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The endogenous peptide kyotorphin (KTP) has been extensively studied since it was
discovered in 1979. The dipeptide is distributed unevenly over the brain but the
majority is concentrated in the cerebral cortex. The putative KTP receptor has not
been identified yet. As many other neuropeptides, KTP clearance is mediated by
extracellular peptidases and peptide transporters. From the wide spectrum of biological
activity of KTP, analgesia was by far the most studied. The mechanism of action is still
unclear, but researchers agree that KTP induces Met-enkephalins release. More recently,
KTP was proposed as biomarker of Alzheimer disease. Despite all that, KTP limited
pharmacological value prompted researchers to develop derivatives more lipophilic and
therefore more prone to cross the blood–brain barrier (BBB), and also more resistant
to enzymatic degradation. Conjugation of KTP with functional molecules, such as
ibuprofen, generated a new class of compounds with additional biological properties.
Moreover, the safety profile of these derivatives compared to opioids and their efficacy
as neuroprotective agents greatly increases their pharmacological value.

Keywords: kyotorphin, blood–brain barrier, kyotorphin-derived peptides, drug candidates, biological effects,
clinical application

DISCOVERY, DISTRIBUTION, AND RECEPTORS

The endogenous dipeptide L-tyrosine-L-arginine (YR) was first isolated from bovine brain in 1979
and found later on in other mammals’ brains and in human cerebrospinal fluid (CSF) (Takagi
et al., 1979b; Ueda et al., 1980; Nishimura et al., 1991; Santos et al., 2013). The dipeptide with
endorphin-like properties discovered in Kyoto was named kyotorphin (KTP) (Takagi et al., 1979a).

Kyotorphin can be formed in the brain by two pathways: (i) from precursor proteins
degradation either by membrane-bound aminopeptidase or cytosolic Ca2+ activated protease
(Ueda et al., 1985; Yoshihara et al., 1990; Akasaki et al., 1995); and/or (ii) from its precursor L-
amino acids, tyrosine and arginine, in a reaction catalyzed by KTP synthetase dependent of ATP
and Mg2+ (Ueda et al., 1987). This pathway produces three–fourfold more KTP than the one
formed by precursor proteins degradation (Ueda et al., 1987).

KTP synthetase distribution correlates closely with KTP levels in the rat brain (Ueda et al., 1987).
Its enzymatic activity was also detected in rat adrenal glands and spinal cord (Kawabata et al., 1996).

Abbreviations: 2VO, bilateral common carotid artery occlusion; AMPs, antimicrobial peptides; Ib, ibuprofen; IVM,
intravital microscopy; KTP, kyotorphin; KTPr, KTP receptor; KTP-NH2, KTP-amide; LPS, lipopolysaccharide; NO, nitric
oxide; NOS, nitric oxide synthetase; PEPT2, peptide transporter 2; PLC, phospholipase C; PR, relative permeability; SP,
substance P.
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KTP is unevenly distributed over the brain. Lower brain
stem regions, such as midbrain, pons, medulla oblongata
and dorsal part of spinal cord are KTP-rich regions. These
regions are sensitive to morphine and/or electrical stimulation-
induced analgesia. However, 50% of total KTP brain’s content
is concentrated in cerebral cortex, an area with low content
of opioid receptors and enkephalinases (Ueda et al., 1980).
Lower KTP contents can be found in striatum, hippocampus,
hypothalamus, thalamus, and cerebellum (Ueda et al., 1980). The
regional distribution of KTP supports the idea that KTP might
have non-opioid actions.

Subcellular fractioning revealed KTP is enriched in
synaptosomal fraction. Synaptosomes preloaded with KTP
were able to release the dipeptide in a Ca2+ dependent manner
upon depolarizing stimuli and it seems KTP can be recaptured
again by synaptosomes in a Na+, temperature and energy-
dependent manner. These data support the idea that KTP plays a
role as neurotransmitter/neuromodulator (Ueda et al., 1986a,b).

Specific binding-assays using radioactive KTP suggest the
presence of high affinity and low affinity receptors in the brain.
The mechanism triggered by the binding of KTP to KTPr
is mediated through protein Gi and phospholipase C (PLC)
system that induces Ca2+ influx (Ueda et al., 1989). Thus, a
nerve impulse is generated, ultimately leading to analgesia. The
synthetic dipeptide L-leucine-L-arginine (LR) also binds KTPr
with a great affinity but no effect, thereby constituting a potent
antagonist (Ueda et al., 1989).

Interestingly, extremely low doses of KTP (femtomolar
range) and more stable analogs (atomolar range) administered
peripherally elicit nociceptive responses due to the release of
substance P (SP) by nociceptor endings of primary afferent
neurons. The authors speculate that the mechanism involved in
such opposite responses (antinociceptive vs. nociceptive) might
be mediated by different G proteins depending on KTP dosage,
having a differential effect on PLC activation (Inoue et al., 1999;
Ueda and Inoue, 2000).

