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Abstract

Superspreading, or overdispersion in transmission, is a feature of SARS-CoV-2 trans-

mission which results in surging epidemics and large clusters of infection. The

dispersion parameter is a statistical parameter used to characterize and quantify het-

erogeneity. In the context of measuring transmissibility, it is analogous to measures of

superspreading potential among populations by assuming that collective offspring dis-

tribution follows a negative-binomial distribution. We conducted a systematic review

and meta-analysis on globally reported dispersion parameters of SARS-CoV-2 infec-

tion. All searches were carried out on 10 September 2021 in PubMed for articles

published from 1 January 2020 to 10 September 2021. Multiple estimates of the

dispersion parameter have been published for 17 studies, which could be related to

where and when the data were obtained, in 8 countries (e.g. China, the United States,

India, Indonesia, Israel, Japan, New Zealand and Singapore). High heterogeneity was

reported among the included studies. The mean estimates of dispersion parameters

range from 0.06 to 2.97 over eight countries, the pooled estimate was 0.55 (95%

CI: 0.30, 0.79), with changing means over countries and decreasing slightly with the

increasing reproduction number. The expected proportion of cases accounting for 80%

of all transmissions is 19% (95% CrI: 7, 34) globally. The study location and method

were found to be important drivers for diversity in estimates of dispersion parame-

ters. While under high potential of superspreading, larger outbreaks could still occur

with the import of the COVID-19 virus by traveling even when an epidemic seems to

be under control.
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1 INTRODUCTION

Anovel coronavirus (SARS-CoV-2)was first identified inWuhan,China,

in early 2020 and rapidly spread throughout the world. The World

Health Organization (WHO) declared a pandemic on 11 March 2020

(Wan, 2020). As of 2 July 2022, over 548 million confirmed COVID-19

cases and 6.34million deaths have been reported (World HealthOrga-

nization, 2022a). Worldwide, five variants of concern (VOC, e.g. Alpha,

Beta, Gamma, Delta and Omicron) and eight variants of interest (VOI,

e.g. Epsilon, Zeta, Eta, Theta, Iota, Kappa, Lambda andMu) have already

been identified byWHO to-date (World Health Organization, 2022b).

Some of these variants have exhibited increased transmissibility and

severity compared towild-type SARS-CoV-2 virus, with some also able

to partially evade immunity conferred by prior infection or vaccination

(Garcia-Beltran et al., 2021).

The dispersion parameter (k) is a statistical parameter used to char-

acterize and quantify heterogeneity in certain distributions. In the

context of measuring transmissibility, overdispersion in transmission

has often been estimated by assuming that the collective offspring dis-

tribution follows a negative-binomial distribution (Lloyd-Smith et al.,

2005; Su et al., 2020). Specifically, the variance of the number of sec-

ondary infections from each case is R + R2∕k, where R is the mean and

k is the dispersion parameter. A small value of k indicates increased

heterogeneity in transmission and therefore a high potential of super-

spreading and describes the phenomenon that a few infectious cases

account for most secondary transmissions (Gao et al., 2019). Accurate

estimates of k are essential for determining the potential need for, and

intensity of, public health and social measures (PHSMs) needed for dis-

ease control.When superspreading potential is low, relaxing PHSMs to

reopen societies become feasible in low transmission scenarios (R < 1).

While under high potential of superspreading, larger outbreaks could

still occur evenwhen an epidemic seems to be under control (R < 1).

For SARS and MERS, most infections are caused by a small propor-

tion of cases, with the dispersion parameter ranging from 0.06 to 2.94

(Wang et al., 2021). However, a comprehensive review and comparison

of the superspreading potential of COVID-19 and its uncertainty over

countries is still lacking. We carried out a systematic review and meta-

analysis of published estimates of the dispersion parameter, aiming to

estimate the pooled k of SARS-CoV-2 infections.

2 MATERIALS AND METHODS

2.1 Search strategy and selection criteria

All searches were carried out on 10 September 2021 in PubMed for

articles published from 1 January 2020 to 10 September 2021. We

included all relevant articles thatwerepublished in peer reviewed jour-

nals, coupled with 8 articles recommended by experts. Search terms

for superspreading for COVID-19 variants included (#1) ‘COVID-

19’ OR ‘SARS-COV-2’ OR ‘2019-nCov’ OR ‘Coronavirus 2019’ OR

‘2019 coronavirus’ OR ‘coronavirus Wuhan’ OR ‘pneumonia Wuhan’

