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Abstract: The deposition of β-amyloid peptides and of α-synuclein proteins is a neuropathological
hallmark in the brains of Alzheimer’s disease (AD) and Parkinson’s disease (PD) subjects, respectively.
However, there is accumulative evidence that both proteins are not exclusive for their clinical entity
but instead co-exist and interact with each other. Here, we investigated the presence of a newly
identified, pyroglutamate79-modified α-synuclein variant (pGlu79-aSyn)—along with the enzyme
matrix metalloproteinase-3 (MMP-3) and glutaminyl cyclase (QC) implicated in its formation—in
AD and in the transgenic Tg2576 AD mouse model. In the human brain, pGlu79-aSyn was detected
in cortical pyramidal neurons, with more distinct labeling in AD compared to control brain tissue.
Using immunohistochemical double and triple labelings and confocal laser scanning microscopy, we
demonstrate an association of pGlu79-aSyn, MMP-3 and QC with β-amyloid plaques. In addition,
pGlu79-aSyn and QC were present in amyloid plaque-associated reactive astrocytes that were also
immunoreactive for the chaperone heat shock protein 27 (HSP27). Our data are consistent for the
transgenic mouse model and the human clinical condition. We conclude that pGlu79-aSyn can
be generated extracellularly or within reactive astrocytes, accumulates in proximity to β-amyloid
plaques and induces an astrocytic protein unfolding mechanism involving HSP27.

Keywords: Alzheimer’s disease; β-amyloid; α-synuclein; matrix metalloproteinase-3; glutaminyl
cyclase; heat shock protein 27; reactive astrocytes

1. Introduction

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder affecting
55 million people worldwide. It is histopathologically characterized by intracellular neu-
rofibrillary tangles composed of abnormally phosphorylated tau protein and by extracellu-
lar β-amyloid (Aβ) deposits [1–3]. Neurodegeneration in AD affects cortical, hippocampal
and subcortical structures, including nucleus basalis Meynert [4,5], locus coeruleus [6–8]
and Edinger Westphal nucleus [9–11].

Parkinson’s disease (PD) is the second most frequent progressive neurodegenerative
disorder and affects 10 million people worldwide. As in AD, PD cases are in majority
idiopathic, and protein aggregation processes represent a key pathological mechanism.
The aggregation of alpha-synuclein (aSyn) as the main component of Lewy bodies and
Lewy neurites may involve oxidative stress [12,13] as well as post-translational aSyn
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modification [14–17]. The brains of PD patients are additionally characterized by the pre-
dominant degeneration of dopaminergic neurons of the substantia nigra pars compacta, re-
sulting in striatal dopaminergic deafferentation associated with clinical hypokinesis [18,19].

We contributed to the discovery of pathogenic post-translational pyroglutamate (pGlu)-
modification of Aβ in AD [20] and of aSyn in PD [21], respectively. Here, we focus
on the two-step enzymatic conversion of full-length aSyn into pGlu79-aSyn by matrix
metalloproteinase-3 (MMP-3) and glutaminyl cyclase (QC), as schematically shown in
Figure 1.

In general, MMP-3 is a zinc- and calcium-dependent endopeptidase that belongs to
the stromelysin class of MMPs [22,23] and has a broad substrate spectrum for hydrolyzing
components of the extracellular matrix such as fibronectin, collagen IV, proteoglycans and
laminin [24]. In addition, it is implicated in pathogenic aSyn fragmentation as identified by
Sung et al. [25] and Levin et al. [26] and reviewed in Bluhm et al. [27].
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Figure 1. Schematic representation of sequential enzymatic pGlu79-aSyn formation. MMP-3 catalyzes
proteolytic cleavage of full-length aSyn resulting in Gln79-aSyn as one fragment among several
cleavage products. Gln79-aSyn then serves as precursor for QC-catalyzed pGlu79-aSyn formation
(red). Data on aSyn cleavage by MMP-3 from [25,26]. Data on Gln79-aSyn conversion into pGlu79-aSyn by
QC from [21].

Under physiological conditions, QC is predominantly expressed in the hypothalamus
and pituitary, where it catalyzes N-terminal pGlu modification of neuropeptides and
peptide hormones such as orexin A, gastrin, gonadotropin- and thyrotropin-releasing
hormones and neurotensin [28–31]. These pGlu modifications confer stability against
proteolytic degradation and increase the biological activity of the respective proteins. QC
was also detected in sub-populations of cortical and hippocampal interneurons [32–34]
and in subcortical brain structures such as nucleus basalis Meynert, locus coeruleus and
Edinger-Westphal nucleus [35].

Intriguingly, pathogenic post-translational protein modification by QC is implicated in
AD and PD. Both the generation of pGlu-modified Aβ and of pGlu79-aSyn require the enzy-
matic activity of QC and promote, in both cases, protein aggregation and neurotoxicity [21,36].
Thus, this catalysis presents a shared mechanism for these neurodegenerative diseases.

