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Key Points

• Integrated
transcriptome analyses
identify putative
precancerous
circulating clonal
CD4+ T-cell
populations in patients
with CTCL.

• The study results
reveal promising
therapeutic strategies
via targeting of CD82
and JAK kinases.
The incidence of cutaneous T-cell lymphoma (CTCL) increases with age, and blood

involvement portends a worse prognosis. To advance our understanding of the

development of CTCL and identify potential therapeutic targets, we performed integrative

analyses of paired single-cell RNA and T-cell receptor (TCR) sequencing of peripheral blood

CD4+ T cells from patients with CTCL to reveal disease-unifying features. The malignant

CD4+ T cells of CTCL showed highly diverse transcriptomic profiles across patients, with

most displaying a mature Th2 differentiation and T-cell exhaustion phenotype. TCR-CDR3

peptide prediction analysis suggested limited diversity between CTCL samples, consistent

with a role for a common antigenic stimulus. Potential of heat diffusion for affinity-based

trajectory embedding transition analysis identified putative precancerous circulating

populations characterized by an intermediate stage of gene expression and mutation level

between the normal CD4+ T cells and malignant CTCL cells. We further revealed the

therapeutic potential of targeting CD82 and JAK that endow the malignant CTCL cells with

survival and proliferation advantages.

Introduction

Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of non-Hodgkin lymphomas.1 The most
common form of CTCL exists on a spectrum of mycosis fungoides (MF) and Sézary syndrome (SS),
characterized by malignant clones of skin-homing CD4+ T cells that may expand in the peripheral blood
of patients with advanced disease and are indicative of a worse prognosis. The advanced forms of MF
and SS CTCLs are more likely to show blood involvement and include patients with erythrodermic stage
III disease, with a median survival rate of 4 to 6 years, and extracutaneous disease stage IVA (lymph
nodes) or IVB (viscera), with a survival of <1.5 years.2 Analyses by comparative genomic hybridization3,4

and exome and whole-genome sequencing5-10 have revealed marked genetic heterogeneity across
malignant cells of patients with CTCL, in particular within somatic copy number variations (SCNVs)
relative to other cancers, but also within somatic single-nucleotide variations (SSNVs). Despite this
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mutational diversity, transcriptome profiling5,11-13 has shown that
CTCL cells have high expression of several genes and their prod-
ucts, including TOX, TPO, PLS3, KIR3DL2, CCR4, and GATA3, 2
of which are targets of the current anti-CCR4 (mogamulizumab)
and anti-KIR3DL2 (lacutamab) monoclonal antibody therapies.
Somatic mutations in genes encoding T-cell receptors (TCRs) and
JAK-STAT molecules have also been characterized in CTCL,
including SSNVs of JAK1, JAK2, and JAK3, and SCNV amplifica-
tions of STAT3 and STAT5B, and aberrant JAK3/STAT signaling
has been identified as a mechanism that promotes proliferation and
survival of CTCL cells.7,14-16 However, ex vivo studies17,18 have
revealed that JAK inhibition via nonspecific JAK targeting is variably
effective at limiting CTCL survival, raising the question of whether
more specific kinase inhibitors may be more effective.

Although the etiology and pathogenesis of CTCL have yet to be fully
elucidated, a proposed19 progression includes a combination of
chronic TCR stimulation and survival-enhancing mutations induced
by inherited factors and/or environmental exposures of mature
peripheral skin-homing CD4+ T cells. Examples include cutaneous or
systemic chemical exposures20 and UV radiation,5,7 telomeric-
shortening–associated chromosomal instability,21,22 SCNV selec-
tion, and accumulation of SSNV mutations that, in concert, drive the
antiapoptotic, proliferative, chronic T-cell activating, and antitumor
immune inhibiting behavior of CTCL cells. In fact, UV signature
mutations have contributed to the mutational burden in 52% of
patients with MF and 23% of patients with SS.23,24

Although these specific genetic and transcriptomic features of
CTCL cells have been identified, the most widely used strategies
for assessing malignant hematological involvement in patients with
CTCL rely on immunophenotypic identification of CTCL cells as
CD4+ CD26− and/or CD4+CD7− or by expansion of the TCRVβ
family.25 However, these immunophenotypes may have substantial
overlap with nonmalignant CD4+ T cells. Alternatively, mRNA
sequencing of the completely rearranged TCRαβ heterodimer may be
used as part of a multiomics approach to characterize more precisely
the malignant T-cell clone relative to other CD4+ T cells while poten-
tially identifying any other T-cell populations26,27 that may share the
TCR clonotype with the bona fide CTCL cells. One such population
may be precancerous or intermediate cells (ie, those that comprise a
group of premalignant cells that are intermediate in the transition from
normal to malignant cells and that are capable of increasing the risk of
cancer development and subsequently may coexist with the malignant
cells with the potential to influence tumor burden28,29).