The putative KTPr has not been identified yet. Despite many
papers refer to “the KTPr” (Ueda et al., 1980, 1986b, 1989, 2000;
Ueda and Inoue, 2000), it is not clear whether the receptor is
specific or formed by µ- and δ-opioid receptors oligomerization
(Machuqueiro and Baptista, 2007). From previous studies it is
known that KTPr binding pocket must be different from opioid
receptors (Takagi et al., 1979b; Rackham et al., 1982; Ueda and
Inoue, 2000), but conformational studies on KTP suggested they
should be structurally similar (Machuqueiro and Baptista, 2007).

METABOLISM AND CLEARANCE

PEPT2 Transporter
Neuropeptides are released in the brain to exert their function
and thereafter they are cleared either by extracellular peptidases
and/or removed from extracellular fluid by specific transporters.
Both processes have shown to be equally important in KTP
clearance (Xiang et al., 2010).

Fujita et al. (1999) were the first to report an interaction
between KTP and the high-affinity transporter PEPT2, albeit

in an indirect way, evaluating competitive inhibition of
glycylsarcosine (GlySar) in rat synaptosomes. Later, KTP uptake
by PEPT2 was demonstrated in a more direct way, measuring the
peptide-induced inward currents (Thakkar et al., 2008).

PEPT2 is high-affinity and low capacity transporter which
rely on a pH gradient between extracellular and intracellular
compartments to transport di- and tri-peptides. This transporter
is expressed in kidney, retina and brain (Liu et al., 1995; Berger
and Hediger, 1999). Hybridization studies showed PEPT2 is
expressed in astrocytes and ependymal cells throughout the brain,
and also in epithelial cells of choroid plexus (Berger and Hediger,
1999; Dieck et al., 1999). Astrocytes are essential in the control
of neuronal activity and synaptic neurotransmission (Araque
et al., 1999), and several peptidases are known to be expressed
on their extracellular membrane (Berger and Hediger, 1999).
Therefore, PEPT2 function in astrocytes might be linked to the
removal of neuropeptide fragments and small biologically active
peptides from extracellular fluid, such as KTP and carnosine
(Berger and Hediger, 1999). In choroid plexus, the transporter
is specifically located in the apical membrane, suggesting a role
in the efflux of peptides from CSF (Shu et al., 2002). In addition,
PEPT2 null mice showed enhanced antinociceptive response to
intracerebroventricular (i.c.v.) administered KTP (Jiang et al.,
2009). Transport of peptides from blood to CNS via PEPT2
is unlikely since this transporter is not present at blood–brain
barrier (BBB) (Berger and Hediger, 1999).

KTP-Degrading Aminopeptidases
Kyotorphin-degrading aminopeptidase activity was reported in
brain homogenate (Ueda et al., 1985), lung and skin from rats
(Orawski and Simmons, 1992). KTPase activity was inhibited
by bestatin, but not puromycin, a potent inhibitor of soluble
aminopeptidases (Ueda et al., 1985). Akasaki and Tsuji (1991)
and Akasaki et al. (1991) identified two distinct KTPases in
soluble fraction of rat brain. KTPase I is responsible for 95% of
KTP-degrading activity, while KTPase II, which showed to be
an enkephalin aminopeptidase, contributes only to 5% of KTP
degradation.

Moreover, other authors found two dipeptide-cleaving
enzymes associated to synaptic membranes (Orawski and
Simmons, 1992). Both enzymes are inhibited by bestatin, but
they can be distinguished based on their differential sensitivity
to amastatin (Orawski and Simmons, 1992). Although KTPase I,
described in Akasaki et al. (1991) presents similar characteristics
to the KTP-degrading enzyme found by Orawski and Simmons
(1992), it is not clear if they are identical (Akasaki et al.,
1995).

MECHANISM OF ACTION

The first experiments done by Takagi et al. (1979b) revealed
an analgesic activity of KTP 4.2 fold more potent than
met-enkephalins, when injected intracisternally; an effect that
was reversed by naloxone. Although naloxone is an opioid
antagonist, studies demonstrated KTP itself does not bind to
opioid receptors, but has rather an indirect action mediated
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by met-enkephalin and β-endorphin, which activate δ- and/or
µ-opioid receptors (Takagi et al., 1979b; Rackham et al., 1982;
Ribeiro et al., 2011a). Other authors confirmed KTP-induced
met-enkephalin release from guinea pig and rat brain slices
(Shiomi et al., 1981; Takagi et al., 1982; Janicki and Lipkowski,
1983). In addition, there are evidences that KTP can inhibit
some enkephalinases. This implies that met-enkephalins would
be more protected from enzymatic degradation resulting in a
relatively long-lasting analgesia (Takagi et al., 1979b; Hazato et al.,
1986).