In addition, there is also growing evidence for cross-disease mechanisms of patho-
logical protein aggregation. For example, post mortem examination of brain tissue from
patients suffering from a variety of neurodegenerative diseases revealed the co-existence
of different misfolded proteins, raising the question of whether there might be overlaps
and analogies between the specific pathologies [37–40]. Given the fact that proteins can act
as homologous seeds [41–43], the question arose whether seeding could also take place in
a heterologous manner resulting in co-aggregation of proteins characteristic for different
clinical entities. In particular, the relationship between aggregating proteins typical for AD
(Aβ) and PD (aSyn) has been studied [44–46]. In the brains of patients with AD/PD and in
transgenic mice, Aβ and aSyn were shown to co-immunoprecipitate and form complexes
resulting in accelerated cognitive decline [47–49]. In addition, aSyn immunoreactivity was
reported to be associated with Aβ plaques in AD [50] and in Lewy body disease with
concomitant AD pathology [51,52] as well as in pathological structures of 5xFAD [52],
3xTg [49] and Tg2576 [53] AD mouse models.

The formation of pathogenic protein aggregates in the brain ultimately results in a glial
response that may have a pro-inflammatory as well as a neuroprotective component [54–58].
In addition, abnormally folded proteins induce a specific protein unfolding response that
includes the expression of molecular chaperones such as heat shock proteins (HSPs) [59,60].
A specific HSP27 (aka HSPB1) induction under conditions of Aβ and aSyn aggregate
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formation has been established and was shown to alleviate cellular stress and reduce
neurodegeneration [61–64].

In the present study, we wanted to examine whether the newly identified pGlu79-aSyn
variant is associated with Aβ pathology in brain tissue from AD patients and transgenic
Tg2576 mice and whether this induces a heat shock protein response.

2. Materials and Methods
2.1. Antibodies

The specificities of the in-house generated rabbit antiserum against pGlu79-aSyn [21]
and the goat anti-QC antiserum [65] were recently demonstrated using the respective knock-
out mouse brain tissue. In addition, the commercially available antibodies against aSyn
(BD Transduction Labs, Franklin Lakes, NJ, USA; Roboscreen, Leipzig, Germany; Enzo Life
Sciences, Farmingdale, NY, USA), Aβ (Biolegend, San Diego, CA, USA), GFAP (Synaptic
Systems, Göttingen, Germany), MMP-3 (Santa Cruz, Dallas, TX, USA; Abcam, Cambridge,
UK) and HSP27 (Santa Cruz, Dallas, TX, USA) were used for immunohistochemical la-
belings of mouse and human brain tissue (for details see Table 1). For the analyses of
mouse brain tissue, we used the mouse monoclonal Syn1 antibody, well established for
aSyn staining of mouse tissue, and compared its immunohistochemical staining pattern to
that of another aSyn antibody raised in a different species (K129 rabbit anti-aSyn). For aSyn
immunohistochemistry in human brain tissue, the human aSyn-specific rat monoclonal
antibody 15G7 was used.

Table 1. Primary antibodies used for single labeling immunohistochemistry.

Primary Antibody
(Clone/cat. #) Company Host Species Reactivity

Dilution

Mouse Human

Aβ

(4G8/800710) Biolegend Mouse Mouse, human 1:8000 1:16,000

GFAP (-/173004) Synaptic Systems Guinea pig Mouse, rat, human 1:200 1:6000

aSyn; Syn1 (42/610787) BD Transd. Labs Mouse Mouse, rat, human 1:8000 -

aSyn, K129
(-/0103001901) Roboscreen Rabbit Mouse, human 1:200 -

aSyn (15G7/
ALX-804-258) Enzo Life Sciences Rat Human - 1:1000

MMP-3 (-/sc6839) Santa Cruz Goat Mouse, rat, human 1:50 -

MMP-3
(EP1186Y/ab52915) Abcam Rabbit Mouse, rat, human - 1:3,000

QC (-/77101) Fraunhofer IZI (Halle, Germany) Goat Mouse, human 1:200 1:500

pGlu79-aSyn Fraunhofer IZI Rabbit Mouse, human 1:100 1:500

HSP27 (-/sc1049) Santa Cruz Goat Mouse, human 1:200 1:2000

MMP-3—matrix metalloproteinase-3; QC—glutaminyl cyclase; aSyn—α-synuclein; GFAP—glial fibrillary acidic
protein; HSP27—heat shock protein 27.