In our study, we paired single-cell RNA sequencing (scRNAseq)
with TCRαβ sequencing (scTCRseq) of CD4+ T cells from 11
patients with CTCL with documented blood involvement and 3
healthy volunteers, to better characterize malignant T cells
compared with non-CTCL CD4+ cells within patients and with
normal CD4+ T cells from healthy controls. By performing individual
patient scRNAseq analysis along with the potential of heat diffusion
for affinity-based trajectory embedding (PHATE) analysis30 in
combination with scTCRseq and CTCL clonotyping, we con-
structed the trajectory of cells along with the transition from normal
CD4+ T cells to bona fide CTCL cells and identified putative pre-
cancerous cells that were consistently intermediate in the expres-
sion of CTCL-defining genes and inferred mutation load. We
extended these findings by exploring the therapeutic potential of a
CTCL cell–overexpressing gene, CD82, which belongs to the
446 REN et al
tetraspanin family and has also been reported to promote the
proliferation of acute myelogenous leukemia (AML) cells via
STAT5A and AKT signaling.31-33 However, the role of CD82 in
CTCL pathogenesis is unknown. In prior studies we found that
patient-derived CTCL cells exhibit variable sensitivity to the JAK
inhibitor ruxolitinib, and we now show that CTCL cells rendered
CD82 deficient are specifically associated with phospho-JAK/
STAT downregulation. Thus, our investigation also compared the
relative potential of a spectrum of JAK inhibitors in treatment of
CTCL. These integrated transcriptomic and trajectory analyses
collectively provide fundamental insights into the development and
progression of and potential therapeutics for CTCL.

Methods

Patient samples

Peripheral blood from patients with CTCL and healthy donors was
collected in lithium heparin tubes at the Yale Cancer Center after
obtaining written informed consent and following all regulations in
accordance with the Yale Human Investigational Review Board.
Procedures for isolation of various cell populations, cell culture,
JAK inhibitor screening, and flow cytometry are described within
the supplemental Methods.

scRNA library preparation and sequencing

Libraries were prepared by the Yale Center for Genome Analysis
using single-cell library preparation kits from 10x Genomics. Single-
cell library kits, RNA data processing, quality control, and analysis
methods are presented in the supplemental Methods.

SSNV and SCNV analyses

CellSNP mode 134 was leveraged to infer SSNV per cell for all
samples. The R package InferCNV35 was used to infer SCNV at a
single-cell level. Both are further described in the supplemental
Methods.

CD82 knockout via CRISPR-Cas9

Purified malignant T cells from the peripheral blood of patients
were cultured for 3 days, and CD82 gene knockout was performed
according to the Integrated DNA Technologies protocol, as
described in the supplemental Methods.

Results

Integrative analysis of paired mRNA single-cell

transcriptome and TCR sequencing of CD4+ T cells

from patients with CTCL reveals the heterogeneity

of CTCLs

Purified CD4+ T cells from the peripheral blood of 11 patients with
CTCL (Table 1) and 3 healthy individuals were analyzed by 5′
scRNAseq and paired scTCRseq (Figure 1A). We found that the
dominant TCR clone in each patient with CTCL was substantially
expanded, reflecting their CTCL identification by both scRNAseq
data analysis and TCR clonal identity (Figure 1B). To identify
common features among CTCL cells from disparate patients, we
performed a Seurat integration analysis (Figure 1C). Unsupervised
clustering of cells was represented by 2-dimensional Uniform
Manifold Approximation and Projection, followed by the annotation
14 FEBRUARY 2023 • VOLUME 7, NUMBER 3



Table 1. Patient information

Sample ID Age Sex ISCL stage B stage CTCL subtype Clinically abnormal phenotype % CD4
+
CD26

