attached amount of waste mortar was effectively removed
under the action of external force. In particular, the high-quality recycled coarse aggregate
after the shaping and strengthening treatment contained less waste mortar on the surface,
its surface had no edges and corners and the grain shape was relatively smooth, and the
content of the mortar obtained after calcination and grinding was only 7.5%. Therefore, it
was also proven that the use of the particle shaping physical strengthening method can
effectively reduce the waste mortar attached to the surface of the recycled coarse aggregate,
and improve the basic performance and quality of the recycled coarse aggregate. With
the increase in the calcination temperature, the removal rate of the recycled aggregate
gradually increased. This was mainly due to the difference in thermal expansion between
the aggregate and mortar under the action of the high temperature of recycled coarse ag-
gregate, which produced an obvious thermal stress concentration at the interface transition
zone and produced a large number of microcracks and damage at the interface transition
zone and the mortar matrix, which weakened the interface structure performance of the
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recycled aggregate [39]. Under the action of mechanical external force and self-collision,
the separation and recycling of recycled aggregate and old mortar were realized, and the
grain shape of the treated recycled aggregate was relatively round.
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3.4. Correlation between Attached Mortar Content and Technical Index

By fitting the measured test data, the relationship between the attached amount of
recycled aggregate mortar and water absorption, apparent density, and crushing index
was obtained. It can be seen from Figures 12–14 that the quality of the recycled coarse
aggregate is closely related to the amount of mortar attached to the surface. The greater the
mortar content, the higher the water absorption rate, the lower apparent density, and the
higher crushing index of the aggregate. The content of type III RCA mortar was as high as
34.5%. After high temperature calcination and grinding, the water absorption and crushing
indexes of RCA mortar decreased by 78.2% and 67.6%, respectively, and the apparent
density increased by 294 kg/m3. The content of II type RCA attached mortar was 22.8%,
the water absorption rate and crushing index increased 65.2% and 57.4%, respectively after
high temperature calcination-grinding, and the apparent density decreased 177 kg/m3.
The basic properties of the II and III type aggregates were obviously lower than that of the
high-quality recycled coarse aggregate (I type). This is because the attached mortar on the
surface of class II and class III RCA formed internal damage such as micro voids and cracks
in the attached mortar and the transition zone of the old interface in the crushing process,
which led to the degradation of its performance.
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Figure 13. (a) The effect of calcination and grinding on the apparent density of recycled aggregate. 
(b) The relationship between the content of attached mortar and the apparent density. 
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Figure 12. (a) Influence of calcination and grinding on the water absorption of recycled aggregate.
(b) The relationship between the content of attached mortar and water absorption.

Materials 2022, 15, x FOR PEER REVIEW 11 of 14 
 

 

crushing indexes of RCA mortar decreased by 78.2% and 67.6%, respectively, and the ap-
parent density increased by 294 kg/m3. The content of II type RCA attached mortar was 
22.8%, the water absorption rate and crushing index increased 65.2% and 57.4%, respec-
tively after high temperature calcination-grinding, and the apparent density decreased 
177 kg/m3. The basic properties of the II and III type aggregates were obviously lower than 
that of the high-quality recycled coarse aggregate (I type). This is because the attached 
mortar on the surface of class II and class III RCA formed internal damage such as micro 
voids and cracks in the attached mortar and the transition zone of the old interface in the 
crushing process, which led to the degradation of its performance. 

天天天天 RCA-Ⅰ RCA-Ⅱ RCA-Ⅲ
0

2

4

6

8

10
W

at
er

 a
bs

or
pt

io
n（

%
）

Aggregate category

 After    Before

Natural aggregate

(a)

 
0 8 16 24 32 40

2

4

6

8

10

y=0.1747X+0.858
R2=0.9724

W
at

er
 a

bs
or

pt
io

n(
%

)

Adhesion mortar content（%）

(b)

 

Figure 12. (a) Influence of calcination and grinding on the water absorption of recycled aggregate. 
(b) The relationship between the content of attached mortar and water absorption. 

天天天天 RCA-Ⅰ RCA-Ⅱ RCA-Ⅲ
2000

2200

2400

2600

2800

3000

Pe
rf

or
m

an
ce

 d
en

sit
y（

kg
/m

3 ）

Aggregate category

 After   Before

Natural aggregate

(a)

 
0 8 16 24 32 40

2000

2200

2400

2600

2800

3000

y=−0.84162x+2607.8
R2=0.9567

Pe
rf

or
m

an
ce

 d
en

sit
y（

kg
/m

3 ）

Adhesion mortal content (%)

(b)

 

Figure 13. (a) The effect of calcination and grinding on the apparent density of recycled aggregate. 
(b) The relationship between the content of attached mortar and the apparent density. 