and (#2) ‘Superspreader’ OR ‘Spreader’ OR ‘Superspreader event’ OR

‘Super-spreader’ OR ‘Super-spreader hosts’ OR ‘Super-spreading’ OR

‘Superspreading’ OR ‘Overdispersion’ OR ‘Dispersion parameter’ OR

‘20/80 rule’ OR ‘dispersion parameter’ and the final search term was

#1 AND #2. After reading the abstract and full text, we included stud-

ies inwhich estimates of the dispersion parameterwere reported along

with their uncertainty intervals and estimation periods. We excluded

other systematic reviews and meta-analysis from our analyses but

included relevant studies mentioned in these reviews. Finally, 144

studies are includedwith the publish date between20March 2020 and

3 September 2021.

2.2 Data extraction

All data were extracted independently and entered in a standardized

form by 2 co-authors (CWandCL). Conflicts over inclusion of the stud-

ies and retrieving the estimates of these variables were resolved by

another co-author (ZD). Informationwas extracted on the estimates of

dispersion parameters of COVID-19 superspreading coupled with the

corresponding 95% or 90% confidence interval (CI) or the 95% credi-

ble interval (CrI) or 95% range across 500 instances of reconstructed

transmission tree (95% Range). This paper converts 90% CI to 95% CI

for meta-analysis. Other information such as study’s information (i.e.,

estimation period and location), model used in estimation measure-

ments of transmissibility and heterogeneity (i.e., dispersion parameter,

‘20/80’ rule and dispersion parameter), and study population and set-

tings (i.e., type of cases) was also extracted for each selected study (see

SupplementaryMaterials for details).

2.3 Estimation of dispersion parameter in studies
reporting the ‘20/80’ rule

A framework is proposed to compute the dispersion parameter (k) by

reported reproduction number (R) and the transmission distribution

profiles in the form of the ‘20/80’ rule (Endo et al., 2020; Lloyd-Smith

et al., 2005). For those articles without k reported, we adopted the

framework below to estimate k in Equation (1).

1 − P = ∫
X

0
NB

(
x; k,

k
R + k

)
dx, (1)

where X is the upper limit ofNB(∙), which satisfies,

1 − Q =
1
R

X

∫
0

xNB
(
x; k,

k
R + k

)
dx,

where P is the expected proportion of the most infectious individuals

responsible for Q of all transmissions. NB(∙) means the negative bino-

mial distribution for secondary cases with mean R and overdispersion

parameter k.
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F IGURE 1 PRISMA (Preferred Reporting Items for Systematic Reviews andMeta-Analyses) flow diagram for the studies used to obtain
studies that reportedmeasurements of the dispersion parameter.We used PubMed for our primary search

2.4 Statistical analysis

We use the I2 index to assess heterogeneity between studies into the

following three categories: I2<25% (lowheterogeneity), I2=25%–75%

(average heterogeneity) and I2> 75% (high heterogeneity). Because of

the high I2 value that was calculated in our results, as well as the sig-

nificance of the Cochran Q test, a random-effects model was further

used to perform a meta-analysis in this study. Finally, meta-regression

analysis using a mixed-effects model was conducted to quantify the

association between study’s location and the estimate of dispersion

parameter. Analyses were conducted in R version 4.1.1.

3 RESULTS

We identified 114 studies published from 1 January 2020 to 10

September 2021 by searching PubMed and additionally included

8 studies from our own reference list. Of these, 59 studies were

excluded through title and abstract screening, leaving 55 studies for

full-text assessment. A total of 17 of them were finally included in

this study, providing 45 estimates. The detailed selection process is

illustrated in Figure 1. The reports are conducted based on data in

eight countries (e.g. China, the United States, India, Indonesia, Israel,

Japan, New Zealand and Singapore) using three methods (e.g. negative
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TABLE 1 Description of studies included in the systematic review andmeta-analysis

Study Method

Dispersion parameter

(k), (95%CI) Period Region

Sun et al. (2021) Negative binomial distribution 0.30 (0.23, 0.39) 2020-1-16 to 2020-4-3 Mainland China

Adam et al. (2020) Negative binomial distribution 0.43 (0.29, 0.67) 2020-1-23 to 2020-4-28 Hong Kong, China

Bi et al. (2020) Negative binomial distribution 0.58 (0.35,1.18) 2020-1-14 to 2020-2-12 Mainland China

He et al. (2020) Negative binomial distribution 0.70 (0.59, 0.98) 2020-1-15 to 2020-2-29 Mainland China

Hasan et al. (2020) Negative binomial distribution 0.06 (0.05, 0.07) 2020-3-2 to 2020-3-31 Indonesia

Hasan et al. (2020) Negative binomial distribution 0.20 (0.09, 0.31) 2020-3-19 to 2020-4-7 Indonesia

Kwok et al. (2020) Negative binomial distribution 2.30 (0.02, 4.58) By 2020-3-3 Hong Kong, China