−

Abs. abn.*

(/μL) Treatment

P1 81 M IVA B2 SS CD3dim+ CD4+ CD7− CD26− CD2+ CD8− CD10− CD5+ 87.8 1818.3 ECP, ACIT

P2 76 M IIB B1 MF CD3dim+ CD4+ CD7− CD26− CD8− CD5+ CD2+ 37.4 1774.6 ECP, BEX

P3 72 F IVA B2 SS CD3+ CD4+ CD7Var+ CD26− CD8− CD2+ CD25− 82.6 2799.6 ECP, BEX, IFN-α

P4 79 M IA B1 MF CD3dim+ CD4+ CD7− CD26− CD2+ 61.2 964.5 ECP, BEX

P5 56 M IVA B2 SS CD3+ CD4+ CD7+CD26− CD2dim+ CD8− CD5+ CD25− 60.1 973.6 ECP, BEX

P6 85 M IVA B2 SS CD3+ CD4+ CD7dim/− CD26− CD2Var+ CD8− CD5+ 74.1 1387.2 ECP, BEX

P7 78 F IVA B2 SS CD3+CD4+CD7−CD26−CD5+CD8− 42.3 802.0 ECP, BEX, VRS

P8 74 F IVA B2 SS CD3+ CD4+ CD7+CD26−CD8− 89.0 979.0 Moga

P9 68 F IVA B1 SS CD3dim+ CD4dim+CD7− CD26dim/− CD2dim+CD8−

CD10− CD5dim+ CD25−
51.9 356.2 ECP, BEX,

IFN-α, IFN-γ

P10 70 M IIB B1 MF CD3+ CD4+ CD7−/+ CD26− CD5dim+ 44.8 503.9 ECP, BEX

P11 76 M IIB B1 MF CD3dim+ CD4dim+ CD7− CD26− CD5+ 58.0 580.0 ECP, BEX, IFN-α

ISCL stage and B stage are at diagnosis, and blood counts and treatments are at the time of sequencing.
Abs. abn., absolute numbers of abnormal cells; ACIT, acitretin; BEX, bexarotene; ECP, extracorporeal photopheresis; IFN-α, interferon-α; ISCL, International Society for Cutaneous

Lymphomas; Lymph, lymphocytes; Moga, mogamulizumab; VRS, Vorinostat; WBC, white blood cell.
*Abs. abn. = (% CD4+CD26− × % lymph.)/10 000 × WBC × 1000.
of CTCL cells and normal CD4+ T cells of each patient based on
the dominant CDR3 TCR sequence (Figure 1D). Integration
revealed that normal CD4+ T cells from different patients coclus-
tered, whereas the CTCL cells of individual patients each clustered
separately, distinguished from each other and from the unified
normal CD4+ T-cell cluster (Figure 1C).

When we selectively included only annotated CTCL cells for clus-
tering analysis, individual patients’ cells clustered distinctly. This is
also demonstrated by a heat map that shows that eachCTCL cluster
has a distinguishing gene signature (supplemental Figure 1).
Furthermore, annotation of CTCLs by T-helper (Th) cell subset
hallmark genes (Th2-like: GATA3 >1, CCR4 >1; T-regulatory
(Treg)–like: FOXP3 >1, CTLA4 >1; T-follicular helper (Tfh)–like:
PDCD1 >1,CXCR5 > 1; and Th17-like: RORC >1,CCR6 >1) also
revealed the diversity of CTCL cells among different patients, but
with a Th2-like phenotype more than the Treg-, Tfh-, or Th17-like
phenotype. In contrast, there was little to no Th1-like differentiation
among the CTCL cells (Figure 1E). In 10 of the 11 CTCL patient
samples, TCR clonotype profiling of the CTCL cluster in each
patient showed a single dominant TCR clone (the exception being
patient 6 [P6], where 2 TCRα and 2 TCRβ sequences were present
within each CTCL cell), confirming that CTCLs are monoclonally
expanded. Taken together, our data demonstrated wide tran-
scriptomic and TCR clonotypic heterogeneity among patients with
CTCL, albeit with features of a Th2 differentiation propensity.