In patients with persistent pain, L-Arg intravenously
administered induced analgesia and this action was antagonized
by naloxone (Takagi, 1990; Takagi et al., 1990; Harima et al.,
1991). It has been postulated that L-Arg can facilitate KTP
synthesis in the brain, enhancing met-enkephalin release,
which in turn activate δ- and/or µ-opioid receptors resulting in
antinociception (Kawabata et al., 1993).

Alternatively, L-Arg is a well-known substrate for NOS.
NOS and soluble guanylyl cyclase inhibitors administered i.c.v.
caused antinociception. These findings led Kawabata et al. (1992,
1993) to conclude that L-Arg plays a dual role in nociceptive
processing. In this case, NO-cyclic guanosine monophosphate
(cGMP) pathway seems to be involved in nociceptive promotion
in the CNS.

Kyotorphin-synthetase activity was detected outside the
central nervous system (CNS), in adrenal gland, suggesting
that KTP might have a role in peripheral system (Kawabata
et al., 1996). In accordance, a study conducted in brown fat
cell culture system showed KTP inhibited cell proliferation
induced by noradrenaline. This indicates that these cells and
probably other tissues in the periphery contain receptors for KTP
(Bronnikov et al., 1997). In order to evaluate if KTP analgesic
effect in the periphery was mediated by opioid receptors, a
peripheral pain reflex test was conducted in mouse. Results
showed the mechanism was mediated via KTPr but independent
of opioid receptors, since naloxone was unable to prevent
KTP analgesic effect (Inoue et al., 1997). The mechanism of
action of KTP still not clear and some data are contradictory.
However, there seems to exist two distinct pathways leading
to analgesia, one mediated by opioids and other opioid-
independent.

KTP BEYOND ANALGESIA

Physiological Effects
In addition to the extensively studied analgesic effect, KTP
gathers a wide spectrum of biological activities (Dzambazova,
2010). Published papers have explored KTP role as antiepileptic
(Godlevsky et al., 1995), thermoregulator (Sakurada et al., 1983),
anti-hibernation regulator (Ignat’ev et al., 1998) and stress
(Summy-Long et al., 1998) and behavior (Kolaeva et al., 2000)
modulators.

Kyotorphin is present at moderate concentrations in the
hypothalamus (Ueda et al., 1980), a structure with an important
role in thermoregulation and stress. Naloxone-irreversible
hypothermia was induced in mice, at room temperature,

after i.c.v. administration of KTP and a more stable analog.
However, thyrotropin (TRH) prevented this effect, suggesting
the mechanism of KTP thermoregulation in the brain might
involve the TRH neuronal system instead of opioid receptors
(Sakurada et al., 1983). Regarding stress, high doses of KTP
injected i.c.v. presumably activates the sympathetic nervous
system, inducing a release of oxytocin (OT), a stress-hormone
in rodents, concomitantly with elevating blood pressure and
glucose plasma levels, but not vasopressin (Summy-Long et al.,
1998).

Behavioral studies in rats and goldfish showed KTP reduced
exploratory behavior mediated probably by the monoaminergic
brain systems (Kolaeva et al., 2000).

KTP as a Promising Biomarker in
Alzheimer’s Disease
Recent estimates indicate 35.6 million people worldwide affected
by dementia, a number that is expected to nearly double
every 20 years (WHO, 2012). Alzheimer’s Disease (AD)
is the most prevalent form of dementia in later life. It
is clinically characterized by a progressive deterioration of
memory, orientation, language, learning capacity, emotional
stability, motor skills, and ultimately self-care, causing social
and occupational disability. Unfortunately, no effective cure
is available and current treatment strategies only provide
symptomatic relief without halting nor reversing disease
progression.

There is an increased need for AD biomarkers to improve early
detection, accurate diagnosis, and accelerate drug development
in this field (Flaten et al., 2006; Hampel et al., 2010). In
medicine, a biomarker is generally defined as a molecule
or any other tangible parameter that serves as an indicator
of biological or pathogenic processes that can be used to
evaluate disease risk or prognosis, and to monitor therapeutic
interventions (Hampel et al., 2010). Decreased CSF levels of
β-amyloid peptides (Aβ40, Aβ42) combined with increased levels
of total tau and phosphorylated tau proteins, have diagnostic
value in AD (Flaten et al., 2006; Hampel et al., 2010), for
instance.