2.2. Mouse Brain Study
2.2.1. Experimental Animals

APP-transgenic Tg2576 mice developed and described earlier [66] were used as a
model for amyloid pathology and to reveal a potential association of aSyn and of pGlu79-
aSyn with amyloid plaques in vivo. These mice express hAPP695 with the Swedish double
mutation (K670N, M671L) as transgene under control of a hamster prion protein promoter
on a mixed C57BL/6 x SJL background. Mice were housed in groups of three to five animals
per cage and separated by sex, with ad libitum access to water and food with 12 h day/12 h
night cycles at 23 ◦C. The cages contained red plastic houses (Tecniplast, Buguggiate, Italy)
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and shredded paper flakes to allow nest building. At the age of six weeks, transgenicity
of the animals was tested by polymerase chain reaction of ear punch-extracted DNA as
described [66]. Mice heterozygous for the transgene (N = 6) and wild-type littermates
(N = 6) were studied at the age of 18 months. All methods were carried out in accordance
with the relevant guidelines and regulations.

2.2.2. Tissue Preparation

Mice were sacrificed by CO2 inhalation and perfused transcardially with 0.9% saline,
followed by perfusion with 4% paraformaldehyde in phosphate buffer (0.1 M; pH 7.4). The
brains were removed from the skull and post-fixed by immersion in the same fixative for
24 h at 4 ◦C. After cryoprotection in 30% sucrose in 0.1 M phosphate buffer for three days,
30 µm thick coronal sections were cut on a sliding microtome and collected in phosphate
buffer supplemented with 0.0025% sodium azide for storage at 4 ◦C.

2.2.3. Immunohistochemistry
Single Labeling Immunohistochemistry

In order to detect Aβ, GFAP, aSyn, MMP-3, QC, pGlu79-aSyn and HSP27 in the brains
of Tg2576 mice, single labeling immunohistochemistry was performed on free-floating
coronal brain sections. Brain sections were washed in 0.1 M phosphate buffer (pH 7.4)
for 5 min, and endogenous peroxidases were inactivated by treating brain slices with 60%
methanol containing 1% H2O2 for 60 min, followed by three washing steps with 0.1 M
Tris-buffered saline (TBS; pH 7.4) for 5 min each. After masking unspecific binding sites
with blocking solution (5% normal donkey serum in TBS containing 0.3% Triton X-100) for
60 min, sections were incubated with the primary antibodies at 4 ◦C for 40 h (Table 1). When
primary antibodies of mouse origin were used, the blocking solution additionally contained
3% donkey Fab fragments directed against mouse immunoglobulins to mask endogenous
mouse antibodies in the processed tissue. Brain sections were then washed three times in
TBS for 5 min each before being incubated with biotinylated donkey anti-mouse, anti-goat
or anti-rabbit secondary antibodies, resp. (Dianova, Hamburg, Germany; 1:1000) in TBS
containing 2% bovine serum albumin (BSA) for 60 min. After three washing steps in
TBS for 5 min each, slices were incubated with ExtrAvidin peroxidase (Sigma, Darmstadt,
Germany; 1:2000) in TBS/2% BSA, followed by washing steps and pre-incubation in
Tris buffer (0.05 M, pH 7.6) for 5 min. Finally, visualization of peroxidase binding was
performed by incubation with 4 mg 3,3′-diaminobenzidine (DAB) and 2.5 µL H2O2 per
5 mL Tris buffer. After washing, sections were mounted onto glass slides and cover slipped.

Triple Immunofluorescent Labelings

In order to reveal the possible co-localization of full-length aSyn and of pGlu79-aSyn
with the enzymes MMP-3 and QC and with Aβ, GFAP and HSP27, resp., in the mouse
brain, cocktails of three primary antibodies from different species were applied as specified
in Table 2. Brain sections were incubated with primary antibody cocktails at 4 ◦C for 40 h.
Subsequently, sections were washed three times with TBS and were then incubated with
cocktails of Cy2-, Cy3- or Cy5-conjugated donkey anti-mouse, -goat and -rabbit antisera
(1:400 each; Dianova) in TBS containing 2% BSA for 60 min. All secondary antibodies were
purchased as preparations pre-adsorbed against IgGs from multiple other species. After
washing, cell nuclei were stained with Hoechst 33,342 (Sigma; 1:10,000), and sections were
mounted onto glass slides before being cover slipped. In control experiments, switching the
fluorescent labels of the secondary antibodies generated similar results as when following
the procedure outlined above (not shown). In addition, omitting primary antibodies or
replacement of primary antibodies by normal IgG from mouse, guinea pig, rabbit, rat and
goat did not generate immunohistochemical labeling (not shown).
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Table 2. Cocktails of primary and secondary antibodies used for triple immunofluorescent labeling
in mouse brain tissue.