Kwok et al. (2020) Negative binomial distribution 0.51 (0.21, 1.59) By 2020-3-3 Japan

Kwok et al. (2020) Negative binomial distribution 1.78 (0.09, 3.47) By 2020-3-3 Singapore

Lau et al. (2020) Negative binomial distribution 0.63 (0.54, 0.85) 2020-3-1 to 2020-4-3 USA

Lau et al. (2020) Negative binomial distribution 0.66 (0.60, 0.71) 2020-3-1 to 2020-4-3 USA

Lau et al. (2020) Negative binomial distribution 0.62 (0.54, 0.75) 2020-3-1 to 2020-4-3 USA

Lau et al. (2020) Negative binomial distribution 0.64 (0.53, 0.75) 2020-3-1 to 2020-4-3 USA

Lau et al. (2020) Negative binomial distribution 0.39 (0.37, 0.44) 2020-3-1 to 2020-4-3 USA

Miller et al. (2020) Phylodynamic analysis 2.97 (2.86, 3.08) By 2020-4-22 Israel

Tariq et al. (2020) Negative binomial distribution 0.11 (0.05, 0.25) 2020-1-23 to 2020-3-17 Singapore

Wang et al. (2020) Phylodynamic analysis 0.23 (0.13, 0.38) 2019-12-24 to 2020-2-14 Mainland China

Zhao et al. (2021) Negative binomial distribution

(zero-truncated framework)

0.37 (0.29, 0.48) 2020-1-15 to 2020-2-29 Mainland China

Zhao et al. (2021) Negative binomial distribution

(zero-truncated framework)

0.32 (0.15, 0.64) 2020-1-23 to 2020-4-28 Hong Kong, China

Zhao et al. (2021) Negative binomial distribution

(zero-truncated framework)

0.18 (0.01, 1.79) 2020-1-21 to 2020-2-26 Mainland China

Zhang et al. (2020) Negative binomial distribution 0.25 (0.13, 0.88) 2020-1-21 to 2020-2-26 Mainland China

Shi et al. (2021) Negative binomial distribution 0.21 (0.13, 0.33) 2020-1-21 to 2020-4-10 Mainland China

James et al. (2021) Negative binomial distribution 0.29 (0.10, 2.05) 2020-3-25 to 2020-4-22 NewZealand

Kremer et al. (2021) Negative binomial distribution 0.43 (0.38, 0.49) 2020-1-23 to 2020-4-18 Hong Kong, China

Kremer et al. (2021) Negative binomial distribution 0.50 (0.50, 0.51) By 2020-8-1 India

Kremer et al. (2021) Negative binomial distribution 0.56 (0.29, 0.83) By 2020-12-31 Rwanda

Endo et al. (2020) Negative binomial distribution 0.10 (0.05, 0.20) By 2020-2-27 Global

Riou and Althaus (2020) Negative binomial distribution 0.54 (0.01, 8.18) By 2020-1-18 Global

binomial distribution, zero-truncated negative binomial distribution

and phylodynamic analysis) (Table 1).

High heterogeneity was reported among the included studies

(I2= 100%and p< .0001). Themean estimates of dispersion parameter

(k) range from 0.06 to 2.97 over eight countries. The pooled estimate

of k was 0.55 (95% CI: 0.30, 0.79), with changing means over coun-

tries (Figure2) anddecreasing slightlywith the increasing reproduction

number (Figure 3). The global estimates are 0.54 (95%CI: 0.54, 8.18) in

January 2020 (Riou & Althaus, 2020) and 0.10 (95% CI: 0.05, 0.20) in

February 2020 (Endo et al., 2020). The expected proportion of cases

accounting for 80% infections is 19% (95% CrI: 7, 34) over countries

(Table 1).

Themeta-regression analysis was conducted based on the reported

k estimates, which allowed us to explore the potential association

between the study attribute (e.g. location, methods, or age groups) and

theestimateddispersionparameter (Figure4).We found that the study

location was closely associated with the reported dispersion parame-

ter in themeta-analysis by including country, age group or method as a

categorical variable (p< .0001).