Although chronic pain is also highly prevalent in AD patients
(Pieper et al., 2013), its proper evaluation and treatment is
a clinical and ethical challenge. It may seem strange because
AD patients consume fewer analgesics than other patient
groups, making the false impression that they may feel less
pain. However, processing and perception of pain are not
diminished in AD (Cole et al., 2006). In those patients, pain
underestimation relates with their limited capacity of verbally
expressing their pain or discomfort, worsening as the dementia
progresses (Pieper et al., 2013). Recent evidence suggest that
chronic pain contributes to the course of neurodegenerative
events as an additional injury to the nervous system (Borsook,
2012). Cognitive impairment and limited communication in
AD patients leads to underreported pain, which in turn
leads to undertreatment. By failing to receive adequate pain
treatment, structural and irreversible changes may occur in
the nervous system, aggravating AD pathophysiology which
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in turn contributes to chronic pain, maintaining a vicious
cycle.

The benefits of finding a particular AD biomarker
involved in the overlapping mechanisms of nociception
and neurodegeneration that can be used in the clinics
alongside with the existing ones (Flaten et al., 2006; Hampel
et al., 2010) are obvious: (a) possibility to evaluate pain,
regardless the level of cognitive impairment of the patient; (b) a
biomarker that is itself a promising strategy for pharmaceutical
development.

Our recent clinical studies showed a link between pain,
AD and KTP in humans. In fact, we observe that pain was
underestimated in AD patients (Santos and Castanho, 2013)
and KTP has decreased levels in the CSF of AD patients with
moderate cognitive impairment (Santos et al., 2013). Several
other neuropeptides have been identified as diminished in AD
(Raskind et al., 1986; Albericio et al., 1990). Lower levels
of an analgesic molecule such as KTP may probably explain
why AD patients are believed to have a higher incidence of
hidden chronic pain; in agreement, Nishimura et al. (1991)
have shown that CSF KTP levels decrease in chronic pain
conditions.

Owing to the estimated low concentration of KTP in the
human CSF (10−9 M) (Nishimura et al., 1991) we had to
resort to electrospray ionization tandem mass spectrometry
(ESI – MS/MS) (Santos et al., 2013). The decreased levels of
KTP in AD samples correlate with a disease-specific atrophy

FIGURE 1 | Clinical implications of reduced KTP levels in cerebrospinal
fluid (CSF) of Alzheimer disease (AD) patients (Santos et al., 2013).

FIGURE 2 | Phosphorylated-tau (p-Tau) levels dependence on KTP
concentration both in AD (red) and normal group (white). (A) Complete
data set with individual values (linear regression line plotted as a guide to the
eye). (B) The data set presented in (A) was clustered in classes according to
regular intervals of amplitude of 100 pg/mL of p-tau concentration and
averaged for KTP concentration (error bars: standard error). The average KTP
value of all classes was compared to control (∗p < 0.04, ∗∗p < 0.0075,
∗∗∗p < 0.0006) or the 100- to 200-pg/mL p-tau class (#p < 0.04,
##p < 0.0046) using the one-way ANOVA with Dunnett’s post-test (Santos
et al., 2013).

of some brain regions meaning damage and loss of neuronal
cells, which possibly results in less KTP being produced and its
CSF concentration naturally falling in those patients (Figure 1).
Moreover, we also found an inverse correlation between levels
of KTP and of phosphorylated-tau protein (p-tau) (Figure 2)
(Santos et al., 2013). CSF p-tau reflects the phosphorylation
state of tau and the formation of cortical neurofibrillary tangles
in the brain (Flaten et al., 2006). As the disease progresses,
more neuronal cells are destroyed, p-tau is released and KTP
production is impaired (Figure 1). These decreased levels of
KTP in the brain will probably contribute to a decreased NOS
activity (see Mechanism of Action) causing a NO deficit to such
a degree that will further promote the neurodegenerative events
characteristic of AD. Disruption of NO homeostasis is known
to hasten the development of AD (de la Torre and Stefano,
2000).

Frontiers in Pharmacology | www.frontiersin.org 4 January 2017 | Volume 7 | Article 530

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-07-00530 January 10, 2017 Time: 16:35 # 5

Perazzo et al. Kyotorphin and Derivatives Pharmacological Potential

LIMITED PHARMACOLOGICAL
POTENTIAL OF KTP

The majority of studies on KTP following its discovery aimed to
unravel the mechanism of action and to evaluate the analgesic
effect of this dipeptide. Although the mechanism of action
remains an unsolved issue, direct administration of KTP and
some analogs peptides into different parts of CNS showed
very promising results regarding analgesia (Yajima et al., 1980;
Sakurada et al., 1982; Vaught and Chipkin, 1982; Wang et al.,
2001). Hereupon, several groups tested the effects following
systemic administration (intraperitoneal i.p., intravenous i.v. and
oral) but the results have been disappointing. KTP showed only
a brief analgesic activity at a high dose of 200 mg/Kg when
administered systemically to rodents (Chen et al., 1998).