Primary Antibody Host Dilution Secondary Antibody

MMP-3 Goat 1:100 Donkey anti-goat Cy2
pGlu79-aSyn Rabbit 1:100 Donkey anti-rabbit Cy3
aSyn (Syn1) Mouse 1:4000 Donkey anti-mouse Cy5

QC Goat 1:100 Donkey anti-goat Cy2
pGlu79-aSyn Rabbit 1:100 Donkey anti-rabbit Cy3
aSyn (Syn1) Mouse 1:4000 Donkey anti-mouse Cy5

HSP27 Goat 1:100 Donkey anti-goat Cy2
pGlu79-aSyn Rabbit 1:100 Donkey anti-rabbit Cy3

GFAP Guinea pig 1:200 Donkey anti-guinea pig Cy5

HSP27 Goat 1:100 Donkey anti-goat Cy2
pGlu79-aSyn Rabbit 1:100 Donkey anti-rabbit Cy3

Aβ (4G8) Mouse 1:4000 Donkey anti-mouse Cy5
MMP-3—matrix metalloproteinase-3; QC—glutaminyl cyclase; aSyn—α-synuclein; GFAP—glial fibrillary acidic
protein; HSP27—heat shock protein 27.

2.3. Human Brain Study
2.3.1. Human Brain Tissue

The human brain tissue was provided by the former Brain Banking Centre Leipzig
of the German Brain-Net, operated by the Paul Flechsig Institute of Brain Research, Med-
ical Faculty, University of Leipzig. The procedure of case recruitment, the protocols, the
informed consent forms and the autopsy have been approved (GZ 01GI9999-01GI0299).
The diagnosis and staging of AD cases used in this study were based on the presence of
neurofibrillary tangles [67] and neuritic plaques in the hippocampal formation and neocor-
tical areas as outlined by the Consortium to establish a registry for AD (CERAD) [68] and
met the criteria of the National Institute on Aging (NIA) on the likelihood of dementia [69].
For immunohistochemistry, temporal cortex (Brodmann area 22) from 6 AD cases (3 male,
3 female; all Braak stage VI) and 4 age-matched controls (2 male, 2 female; Braak stage I to
III) was used. Anatomical structures and cortical layers were identified using consecutive
Nissl-stained sections.

2.3.2. Human Brain Tissue Preparation

Tissue blocks of the human temporal cortex were prepared in the frontal plane, fixed
in 4% paraformaldehyde and cryoprotected in 30% sucrose in 0.1 M phosphate buffer
(pH 7.4) before sectioning. Then, 30 µm thick sections were cut on a freezing microtome
and collected in 0.1 M phosphate buffer containing 0.1% sodium azide.

2.3.3. Immunohistochemistry
Single Labeling Immunohistochemistry

All immunohistochemical procedures were performed on free-floating brain sections.
Brain sections were rinsed in PBS containing 0.05% Tween 20 (PBST), followed by pre-
treatment with 1% H2O2 in 60% methanol for 60 min. Unspecific staining was blocked
by treatment with PBS-T in blocking solution (PBST with 2% (w/v) BSA, 0.3% (w/v) milk
powder, 0.5% (v/v) normal donkey serum) for 60 min before incubating brain sections with
the primary antibodies in blocking solution at 4 ◦C for 40 h (for antibody concentration see
Table 1). Thereafter, the tissue was transferred to a mixture of blocking solution and PBS-T
buffer (1:2) containing the secondary biotinylated antibody (Dianova; 1:1000) for 60 min,
followed by incubation with ExtrAvidin-conjugated peroxidase (Sigma, Germany; 1:2000)
in PBS-T buffer at room temperature for 60 min. Bound peroxidase was visualized in a
solution containing 2–4 mg DAB, 40 mg ammonium nickel(II)-sulfate and 5 µL H2O2 per
10 mL Tris-buffer (0.05 M; pH 8.0), yielding black epitope staining.
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Double Labeling Procedures

Combined immunohistochemical labeling of Aβ (DAB, brown) with aSyn or with
pGlu79-aSyn, MMP-3, GFAP and HSP27 (DAB-Ni, black), respectively, was performed in a
two-step labeling procedure. In the first step, single labeling of the respective Aβ plaque-
associated proteins was performed following the single labeling procedure described above.
After DAB-Ni staining of the respective antigens, bound peroxidase was inactivated with
1% H2O2 in PBS for 60 min to allow subsequent detection of Aβ with the mouse monoclonal
4G8 antibody, followed by a peroxidase-labeled donkey anti-mouse antibody (Dianova;
1:200; 60 min) and visualization with 8 mg DAB and 5 µL H2O2 per 10 mL Tris buffer
(0.05 M; pH 7.6), resulting in a brown precipitate. The application of the DAB-Ni/DAB
labeling protocol circumvents interference of autofluorescence present in human brain
tissue of aged subjects with the immunofluorescent labelings [34].