PHATE analysis reveals putative precancerous

intermediate CD4+ T-cell populations in patients

with CTCL

CTCL is believed to be derived from mature effector T cells with
increased age-associated risk, suggesting that an accumulation of
genetic mutations may play an important role in CTCL development.
Given that TCRclonality is a fundamental feature ofCTCL, TCRclonal
status may provide insight into the history of CTCL developmental.
With this understanding, we hypothesized that a group of
14 FEBRUARY 2023 • VOLUME 7, NUMBER 3
genotypically and transcriptionally transitory circulating CD4+ T cells
(ie, intermediate in transitioning fromnormal CD4+ T cells tomalignant
CTCL cells) may be present in patients with CTCL. To test our
hypothesis, we performed scRNAseq analysis and CTCL scTCRseq
clonal annotation for each patient separately. We consistently
observed that total CD4+ T cells produced 2 general clusters clearly
delineated as CTCLs vs normal CD4+ T cells, (Figure 2A;
supplemental Figure 2). However, TCR clonotype annotation
(Figure 2B) consistently revealed in each patient an expanded pop-
ulation of normal-clustering CD4+ T cells that shared the identical
TCR clonotype with the malignant CTCL cells. When we sub-
clustered the normal T cells, those normal T cells expressing theCTCL
TCR clonotype were contained within a new cluster (Figure 2C-D;
supplemental Figure 2). When we compared the CTCL clonotype
frequency to all-clonotype mean frequency in both the total normal
CD4+ T-cell cluster and the CTCL clonotype–containing subcluster,
we found that the CTCL clonotype frequency was significantly
higher, indicating a previous level of clonal expansion in the CTCL
clonotype-positive, yet normal clustering, CD4+ T cells (Figure 2E-F).

We next used PHATE analysis, which enables the visualization of
high-dimensional data with cell trajectory structure to predict the
developmental direction of different cell clusters,30 and found
that the cluster of normal T cells containing the CTCL clonotype
was consistently situated between the main population of normal
T cells (that is, those without the dominant CTCL-clonotype) and
the main CTCL cluster (Figure 2G-H; supplemental Figure 3). This
finding further suggests that a putative transitional population exists
between normal CD4+ T cells and established CTCL cells
(Figure 2E-F; supplemental Figure 3). Transferring the group
identity of cells from the single-patient analysis to a CTCL patient-
integrated object also revealed the 3 groups: CTCLs, normal CD4+

T cells, and intermediate transitional CD4+ T cells (Figure 3A; top).
When differential expression genes (DEGs) were assessed within
this integrated dataset, in all cases the transitional CD4+ T cells
had expression that was intermediate between that of normal
PRECANCEROUS POPULATIONS IN CTCL 447
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CD4+ T cells and malignant CTCL cells (Figure 3, bottom;
supplemental Figure 4). We also performed analyses to detect
SSNVs34 and SCNVs35 inferred from the scRNAseq data
(Figure 3B-E). Once again, our putative transitional CD4+ pop-
ulations suggested a premalignant state with mutation levels
intermediate between normal CD4+ T cells and the CTCL cells,
notably with mutational diversity that was limited to a smaller subset
of that found within each CTCL population’s SSNVs (Figure 3B).
Similarly, a subset of CTCL SCNVs was shared with the transi-
tional CD4+ population (Figure 3E). Projection of SCNV level onto
the PHATE map revealed a progressive increase from normal
CD4+ T cells, to transitional cells, to CTCL cells (Figure 3F-G).
These findings collectively reveal that, in each patient, there was an
expanded clone of T cells, TCR matched to each malignant CTCL
cell population, with intermediate levels of expression of
Figure 1 (continued) top clonotype in the absence of any transcript for the other chain.

complete TCRα and 2 complete TCRβ sequences were present in the dominant clonotyp

samples derived from 11 patients with CTCL (112 840 single cells distributed by annotate

distinctly colored), as well as commonality of normal CD4+ T cells among the different pa

throughout the integrated UMAP: normal CD4+ T cells (blue), CTCL cells (highlighted in red

on characteristic gene expression are highlighted throughout the integrated UMAP. Th2-li

CXCR5 >1; Th17-like: RORC >1, CCR6 >1. (The gene cutoff of 1 indicates that the norm

Projection.