Blood–brain barrier constitutes the major obstacle to
systemically administered drugs to reach CNS due to the tight
junctions that link endothelial cells in the brain capillaries and
scarcity of receptors. Less than 2% of the drugs developed to treat
CNS disorders cross BBB (Pardridge, 2002). Even some small
lipophilic molecules that succeed to diffuse through BBB and
penetrate into the brain can be exported back to blood stream by
efflux pumps, such as P-glycoproteins. In addition, several lytic
proteins located in the brain capillary endothelial cells surface
form an enzymatic barrier to bioactive peptides from blood.

Obviously, some essential molecules, such as amino acids,
hexoses and neuropeptides, which do not fulfill the criteria
to diffuse passively through BBB need to reach the brain.
Therefore there are specific carriers that mediate their transport.
Larger molecules, such as proteins (e.g., insulin and transferrin)
are transported by saturable transport systems. On the other
hand, positively charged molecules (e.g., histones and cationized
albumin) use an adsorptive-mediated endocytosis mechanism to
enter the brain (Abbott et al., 2010).

At first it was thought KTP inability to cross BBB was related to
low affinity of the peptide to lipid membrane (Chen et al., 1998).
More recently the hypothesis that KTP can be pumped out by
specific transporters has been raised (Jiang et al., 2009; Serrano
et al., 2014a,b).

DEVELOPMENT OF NEW KTP
DERIVATIVES

Kyotorphin pharmacological potential is limited probably due
to its inability to cross BBB and/or susceptibility to enzymatic
degradation. In order to overcome these issues while preserving
effectiveness as analgesic, several groups including ours have
worked in different strategies to modify the original peptide.
Some of these strategies deal with (i) chirality (Rybal’chenko et al.,
1999; Lopes et al., 2006a), (ii) use of unnatural amino acids and
substitution of peptide bonds (Dzimbova et al., 2014; Serrano
et al., 2014b), (iii) conjugation with lipophilic groups (Chen et al.,
1998; Wang et al., 2001; Lopes et al., 2006b; Ribeiro et al., 2011b;
Serrano et al., 2014b), (iv) cationicity improvement (Ribeiro et al.,
2011a).

Interestingly, some liphophilic groups added to KTP have by
themselves a biological action associated. For instance, Wang
et al. (2001) synthesized two distinct KTP derivatives covalently
linked to steroids, hydrocortisone (hydrocortisone-KTP) or
estrone (estrone-KTP) (Figure 3). Unlike KTP, hydrocortisone-
KTP and estrone-KTP exhibited good analgesia in the tail-
flick test after i.p. administration. These derivatives showed
improved pharmacokinetics and pharmacodynamics. Moreover,
the researchers suggested that the steroids might be enhancing
the KTP effect by increasing the number of its receptors (Wang
et al., 2001).

We have extensively studied the analgesic effect of the
derivative KTP-NH2, which differs from the original peptide by
substitution of the carboxylic acid for an amide (Figure 3). At
physiological pH, this simple chemical modification causes an
increase of the net charge of the peptide from +1 to +2. KTP-
NH2 was tested in acute, sustained and chronic inflammatory
and neuropathic pain models following systemic administration
(i.p. and oral). At a dosage of 32.3 mg.kg−1, KTP-NH2 (i.p.)
showed an effect comparable to morphine at 5 mg.kg−1 in acute
pain animal models, meaning the equi-effective dose of KTP-
NH2 was about fivefold that of morphine. Oral administration
required higher dosages to be effective. In chronic pain animal
models antinociception induced by KTP-NH2 was observed only
after a week of daily treatment with 32.3 mg.kg−1. In addition,
KTP-NH2 did not develop resistance unlike morphine, neither
jeopardized blood pressure or motor capacity. Accordingly, the
peptide showed low affinity to opioid receptors (Ribeiro et al.,
2011a).

Other interesting derivatives are IbKTP and IbKTP-NH2,
which were designed by us to include in their structure a
group corresponding to a lipophilic, analgesic and safe non-
steroidal anti-inflammatory drug (NSAID), ibuprofen (Ib),
covalently linked to the N-terminal of KTP or KTP-NH2,
respectively (Figure 3) (Ribeiro et al., 2011b). In the clinics,
combination of different pain killers have been successfully
used, e.g., Vicoprofen R© (hydrocodone + Ib). Results in acute
and chronic pain models showed that both IbKTP and IbKTP-
NH2, but mainly IbKTP-NH2, improved analgesia after systemic
administration (Ribeiro et al., 2011b).