2.4. Microscopy
2.4.1. Light Microscopy

Mouse and human brain tissue sections stained immunohistochemically with DAB
and DAB-Ni were examined with an Axio-Scan.Z1 slide scanner connected with a LED
light source and a Hitachi HV-F202SCL camera (Carl Zeiss, Göttingen, Germany). High-
resolution images from the areas of interest were taken using a 20× objective lens with a
0.8 numerical aperture (Zeiss). Images were digitized by means of ZEN 3.2 software and
analyzed using the ZEN imaging tool. Photoshop CS2 (Adobe Systems, San José, CA, USA)
was used to process the images. Care was taken to apply the same brightness, sharpness,
color saturation and contrast adjustments in the processing of the various pictures.

2.4.2. Confocal Laser Scanning Microscopy

Confocal laser scanning microscopy (LSM 880 Airyscan, Zeiss, Oberkochen, Germany)
using an Axioplan2 microscope was performed to reveal the spatial relationship of pGlu79-
aSyn with MMP-3, QC, aSyn, Aβ, GFAP and HSP27. For Cy2-labeled antigens (green
fluorescence), an argon laser with 488 nm excitation was used, and emission from Cy2
was recorded at 510 nm applying a low-range band pass (505–550 nm). For Cy3-labeled
antigens (red fluorescence), a helium–neon laser with 543 nm excitation was applied, and
emission from Cy3 at 570 nm was detected applying high-range band pass (560–615 nm),
and Cy5-labeled antigens (blue fluorescence) were detected using excitation at 650 nm and
emission at 670 nm. Images of areas of interest were taken using a 20× objective lens with
a 0.75 numerical aperture (Zeiss). Photoshop CS2 (Adobe Systems, CA, USA) was used to
process the images obtained by light and confocal laser scanning microscopy. Care was
taken to apply the same brightness, sharpness, color saturation and contrast adjustments in
the various pictures.

3. Results
3.1. Association of pGlu79-aSyn with Aβ Plaques in Tg2576 Mouse Brain

First, using standard single-labeling immunohistochemistry, the transgenic mouse
model was characterized for a potential co-localization of aSyn to Aβ plaques. In wild-
type mouse brain sections devoid of Aβ plaques, resting astrocytes and a synaptic aSyn
localization were observed (Figure 2). In APP-transgenic Tg2576 mouse brain sections with
abundant Aβ plaque formation in the neocortex and hippocampus, however, a plaque-
associated activation of astrocytes and a punctate-like plaque decoration by aSyn were
detected using the Syn1 antibody (Figure 2). Additionally, the K129 antibody against aSyn
showed an aSyn localization in glial cells of astrocytic morphology (Figure 2).

We next asked whether the novel pGlu79-aSyn variant and the enzymes required for
its generation may also be present under conditions of Aβ plaque formation in the Tg2576
mouse brain and further induce a cellular protein unfolding response. In the wild-type
mouse brain, a faint synaptic/extracellular MMP-3 immunoreactivity, QC-immunoreactive
interneurons, synaptic and faint somatic neuronal pGlu79-aSyn and vascular HSP27 im-



Biomolecules 2022, 12, 1006 7 of 17

munoreactivity were detected (Figure 3). Interestingly, in Tg2576 mouse brain sections,
there was a diffuse accumulation of pGlu79-aSyn immunoreactivity in the periphery of
Aβ plaques and in some glia-like cells (Figure 3). The enzymes implicated in pGlu79-aSyn
generation, MMP-3 and QC, however, displayed different patterns of immunohistochemi-
cal labelings. MMP-3 immunoreactivity was predominantly present as distinct punctate
aggregates in the periphery of Aβ plaques and rather absent from cells of glial morphology
(Figure 3). In contrast, QC showed strong glial immunoreactivity in the plaque periphery
as well as a diffuse extracellular appearance (Figure 3). In addition, a very strong glial
HSP27 immunoreactivity was detected in association with Aβ plaques, including strongly
stained glial cells (Figure 3).
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glial HSP27 immunoreactivity was detected in association with Aβ plaques, including 
strongly stained glial cells (Figure 3). 

In order to reveal the cellular identity of the glia-like immunoreactivity observed for 
pGlu79-aSyn and a potential co-localization of MMP-3, QC and HSP27 with pGlu79-aSyn, 
a series of triple immunofluorescent labelings were performed. Based on morphological 
criteria, the immunoreactivities reported above for pGlu79-aSyn, QC and HSP27 in glia-
like cells were most likely attributable to astrocytes. Therefore, triple labelings also in-
cluded GFAP as an astrocytic marker protein. 