14 FEBRUARY 2023 • VOLUME 7, NUMBER 3
CTCL-defining genes, including those indicative of Th2 differenti-
ation status (supplemental Figure 5), as well as mutational loads,
suggesting that such intermediate cells represent precancerous
populations involved in development of CTCL.

Integrative analysis identifies common DEGs and

fundamental pathways among heterogenous CTCL

patient samples

Despite the heterogeneity among CTCL patient samples, we
looked for common features of CTCL by integrative analysis. DEG
analysis was performed to compare all CTCL cells to total normal
CD4+ T cells from patients and to all CD4+ T cells from healthy
controls. Plotting the Uniform Manifold Approximation and Projec-
tion and heat map (Figure 4A) revealed 66 upregulated genes and
Other clonotypes: all other TCRα and/or TCRβ CDR3 transcripts. Note that in P6, 2

e. (C) A UMAP resulting from the integration of the scRNAseq transcriptomes of

d, unsupervised clustering) highlights interpatient diversity (each patient with CTCL is

tients (blue). (D) Total CD4+ T cells from each patient are individually highlighted

according to the dominant CDR3 sequence of each patient). (E) T-cell subsets based

ke: GATA3 >1, CCR4 >1; Treg-like: FOXP3 >1, CTLA4 >1; Tfh-like: PDCD1 >1,

alized and scaled gene expression is >1.) UMAP, Uniform Manifold Approximation and
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13 downregulated genes within CTCL cells compared with both
normal CD4+ T-cell populations. Pathway and enrichment analysis
by Enrichr36,37 (https://maayanlab.cloud/Enrichr/) using The
Molecular Signatures Pathway Database (MsigDB_Hall-
mark_2020) identified 18 significantly (adjusted P ≤ .05) enriched
pathways (supplemental Table 1). Several signaling pathways
involved in T-cell activation and downstream of TCR signaling (eg,
allograft rejection, reactive oxygen species, tumor necrosis factor,
hypoxia, and mTORC-1) were notably enriched in CTCL cells
relative to normal CD4+ T cells (Figure 4B). Despite the fact that
our analyses integrated scRNAseq and scTCRseq data, the
enrichment pathways of DEGs from previously published bulk
RNAseq38 largely overlapped our scRNA DEGs. Taken together,
our identified enriched signaling pathways suggests that both TCR
engagement and cytokine-induced JAK/STAT signaling are criti-
cally involved in the persistence and proliferation of CTCL cells in
patients. In addition to the increase in several memory/activation
markers (SELL, CCR7, ITGBB1, BRD2, TNFRSF25, REL,
TSPAN2, TNFRSF4, and NR4A2) in CTCL, the DEG profile also
revealed that exhausted immune marker genes (TOX, TIGIT,
CTLA4, PDCD1, and LAG3) were significantly increased in CTCL
cells, suggesting the possible influence of chronic antigen stimu-
lation in patients with CTCL (Figure 4C).

In further considering the features of TCR activation and T-cell
exhaustion that may affect the antiapoptotic and proliferative
behavior of CTCL cells, we established an in vitro culture system
to assess the relevance of TCR engagement by using anti-CD3/
anti-CD28 stimulation, with and without resting the cells before
stimulation, given that prior studies have shown that exhausted
T cells proliferate again after withdrawal of chronic antigen
stimulation.39,40 We postulated that adding a resting period for
patient-derived CTCL cells before TCR restimulation would pro-
mote their proliferation ex vivo. Indeed, CTCL cells minimally
proliferated without TCR engagement, yet did so much more
readily under conditions of a 4-day period of rest before TCR
activation (Figure 4D-E; supplemental Figures 6 and 7), sug-
gesting that malignant CTCL cells have the capacity to proliferate
in a TCR-dependent manner. We also confirmed, in the CTCL
cells of our samples, the upregulation of previously identified
CCR4 and KIR3DL2 (Figure 4C), both of which are current
therapeutic targets.41-43 In addition, we found that expression of
CD82, another gene encoding a cell surface protein, was
significantly upregulated, suggesting its potential as a novel
therapeutic target. DEG analysis was also performed to compare
CTCLs from 2 different diagnosis categories, MF and SS, the
latter of which carries a worse prognosis.44 We found that
7 genes were upregulated, whereas 28 genes were down-
regulated in SS relative to MF, suggesting that these are potential
biomarkers for diagnosis and prognosis and requiring further
investigation (supplemental Figure 8).
Figure 3. Multidimensional characterization of the intermediate cell population

shown on the UMAP plot resulting from integration of the transcriptomes of 11 patients. D

composition of SSNVs (identified via CellSNP) of the intermediate and CTCL groups of a

considered to be individual-specific normal variants (Normal SNV [Background]). Common S