Recently, eight novel derivatives from KTP and KTP-NH2
were synthesized by addition of individual groups at the
N-terminus, namely small carbon chains, tert-butyloxycarbonyl
(Boc), aminobutyric acid (GABA) or by substitution of the
tyrosil residue for an indole moiety. In some cases the peptide
bond was substituted by a urea-like bond. The addition of
Boc and indolyl groups, but not small carbon chains, increased
significantly relative permeability (PR) while the peptidomimetics
which had the peptide bond substituted by an urea-like bond
seemed more resistant to peptidases (Serrano et al., 2014b).
Boc-uKTP-NH2 and Ind-KTP-NH2 (Figure 3) were the most
promising derivatives, showing a prolonged analgesic effect
correlated with higher membrane permeability (Figure 4). These
two derivatives successfully combined lipophilicity and resistance
to enzymatic degradation (Serrano et al., 2014b). Still, some
derivatives with lower permeability, such as KTP-NH2, have
previously demonstrated good analgesic efficacy (Ribeiro et al.,
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FIGURE 3 | Chemical structure of KTP derivatives.

FIGURE 4 | Correlation between the analgesic efficacy and the relative permeability of KTP derivatives (Serrano et al., 2014b).

2011a). These results suggest that this particular derivative might
have specific transporters to translocate BBB (Serrano et al.,
2014b).

Other groups studied other interesting derivatives of KTP,
namely a glucose-conjugated KTP and cyclic KTP (Figure 3)
(Mizuma et al., 2000). Glucose-mediated drug delivery has been
a strategy successfully applied to drugs whose final target is
in the CNS [for review see (Serrano et al., 2012)]. N-terminal
conjugation of p-amino phenyl β-glucoside and C-terminal
conjugation of Boc to KTP (Boc-KTP-pAPβglc) (Figure 3)
enhanced absorption and clearance in the rat intestine and
cyclization protected the peptide from proteolytic attack, thereby
enhancing enzymatic stability. Cyclic-KTP is suggested as a good
analgesic drug candidate to be delivered orally (Mizuma et al.,
2000).

Advantageous Alternatives over Current
Opioids
Opium and its alkaloids (e.g., morphine) have been used for
centuries as the most powerful centrally acting compounds for
the relief of severe acute and chronic pain. However, they also
trigger some side-effects such as nausea, constipation, respiratory
depression, urinary retention, clouding of consciousness, motor
disturbances, tolerance and addiction, which often hamper
their widespread use in clinical practice (Fischer et al., 1992).
Prolonged admininstration of opioids results in tolerance
liability that leads to dose escalation, contributing to an
increased incidence and severity of all side-effects. This can
lead to discontinued use of the pain medication compromising
the quality of life for patients. Thus, the discovery and/or
development of potent analgesics that result in effective analgesia
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with fewer side-effects is greatly needed; and this has long
been the holy grail of opioid research (Solé and Barany, 1992;
Corbett et al., 2006). In recent years, different approaches have
been explored to design and synthesize analogs of naturally
occurring opioid peptides (i.e., dermorphin, endomorphins, and
enkephalins) as potential substitutes of exogenous opioids for
pain relief (Gentilucci, 2004; Janecka et al., 2010; Ribeiro et al.,
2011c; Piekielna et al., 2013). Other alternative strategies targeting
opioid-receptor have been addressed (Solé and Barany, 1992;
Ribeiro et al., 2011c).

KTP-NH2 and IbKTP–NH2 exhibited analgesic activity
comparable to morphine and lower tolerance (Ribeiro et al.,
2011a,b). Additionally, no evidences of in vitro cytotoxicity or
hepatic lesions were detected at effective doses (Ribeiro et al.,
2011a). Aiming to validate the pharmaceutical potential of these
KTP derivatives as alternative to opioids, further in vivo studies
were conducted. Hence, for a more detailed pharmacological
profiling, both derivatives were studied regarding their side-
effects and compared with two clinically relevant opioids,
morphine and tramadol (Ribeiro et al., 2013). Particular attention
was given to the common opioid-induced side-effects namely
on locomotion, micturition, gastrointestinal, and cardiovascular
functions (Benyamin et al., 2008). For comparison purposes,
morphine and tramadol were selected because morphine remains
the gold standard in analgesia (Ramage et al., 1991) while
tramadol displays a safer side-effect profile than morphine
(Dworkin et al., 2007). In the experimental paradigm, male rats
were i.p. injected with a single dose of KTP-NH2 (32.3 mg.kg−1)
or IbKTP-NH2 (24.2 mg.kg−1) or morphine (5 mg.kg−1) or
tramadol (10 mg.kg−1) before the behavioral/metabolic testing.
Doses of KTP derivatives, morphine and tramadol were chosen
for inducing comparable analgesia levels in rats (Ribeiro et al.,
2013).