The triple immunofluorescent labelings in Tg2576 mouse brain sections confirmed 
the glial localization of pGlu79-aSyn and QC. Neither MMP-3 nor full-length aSyn were 
localized in glia-like cells (Figure 4a). In addition, there was an almost complete co-local-
ization of pGlu79-aSyn with HSP27 and the majority of Aβ plaque-associated, GFAP-im-
munoreactive astrocytes (Figure 4b). 

Figure 2. Immunohistochemical detection of Aβ, GFAP and aSyn in brains of wild-type and Tg2576
mice. In wild-type mouse brain (top row), no Aβ plaques, resting astrocytes and synaptic aSyn
localization were observed. In brains of Tg2576 mice (bottom row), Aβ plaques, reactive astrocytes,
punctate aSyn aggregates in the periphery of plaques (Syn1 antibody) and glial distribution of aSyn
(K129 antibody) were detected. All high magnification images are from entorhinal cortex.
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Figure 3. Immunohistochemical detection of pGlu79-aSyn, MMP-3, QC and HSP27 in brains of
wild-type and Tg2576 mice. In wild-type mouse brain (top row), synaptic pGlu79-aSyn, extracel-
lular/synaptic MMP-3, QC-positive interneurons and vascular HSP27 were detected. In contrast,
in Tg2576 mouse brain (bottom row), pGlu79-aSyn, QC and HSP27 were detected with different
intensities in glial cells. MMP-3 and in addition QC and pGlu79-aSyn appeared as punctate or diffuse
extracellular aggregates in the periphery of Aβ plaques. The examples shown are from entorhinal
cortex (pGlu79-aSyn and MMP-3) and from hippocampus (QC and HSP27).
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In order to reveal the cellular identity of the glia-like immunoreactivity observed for
pGlu79-aSyn and a potential co-localization of MMP-3, QC and HSP27 with pGlu79-aSyn,
a series of triple immunofluorescent labelings were performed. Based on morphological
criteria, the immunoreactivities reported above for pGlu79-aSyn, QC and HSP27 in glia-like
cells were most likely attributable to astrocytes. Therefore, triple labelings also included
GFAP as an astrocytic marker protein.

The triple immunofluorescent labelings in Tg2576 mouse brain sections confirmed
the glial localization of pGlu79-aSyn and QC. Neither MMP-3 nor full-length aSyn were
localized in glia-like cells (Figure 4a). In addition, there was an almost complete co-
localization of pGlu79-aSyn with HSP27 and the majority of Aβ plaque-associated, GFAP-
immunoreactive astrocytes (Figure 4b).
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Figure 4. Immunohistochemical triple labeling of pGlu79-aSyn with MMP-3, QC, full-length aSyn,
HSP27, Aβ and GFAP in Tg2576 mouse brain tissue. (a) MMP-3 and aSyn showed a punctate
immunoreactivity in the plaque periphery, but no localization in cells of glial morphology. QC and
pGlu79-aSyn, on the other hand, showed diffuse labeling of plaques and co-localization in glia cells.
(b) Glial pGlu79-aSyn immunoreactivity was clearly co-localized with HSP27 and with the astrocyte
marker GFAP in the plaque periphery. Asterisks indicate the position of Aβ plaques. The examples
shown are from entorhinal cortex (a) and from hippocampus (b).

3.2. Association of pGlu79-aSyn with Aβ Plaques in AD Brain

In order to confirm the observations made in the transgenic AD mouse model in
human AD brains, immunohistochemical double labelings were performed. In neocortical
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brain slices from both control and AD subjects, a neuronal pGlu79-aSyn immunoreactivity,
in particular of layer III and V pyramidal neurons, was observed (Figure 5a). Typically, the
neuronal pGlu79-aSyn labeling appeared more distinct in AD cases compared to control
subjects. In addition, were observed glial and dot-like pGlu79-aSyn immunoreactivity in
AD brain tissue (Figure 5a).
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Figure 5. Association of pGlu79-aSyn, MMP-3 and QC with amyloid plaques in human brain
tissue. (a) pGlu79-aSyn immunoreactivity in neocortex of a control subject (left) and of an AD case
(right). The higher magnification images depict layers I, III and VI as indicated by boxes. Note the
strong pGlu79-aSyn immunoreactivity in pyramidal neurons, which appears to be more distinct in
AD compared to control tissue. The higher magnification images identify glial (arrows) and dot-
like (arrowheads) pGlu79-aSyn immunoreactivity. (b) Double labelings revealed the glial presence
(arrows) of pGlu79-aSyn, MMP-3 and QC (DAB-Ni, black) in proximity of Aβ plaques (DAB, brown)
in AD temporal cortex (Brodmann area 22). In addition, pGlu79-aSyn immunoreactivity was found
in rod-like and punctate (arrowheads) structures within Aβ plaques.