(C) Representative inferred SCNV map (identified via InferCNV). (D) Landscape of inferred

InferCNV) of the intermediate and CTCL groups. (F) PHATE plot of a single patient with t

between the intermediate and CTCL cell groups (unpaired t test, ~10 000 cells).
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CD82 regulates CTCL proliferation and apoptosis

through the JAK/STAT and AKT/PI3K pathways

We further characterized our newly identified CTCL DEG CD82 in
scRNAseq data and found that this surface protein, like CCR4 and
KIR3DL2, is intermediately expressed in the putative transitional
CD4+ T-cell population, and at a much lower level in normal CD4+

T cells (Figure 5A). Furthermore, flow cytometry confirmed that the
level of cell surface CD82 protein expression by CTCL cells was
significantly higher than in normal CD4+ T cells from the same
patients (Figure 5B; supplemental Figure 9). To understand the
function of CD82 in CTCL cells, we used CRISPR-Cas9 to knock
out the CD82 gene in isolated patient CTCL cells, confirming the
deletion at both the protein and mRNA levels (Figure 5C-D;
supplemental Figure 10). We found that CD82 deficiency markedly
reduced the proliferative capacity of the activated CTCL cells
(Figure 5E-F) and that apoptotic cells largely increased within the
CD82-knockout CTCL cultures (Figure 5G). Taken together, fea-
tures of CD82 expression, along with their relevance to CTCL cell
proliferation and survival, suggest a therapeutic targeting strategy
that could facilitate the elimination of CD82-expressing circulating
T cells and/or blocking CD82-dependent CTCL-cell proliferation
and increasing apoptosis. Notably, other studies have shown that
CD82 promotes the survival of AML cells through JAK/STAT and
ATK/PI3K pathways.32,45 Through phosphoprotein analysis of
CD82 signaling pathway components via flow cytometry, we found
reduced activation of JAK, STAT, and AKT in CD82-deficient CTCL
cells, suggesting that CD82 also drives proliferation of CTCL cells
via JAK/STAT and AKT signaling pathways (Figure 5H).

Our current enrichment analysis (Figure 4B) highlighted JAK/STAT
activation pathways in CTCL cells, and our recent research helped
elucidate the potential therapeutic role of the JAK-inhibitor rux-
olitinib.17 Although these data suggest that targeting JAK signaling
has a potential role in the treatment of CTCL, we considered
whether other JAK inhibitors would show enhanced activity across
patients. Thus, we performed dose-response assays against a
panel of agents exhibiting different JAK family member selectivity
profiles, to identify their relative potential in the treatment of CTCL
(Figure 5I). Of 13 assessed agents, pacritinib, fedratinib, and
entrectinib displayed the greatest potency, with all patient samples
showing a 50% inhibitory concentration of <10 μM.
Discussion

Unlike other hematopoietic malignancies that may have signature
gene fusions or limited gene copy number alterations, the genetic
landscape of CTCL is notably diffuse. The extensive variability of
SCNVs and SSNVs that are present within CTCL cells challenges
our understanding of CTCL etiology and pathogenesis in the
development of therapeutics. Previously, we and others have used
in CTCL. (A) Three annotated groups of cells from each single-patient analysis are

EGs among the 3 groups are presented in a heat map. (B) Bar plot displaying the

representative patient. SSNVs found in the normal CD4+ T-cell population were

SNVs are those mutations found in both the intermediate and CTCL cell populations.

SCNVs among 10 patients with CTCL. (E) The composition of SCNVs (identified via

he SCNV level of each cell highlighted. (G) The significantly different level of SCNVs
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bulk genetic and expression analyses to address these challenges.
More recently, Herrera et al12 and Borcherding et al11 combined
RNAseq with TCRseq and showed the heterogeneity of CTCL
cells, which reflects differential disease development stages,
treatment sensitivities, and tissue microenvironment localization. By
also using an integrative analysis combining scRNAseq and
scTCRseq with PHATE analysis, we were able to provide novel
insights into the development and progression of CTCL and to
identify promising therapeutic strategies.