Our findings clearly showed that both KTP-derivatives do not
cause constipation, in contrast to morphine, and do not induce
changes in blood pressure, or in water and food intake, in contrast
to tramadol. Despite the fact that KTP–NH2 (like tramadol)
lowered urine volume this seems to be a minor physiological
effect caused by this derivative as no major urinary retention
occurred (i.e., increased blood pressure was not observed), and
may be exploited as a positive effect in cases of micturition
disturbances, i.e., detrusor overactivity. IbKTP-NH2 only caused
a mild motor impairment that was, however, less harmful than
all the severe side-effects induced by tramadol and morphine
(Ribeiro et al., 2013).

Overall, KTP derivatives do not trigger the major side-
effects intrinsically associated with opioid receptor activation.
This correlates with previous findings as direct binding
of KTP amidated derivatives to opioid receptors is nearly
absent (Ribeiro et al., 2011a,b) similarly to the original
KTP molecule (Rackham et al., 1982). Taken together, our
data indicates that KTP peptides and opioid drugs exhibit
distinct mechanism of action. However, opioid pathways are
indirectly involved in KTP peptides mode of action since
naloxone decreases the analgesic efficacy of IbKTP-NH2 and
completely abolishes KTP-NH2 analgesic activity (Ribeiro et al.,
2011a,b).

Therefore, the strong analgesic activity coupled with the
absence of the major side-effects associated to opioids renders
both KTP–NH2 and IbKTP–NH2 as potential advantageous
alternatives over current opioids.

KTP DERIVATIVES BEYOND ANALGESIA

As Antimicrobial Agents
Antimicrobial peptides represent a promising alternative
to conventional antibiotics to fight resistant pathogens
because development of resistance is not so effective. They
are generally short amphiphilic cationic peptides with high
affinity to negatively charged bacterial membranes. One
possible mode of action, among others, is membrane disruption
caused by peptide insertion into the bacterial membrane,
short peptides having higher activity (Lopes-Ferreira et al.,
2002; Catiau et al., 2011). Catiau et al. (2011) found that
the tripeptide L-lysine-L-tyrosine-L-arginine (KYR) has
antimicrobial activity. Since KTP (YR, net charge +1) does
not have antimicrobial activity, the positive charge of lysine
is of key importance. KTP (net charge: +1), KTP-NH2
(+2), IbKTP-NH2 (+1) and IbKTP (0) were tested against
Gram-negative Escherichia coli (E. coli) and Gram-positive
Staphylococcus aureus (S. aureus). (Ribeiro et al., 2012).
All derivatives were inactive against E. coli up to 100 µM
but they were active against S. aureus, with the exception
of KTP. Details of surface structure alteration induced by
KTP derivatives (10 µM) in S. aureus were obtained by
atomic force microscopy (AFM). KTP-NH2 and IbKTP-NH2
induced shape alterations, unlike KTP and IbKTP. Membrane
blebbing and disruption were more evident for KTP-NH2.
Ib-containing derivatives also interact with red blood cells
(RBCs) outer monolayer changing the typical disk shape with
uniform borders to spiky boundaries. This shape is known
as echinocyte and is reversible. Regardless these changes all
derivatives were virtually not toxic to RBCs (Ribeiro et al.,
2012).

Neuroprotective Potential in Cerebral
Hypoperfusion Rat Model
In the last two decades, intensive efforts to develop disease-
modifying drugs were made to counteract the progression of
AD (Flaten et al., 2006). Moreover, increasing attention has
been dedicated to neuropeptides in the discovery of new drug
targets for the treatment of nervous-system disorders (Hokfelt
et al., 2003). Actually, some neuropeptides are densely localized
in cognition-related brain regions and play an important role
in dementia-associated pathophysiological mechanisms (Borbely
et al., 2013).

Over the last decade, some authors hypothesized that KTP
has neuromodulating and neuroprotective properties using
animal models of cerebral resuscitation (after clinical death)
(Nazarenko et al., 1999) and of epilepsy (i.e., picrotoxin- or
pentylenetetrazole-induced seizures) (Godlevsky et al., 1995;
Bocheva and Dzambazova-Maximova, 2004). In addition, there
is consistent evidence about the protective role of NSAIDs,
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particularly Ib, against neurodegeneration and to reduce the
risk of developing AD or Parkinson’s (Asanuma et al., 2001;
Chen et al., 2005; Wilkinson et al., 2012). Hence, the potential
of a drug candidate (namely KTP) comprising NSAID-based
therapy to achieve a clinical benefit would be tremendous. In
view of these facts and our recent clinical studies (see KTP as
a Promising Biomarker in Alzheimer’s Disease) the relevance of
testing our improved KTP derivatives in dementia progression
became obvious.