4 DISCUSSION

For SARS-CoV-1, SARS-CoV-2 and MERS-CoV, most infections are

caused by a small proportion of people. During the 2003 SARS epi-

demic, 76 infections arose from 1 hospitalized patient in Beijing, China

(Shen et al., 2004). And during the 2015 MERS outbreak, 5 patients

led to 154 secondary infections in South Korea (Chun, 2016). In this
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F IGURE 2 Dispersion parameter estimates for coronavirus disease 2019 (COVID-19) reported in 17 unique studies presented by country. (a)
Estimates of dispersion parameters over countries. The error bars show themean values and 95% confidence interval. (b)Mean estimate of
dispersion parameters by countries over studies

early COVID-19 outbreak, around 10% of cases in countries outside

China accounted for 80% of secondary cases (Endo et al., 2020). But

epidemiological population-level measures (e.g. the basic reproduction

number) usually hide immense variation at the individual level (Du,

Hong et al., 2022; Du, Javan et al., 2020; Du, Liu et al., 2022; Du, Tian

et al., 2022; Du, Xu et al., 2020). We thus carried out a systematic

review andmeta-analysis of 17 studies on the dispersion parameter to

characterize COVID-19 superspreading.

Estimation of the dispersion parameter from individual case data

requires accurate observation of transmission chains, usually col-

lected through contact-tracing or phylodynamic analysis, and can be

biased, perhaps by reporting bias, estimation methods and transmis-

sion scenarios. The negative binomial model with the zero-truncated

framework would reduce the estimation bias of dispersion parameter

when theunder-ascertainment of index caseswith zero secondary case

occurs, for example, in China (Zhao et al., 2021). Estimating and moni-

toring changes in the dispersion parameter are thus critical for deter-

mining the type and stringency of public health and social measures

(PHSMs) needed to reduce the occurrence of superspreading events,

although we found that the estimate for the variant Delta or even any

other variant is not yet available. Japan recognized the importance

of superspreading in February 2020, implemented the cluster-focused

backwards contact tracing andpromotedawarenessof people at risk of

infection by closing higher risk locations, followed by theWorldHealth

Organization’s Western Pacific Region in July 2020 to limit the num-

ber of people to gather indoors thus to curb the spread of the virus.

And restaurants were estimated to account for 20% of transmissions

if all businesses were to reopen in 2020 in the United States (Chang

et al., 2021). Suchmeasures canmitigate the impact of superspreading

events, which are expected to bemajor drivers in early epidemics.

In the recent systematic review of COVID-19 superspreading by 10

February 2021, the estimates of dispersion parameters for COVID-

19 range from 0.01 in the United States to 5 in Israel (Wang et al.,

2021). We include most of their studies together with those published

by 10 September 2021, and re-estimate those based on some simple

assumptions to conduct the pooled estimates and the meta-analysis.
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F IGURE 3 Dispersion parameter estimates and reproduction numbers for coronavirus disease 2019 (COVID-19) reported in 17 unique
studies presented by country. The error bars show themean values and 95% confidence interval of the dispersion parameter estimates and
reported reproduction numbers in studies (Supplement). The colour denotes the estimated proportion of cases accounting for 80% of all
transmissions (p80%)

The major difference is the lower dispersion parameter, which is esti-

mated to be 0.01 in the United States in the published review (Wang

et al., 2021). In contrast, we directly extract the estimates from figures

in the raw study, which range from 0.39 to 0.66 before the shelter-

in-place order, resulting in the lower limit changing to 0.06 as that in

Indonesia (Table 1). Finally, the pooled estimates fromour analysis indi-

cated that the dispersion parameter of COVID-19was likely to be 0.55

(95%CI: 0.30, 0.79), approximate to that of India, China and theUnited

States (Figure 2).

The estimate of dispersion parameters in Israel is 2.97 (2.86, 3.08),

as the highest among the 8 study countries, which may be attributable

to strict PHSMsandborder control strategies before the first local case

(Wang et al., 2021). These control measures would prevent substan-

tial imported cases, which typically triggered superspreading events

(Adam et al., 2020;Wang et al., 2021).

Our studyhas several limitations.Most articles included in our study

used publicly available data. Some studies in our review might have

used overlapping data, leading to double counting in the pooled esti-

mates. And with the recent emergence of variants that may be more

transmissible and evade immunity acquired through prior infection or

vaccination, the future of the pandemic is highly uncertain.Meanwhile,

SARS-CoV-2 viruses are constantly evolving throughmutation; genetic

variations have emerged and circulated over the world, which may

modify individual infectiousness profiles. We are still not clear about

the impact of variants on overdispersion, perhaps by increasing trans-

missibility. Our pooled estimate is based on the previous transmission

of wild-type in early 2020, which may not be generalizable to the

dominant variant Delta and future studies will be needed to conduct

the comparison. Our searches were carried out on 10 September 2021

in PubMed. Many studies have been published later. For example,

Akhmetzhanov et al. (2021) estimated the dispersion parameter for

the variant Epsilon in Taiwan during January and February 2021.

In conclusion, multiple estimates of the dispersion parameter have

been published for 17 studies, which could be related to where and

when the data were obtained. The study location and method were

found to be important drivers for diversity in estimates of dispersion

parameters.
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