The propensity for a Th2 phenotype, known to drive symptomatic
features of CTCL, or a Treg phenotype among CTCL cells is also a
likely contributor to the decreased cellular immunity in patients with
CTCL that is evidenced by an increased risk of herpes zoster and
secondary malignancies.15,46 Specific cytokines play critical roles
in the pathogenesis of Th2-like CTCL cells. Interleukin-4 (IL-4)
induces the differentiation of naive Th to the Th2 phenotype, which
subsequently produces additional IL-4 in a positive feedback loop.
In addition, Th2 effector cytokines IL-5, IL-13, and IL-31 are over-
expressed in CTCL cells.47-49 IL-5 is responsible for the maturation
and activation of eosinophils and, together with IL-13, promotes
allergic inflammation, whereas IL-31 is directly linked to pruritus in
patients with CTCL.

Unlike bulk RNAseq, which usually requires sorting of CTCL cells
based on loss of T-cell markers such as CD7 and CD26, which are
not always consistent, our parallel scRNAseq and scTCRseq
sequencing accurately identified malignant cells via the annotation
of the dominant monoclonal TCR sequence onto the subgroup of
cells generated by unbiased clustering. The PHATE algorithm
further generated cell trajectories that reflected the developmental
direction between different clusters. At single-cell resolution, our
integrative analysis combined with PHATE consistently identified a
transitional group of cells with a developmental stage between
normal T cells and established malignant CTCL cells, which would
not have been possible by bulk RNAseq. Our subsequent muta-
tional analysis further supports a pathoetiology of CTCL that
involves a progressive increase in mutation acquisition from normal
T cells, to intermediate precancerous T cells, to the eventual
emergence of bona fide malignant CTCL cells.

By comparing genetic mutations between the latter 2 groups, we
further narrowed down a proportion of CTCL-unique mutations that
may play pivotal roles in driving malignant transformation. In addi-
tion, given that the transcriptional and mutational profiles of the
putative premalignant populations are intermediate between
normal and malignant CD4 T cells, it is highly possible that there is
a common genetic trajectory across different patients. Dis-
tinguishing such would require an additional genomic component
to a future multiomics analysis of CTCL cells. Nonetheless, we
used the program CellSNP34 to determine the top 10 mutated
genes (SSNVs in DNM3, CCDC47, AC016831.7, RPTOR, TOX,
SMYD3, SKAP1, TSHZ2, HCG27, MUC20-OT1) in our CTCL
intermediate cells that were commonly shared (50% or greater)
Figure 4 (continued) vs normal CD4+ T cells, as well as increased CD82, CCR4, and K

response to TCR engagement was significantly increased after a period of rest in vitro. Eac

analysis of the proliferative capacity of CTCL cells. Cells were cultured with no stimulation f

after a 4-day rest (Rest+Stim). Simulation consisted of anti-CD3+anti-CD28 for 2 days fo

Manifold Approximation and Projection.
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among our patient samples (supplemental Table 2). If such inter-
mediate cells play a role in the development, maintenance, and/or
transition into CTCL cells, tracking them before and after treatment
may show whether their continued presence (or elimination) is
associated with durability of response and disease recurrence.

That CTCL cells also show features of chronic activation and
exhaustion led us to consider whether chronic antigen exposure is
ongoing within patients with CTCL and whether it influences sur-
vival and proliferative advantages over acquired mutations. Indeed,
despite the identification of SSNVs and SCNVs in cell cycle
regulating tumor suppressor genes, such as TP53 and CDKN2A,
and T-cell activating genes, such as STAT3 and STAT5B, CTCL
cells are notoriously limited in their capacity to grow ex vivo. Again,
this limitation is suggestive of a continued reliance on cognate
antigen stimulation. The potential for dependence of CTCL on
chronic antigen stimulation has also been supported by the clus-
tering of CTCL around Langerhans cells in Pautrier’s micro-
abscesses1 and around dendritic cells in ex vivo culture systems.50

Thus, future improved screening and accurate identification of
CTCL TCR specificity may provide additional insight into devel-
opment of CTCL.