天天天天 RCA-Ⅰ RCA-Ⅱ RCA-Ⅲ
0

10

20

30

40

C
ru

sh
 in

de
x 
（

%
）

Aggregate category

 After   Before

Natural aggregate

（a）

 
0 8 16 24 32 40

10

20

30

40

y=−0.6564x+4.7662
R2=0.9889

C
ru

sh
 in

de
x（

%
）

Adhesion mortar content (%)

(b)

 

Figure 13. (a) The effect of calcination and grinding on the apparent density of recycled aggregate.
(b) The relationship between the content of attached mortar and the apparent density.
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Figure 14. (a) Influence of calcination and grinding on the crushing index of recycled aggregate.
(b) Relationship between the content of attached mortar and crushing index.

After calcination and grinding, the water absorption, apparent density, and crushing
index of class I recycled coarse aggregate showed relatively little change, and was similar to
the natural aggregate. This was because after two-time physical strengthening, the content
of attached mortar on the surface of class I recycled coarse aggregate decreased obviously,
but there was still a small amount of hardened cement mortar. In contrast, the properties of
recycled coarse aggregate of class II and class III were significantly affected by the content
of the attached mortar. Figure 13 shows that the apparent density of the natural coarse
aggregate increased by 2%, which was due to the decrease in surface edges and angles
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of the natural aggregate after high-temperature calcination and grinding, which reduced
its porosity and slightly increased its apparent density, but high temperature made its
crushing index value increase by 7%.

It can be concluded from Figures 12–14 that there was a good linear relationship
between the content of attached mortar on the surface of the recycled coarse aggregate and
its water absorption, apparent density, and crushing index. The correlation coefficient R2

was 0.9724, 0.9567, and 0.9889, respectively, which is very consistent with the measured
value. After high temperature calcining and high-speed grinding, the water absorption,
apparent density, and crushing indexes of the recycled coarse aggregate were basically
the same as those of the natural aggregate, which indicates that the high-temperature
calcination-grinding method can effectively remove the attached mortar on the surface
of the recycled coarse aggregate. For the recycled coarse aggregate used in practical
application engineering, only the water absorption rate, apparent density, and crushing
index of the recycled coarse aggregate can be detected. Using the established linear
relationship, the content of waste mortar attached to the surface of different recycled
coarse aggregates can be accurately measured, and the internal defects of recycled coarse
aggregate can also be quantitatively reflected.

4. Conclusions

In this study, based on the performance requirements of different recycled coarse
aggregates, the performance of recycled coarse aggregates through the process of physical
strengthening methods were comprehensively compared and analyzed, and the content
of attached mortar of the recycled coarse aggregate was quantitatively analyzed by the
calcination-grinding method, where the following results were obtained.

(1) The physical strengthening method can effectively reduce the content of attached
mortar to the surface of the recycled coarse aggregate, improving the performance
of recycled aggregate. Through the secondary physical strengthening process, the
water absorption rate of recycled coarse aggregate was reduced to 2.2% from 7.3%,
the needle flake content was only 1.2%, and the crushing index was only 3.1% higher
than that of the natural coarse aggregate, which fully meets the standard of the class I
recycled aggregate.

(2) The calcining-grinding method can effectively separate the recycled aggregate and
attached old cement mortar. The calcination temperature below 100 ◦C had no great
influence on the aggregate. When the temperature was 400 ◦C, the microhardness
decreased to 245 MPa, and the hardness loss rate was 14.6%. The hardness of the
aggregate had been damaged. Combined with the quality change of different-class
recycled coarse aggregate and the microhardness loss of the aggregate under high
temperature, the appropriate calcination temperature for the class I, II, and III recycled
coarse aggregate was determined as 400 ◦C and the optimum grinding time was
20 min.

(3) The measured attached mortar contents of classs I, II, and III recycled coarse aggre-
gates were 7.9%, 22.8%, and 39.7%, respectively, by calcining-grinding technology.
Meanwhile, the water absorption, apparent density, and crush index had a good
linear relationship, and the established linear relationship could accurate measure
the content of the RCA adhesive mortar on the surface, which can directly reflect the
internal defects of RCA.
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