Neocortical control brain tissue displayed a granular MMP-3 immunoreactivity and
labeling of individual QC-immunoreactive interneurons (Figure 5b). In AD, however,
pGlu79-aSyn was associated with punctate and rod-like aggregates within Aβ plaques
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as well as in astrocytes decorating amyloid deposits (Figure 5b). Similarly, both enzymes
implicated in pGlu79-aSyn formation, MMP-3 and QC, were detected in glial cells in
proximity to amyloid plaques (Figure 5b).

In the Tg2576 mouse brain, HSP27 immunoreactivity was detected in cerebral blood
vessels and in Aβ plaque-associated reactive astrocytes (see Figure 3). In human AD
brain tissue, HSP27 was also found to be associated with microvessels and with reactive
astrocytes in the proximity of Aβ plaques (Figure 6), implicating the induction of similar
protein unfolding mechanisms in response to amyloid pathology. However, in contrast to
observations made in the Tg2576 mouse brain, the aSyn protein did not show a granular
accumulation in the amyloid plaque periphery.
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Figure 6. HSP27 expression by amyloid plaque-associated reactive astrocytes in human temporal cor-
tex (Brodmann area 22). In control subjects (top row), synaptic aSyn labeling, GFAP-immunoreactive
resting astrocytes and vascular HSP27 were detected (DAB-Ni, black). In AD (bottom row), strong
activation of plaque-associated astrocytes and substantial astroglial HSP27 expression were evident.
Full-length aSyn labeled by the 15G7 antibody, on the other hand, was not found to be enriched
around Aβ plaques (DAB, brown) and was absent from reactive astrocytes.

4. Discussion
4.1. aSyn and pGlu79-aSyn Aggregates in Proximity to Aβ Plaques

The present study was performed to reveal whether the pGlu79-aSyn variant recently
identified in the PD brain [21] is also associated with Aβ pathology in the brains of AD
subjects and its transgenic Tg2576 mouse model. Interactions between pathological proteins
typical for different clinical conditions have been known for a long time and have been
studied best for aSyn and Aβ peptides [46,49,70–72]. In particular, specific interaction
sites between membrane-bound aSyn and Aβ proteins have been identified [73], and aSyn
overexpression was shown to lead to the accumulation of mouse Aβ in a mouse model
of PD [44]. Vice versa, Aβ was shown to promote aSyn aggregation and toxic conversion
in vitro [46] and in vivo [47]. However, intracerebral injections of aSyn preparations and
co-expression of aSyn in APP-transgenic mice both failed to seed but rather inhibited Aβ

plaque formation [74]. Moreover, the seeding capacity of Aβ-containing brain preparations
was reduced by aSyn, and Aβ deposition was ameliorated in grafted brain tissue from
aSyn-transgenic mice [74].
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Here, we report a distinct, punctate aggregation of full-length aSyn in the periphery of
Aβ plaques in Tg2576 mouse brain but not in AD brain. The association of aSyn with Aβ

plaques is well established for different APP-transgenic mouse models [49,52,53] but contro-
versial for AD brain tissue. Although some early studies reported such an association of the
aSyn non-amyloid component (NAC) domain with amyloid plaques in AD [50,75], subse-
quent studies using different antibodies covering other portions of the aSyn protein did not
confirm an association of full-length aSyn with amyloid plaques in AD [76,77]. However, in
AD cases with additional Lewy body pathology, aSyn immunoreactive dystrophic neurites
decorating Aβ plaques were reported [51,52,78].

For the association of the pGlu79-aSyn variant with Aβ plaques, on the other hand,
highly consistent observations were made for the transgenic mouse model and the human
clinical condition. pGlu79-aSyn and the enzymes implicated in its generation, MMP-3
and QC, respectively, were consistently detected in plaque-associated structures in Tg2576
mouse and AD brain.

4.2. pGlu79-aSyn, QC and HSP27 in Reactive Astrocytes

Astrocytes are generally activated under conditions of pathological protein aggre-
gation, for example, in amyloidosis, tauopathies and synucleinopathies [79,80]. Here, in
addition to the extracellular association of aSyn, MMP-3, QC and pGlu79-aSyn with Aβ