Therefore, KTP-NH2 and IbKTP-NH2 were recently studied
for their ability in post-ischemia to ameliorate cognitive deficits
induced by chronic brain hypoperfusion (Sá Santos et al., 2016).
Cerebrovascular hypoperfusion is known to be a prominent
risk in the development of neurological dysfunction and
dementia. In rats, permanent 2VO produces a lasting and reliable
reduction of cerebral blood flow, which leads to a progressive
neuropathological damage in the hippocampus (particularly its
CA1 subfield), learning and memory impairments as it occurs in
AD (Farkas et al., 2007).

Our study included rats subjected to permanent global
ischemia via 2VO-surgery (2VO-animals) and sham-operated
animals (surgery without carotid artery ligation: control group).
In the experimental paradigm, 2VO-animals were treated with
KTP-NH2 (32.3 mg.kg−1) or IbKTP-NH2 (24.2 mg.kg−1) at
weeks 2 and 5 post-surgery (single i.p. dose/day for 7 days) (Sá
Santos et al., 2016). From a therapeutic perspective, it was of
interest to assess their effectiveness after the onset of ischemic
injury. Selected doses of KTP-derivatives were based on our
previous studies (Ribeiro et al., 2011a,b, 2013).

Following treatment regimen, motor and spatial memory
functions were evaluated using the open-field test and two-
trial recognition Y-maze task, respectively. Evidences support
a direct correlation between cerebral hypoperfusion-induced
memory impairments and damage in CA1 pyramidal neurons
(De Jong et al., 1999; Farkas et al., 2007; Cechetti et al.,
2012). So, we also evaluated hippocampal CA1 integrity through
immunohistochemistry protocols (Sá Santos et al., 2016).

Albeit ischemic injury can affect brain regions linked to motor
function (i.e., cortex and neocortex), in our study there was no
obvious signs of locomotion deficits in 2VO-operated animals (Sá
Santos et al., 2016), similar to what has been reported for this
experimental model (Farkas et al., 2007; Cechetti et al., 2012).
Our findings clearly showed that both KTP-derivatives improved
memory deficits of 2VO-animals and prevented CA1 neuronal
injury (Sá Santos et al., 2016). Detailed mechanisms underlying
their neuroprotective properties are still unknown. However,
IbKTP-NH2 was the more effective derivative in restoring
normal memory function; the presence of NSAID ibuprofen may
mitigate some neuroinflammatory events in 2VO-ischemic brain.

As Anti-Inflammatory Agents
Pain and inflammation are distinct physiological processes but
they are frequently associated. Thus, the development of a single
drug that could target pain and inflammation simultaneously
would be ideal. We used an IVM approach to evaluate the pro- or
anti-inflammatory effect of a topical application of KTP (96 µM),

KTP-NH2 (96 µM), IbKTP (96 µM) and IbKTP-NH2 (96 µM)
on the cremaster muscle using a rodent model of LPS-induced
inflammation (Conceição et al., 2016). We have previously shown
that Ib moiety is a enhancer of KTP analgesic action (Ribeiro
et al., 2011b). Accordingly, we expected that KTP could also be
an enhancer of Ib anti-inflammatory action.

Our data showed that KTP and its analogs did not cause
damage on microcirculation. In addition they decreased the
number of rolling and adherent leukocytes induced by LPS.
This result might be explained by the ability of KTP analogs
to bind/perturb LPS micelles, as shown by isothermal titration
calorimetry studies, probably contributing to LPS aggregation
and subsequent elimination (Conceição et al., 2016). Since KTP
did not bind to LPS, the production of NO is the proposed
anti-inflammatory mechanism. This is supported by the already
discussed mechanism for KTP-induced analgesia that originates
L-Arg, a well-known substrate for NOS that ultimately originates
NO as product (see Mechanism of Action).

More recently, D-Tyr-L-Arg-NH2 (KTP-NH2-DL, 96 µM)
also decreased the number of rolling leukocytes in a murine
model of inflammation induced by LPS, but did not reveal a
significant analgesic activity in the hot plate test (Perazzo et al.,
2016). This KTP analog and others analyzed in the same study
seem to have an action on the endothelium.

CONCLUDING REMARKS

Pain is a huge social and economic problem. In the half last
century, innovation in the field of analgesic drug has been
scarce. An increased interest has been directed toward peptides
as future pain-killers. KTP gathers an interesting and wide set
of biological activities; among them, analgesia is by far the most
studied. In order to make this peptide more attractive from
a pharmacological perspective, several chemical modifications
have been made to the original molecule. This strategy has been
successful so far and new advantageous properties have emerged
from these derivatives, creating a new class of molecules with an
increased pharmacological value.
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