Postthymically, T-cell cycling is normally regulated, first by the dif-
ferentiation of naive T cells into effector and memory T cells after
initial exposure to cognate antigenic peptides along with cos-
timulatory signals (eg, via CD28). Second, repetitive antigen
exposures thereafter may further drive effector/memory T-cell
clonal expansion, whereas chronic exposure may trigger an
exhaustive state characterized by unresponsiveness to antigen
stimulation and increased expression of coinhibitory molecules.
CTCL cells show features of both a chronic activation and chronic
exhaustion state that may lead to perpetuation of low-level prolif-
eration of CTCL precursor cells. How and when such cells acquire
mutations is akin to similar questions for other premalignant states,
including in epithelial malignancies (eg, cervical intraepithelial
neoplasia/cervical cancer, and actinic keratosis/skin) and hemo-
poietic cancers (eg, myelodysplastic syndrome/AML and circu-
lating monoclonal B-cell lymphoproliferative states/B-cell leukemias
in the bone marrow and blood).

Analysis of DEGs revealed TCR-induced T-cell activation and
exhaustion markers in CTCLs, and we demonstrated that the
induction of optimized CTCL cell proliferation requires short-term
rest to recover from the exhaustive state, followed by TCR stimu-
lation, which suggests a possible in vivo CTCL dynamic. The skin or
skin-draining lymphoid organs may provide an antigen-dependent
CTCL stimulatory microenvironment to continuously drive their
proliferation. Although chronic antigen presentation may shift
activated CTCL cells to a more exhausted state, we postulate that
this can be reversed by egressing into blood circulation where the
absence of antigen provides a resting condition for the CTCL cells,
until they migrate back to the skin and/or lymph nodes for another
round of stimulation and proliferation.
IR3DL2 gene expression in CTCLs. (D) The percentage of CTCLs that proliferate in

h line represents 1 patient-derived sample (n = 3). (E) Representative flow cytometric

or 4 days (No Stim) or were stimulated immediately after isolation (No Rest + Stim) or

llowed by washing and a 2-day expansion in the absence of stimuli. UMAP, Uniform
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Figure 5. CTCL hallmark gene CD82 regulates proliferation and apoptosis via the JAK-STAT signaling pathway. (A) Genes CD82, CCR4, and KIR3DL2 displayed a similar
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compared with normal CD4+ T cells from CTCL patient–derived PBMCs (n = 9; 1-tailed t test). (C) Representative histograms comparing CD82 expression in purified CTCL cells

that have undergone either CD82 knockout (CD82-KO, blue) or mock knockout (CD82-NC [negative control], red). (D) Bulk RNAseq was used to confirm CD82 expression in purified

CTCL cells before and after CD82 knockout. (E) Comparison of the relative percentage of CTCL cell proliferation in CD82 knockout and mock knockout CTCLs (n = 4; 1-tailed

paired t test). (F) Representative flow cytometric analysis of the proliferative capacity of CTCL cells (CD82-KO and CD82-NC) cultured for 2 days after anti-CD3+anti-CD28 stimulation

for 2 days. (G) Comparison of the percentage of apoptotic cells present in CD82 knockout and mock knockout CTCLs in the proliferation experiment in panel E. (H) Comparison
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inhibitors, from which the 50% inhibitory concentrations were calculated. Each dot represents a single patient’s response to a single drug.
Our biomics analysis also suggested 2 novel therapeutic strategies
for CTCL. We identified the overexpressed cell surface marker
CD82 and showed that CD82 knockout reduced CTCL cell pro-
liferation and increased apoptosis. In addition, reduced activation
454 REN et al
of downstream JAK, STAT, and AKT were seen in CD82-deficient
CTCL cells. Given that CD82 expression is not limited to CTCL
cells,51,52 emerging strategies (eg, bispecific antibodies and/or
prodrug-enzyme–paired agents) would be necessary to
14 FEBRUARY 2023 • VOLUME 7, NUMBER 3



therapeutically target this surface protein. Our investigation of the
effect of specific JAK family member inhibition on patient-derived
CTCL cell viability suggests certain JAK inhibitors may more
effectively target CTCL cells across patients, but clinical studies
are necessary to fully elucidate the safety and efficacy of such JAK
inhibitors in the treatment of patients with CTCL.
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