plaques, immunoreactivity for QC and pGlu79-aSyn was noticed in glial cells identified
as reactive astrocytes. Interestingly, full-length aSyn detected by the Syn1 antibody did
not show astrocytic immunoreactivity, but the K129 antiserum generated strong aSyn
labeling in reactive astrocytes. This discrepancy might be due to the different aSyn epitopes
used for immunization to generate the Syn1 (aSyn aa 15–123) and K129 (aSyn aa 44–57)
antibodies. Alternatively, the antibodies might recognize different aSyn cleavage products,
conformations or aggregation forms such as oligomers of different sizes, protofibrils and
fibrils. Indeed, oligomeric aSyn has been observed in reactive astrocytes in the A53T PD
mouse model and related to blood–brain-barrier disruption [81]. Also in human PD brain,
aSyn-immunoreactive astrocytes have been observed [82,83]. However, astrocytic aSyn
accumulation was not detected under conditions of multiple system atrophy and cortico-
basal degeneration, indicating disease and/or aSyn strain-specific aspects of astrocytic aSyn
enrichment [84]. aSyn accumulation in astrocytes may subsequently contribute to their
activation and aberrant function [85–87], as exemplified by impaired glutamate uptake [88].
In addition, astrocytic uptake of neuron-derived aSyn by endocytosis is considered a
mechanism to reduce extracellular aSyn concentration and, thereby, its neuron-to-neuron
propagation [89]. Finally, there are reports of aggregated aSyn transfer from astrocyte to
astrocyte via tunneling nanotubes [90]. Thus, astrocytes are believed to contribute to aSyn
degradation rather than spreading [91].

Together, our data are consistent with two different scenarios: (i) release of aSyn from
neurons, its membrane-associated or extracellular truncation into Gln79-aSyn by MMP-3
and subsequent conversion into pGlu79-aSyn by QC in the extracellular space around
Aβ plaques, followed by astrocytic uptake of pGlu79-aSyn (Figure 7). (ii) Alternatively,
extracellular Gln79-aSyn may be taken up by local astrocytes and converted into pGlu79-
aSyn by astrocytic QC (Figure 7). Aβ plaque-associated astrocytic QC expression in the
brains of Tg2576 mice has been demonstrated by us earlier and was shown to be implicated
in pGlu modification of thyrotropin-releasing hormone [92].

We have recently shown that pGlu79-aSyn peptides in solution instantly form oligomers
that are neurotoxic [21]. Therefore, it is likely that cellular defense mechanisms become acti-
vated in astrocytes affected by pGlu79-aSyn. A typical cellular response to protect cells from
cytotoxic effects of misfolded or aggregated proteins is the expression of chaperones such as
HSP27. Indeed, pGlu79-aSyn in reactive astrocytes was found to be co-localized to HSP27,
a member of a family of small heat shock proteins. A particular association of HSP27 with
Aβ peptides has been demonstrated in cell-free assays [63,93], in cultured cells [94], in trans-
genic AD animal models [62] and in the brains of AD subjects [95]. HSP27/Aβ interactions
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also take place in reactive astrocytes. For example, primary rat astrocytes release HSP27 in
response to Aβ exposure [96], and HSP27 immunoreactive cells of astrocytic morphology
were observed in AD brain tissue [97]. Thus, our data on astrocytic HSP27 expression
reported here for human AD and APP-transgenic mouse brain tissue are in line with a sub-
stantial amount of literature. In an APP-transgenic mouse model with amyloid pathology,
one would primarily expect Aβ or pGlu-Aβ immunoreactivity in plaque-associated reac-
tive astrocytes. Surprisingly, in double labeling experiments for Aβ or pGlu-Aβ with GFAP,
we did not detect astrocytic Aβ/pGlu-Aβ localization (not shown). Instead, there was a
striking astrocytic co-localization of HSP27 and pGlu79-aSyn. This observation is some-
what counterintuitive since endogenous wild-type mouse aSyn does not form pathological
aggregates such as Lewy bodies and Lewy neurites. However, under conditions of Aβ

pathology, the induction of astrocytic QC expression may lead to a pGlu79-aSyn generation
that induces local HSP27 expression. As in the case of Aβ, there is an association between
aSyn and HSP27 (for reviews, see [61,64,98]). Specifically, HSP27 was shown to bind aSyn
in a specific manner [99] to protect cells from aSyn-induced cell death [100,101] and was
demonstrated to co-localize with aSyn inclusions in H4 neuroglioma cells [102]. Moreover,
the particularly oligomerization-prone and cytotoxic glycated aSyn variants were shown to
be converted into non-toxic aSyn conformations by HSP27 [103]. This is in line with the
role of HSP27 in modulating glycation-associated pathologies in synucleinopathies.
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Figure 7. Combined immunohistochemical and schematic representation of the cellular localization
of proteins investigated. (Left): Immunohistochemical visualization of astrocytes (GFAP, black)
decorating an amyloid plaque (4G8, brown). (Middle): Schematic reduction of the immunohisto-
chemical labeling. (Right): Zoom into the plaque, plaque periphery and astroglial interior, showing
the localization of the proteins investigated in this study (aSyn, blue; pGlu79-aSyn, red; MMP-3,
green; QC, yellow; HSP27, violet).

Quantitative analyses on the abundance of aSyn, pGlu79-aSyn and HSP27 in the
brains of AD subjects and Tg2576 mice will be performed in future studies by biochemical
methods using non-fixed brain tissue.

5. Conclusions

We conclude that the recently identified pGlu79-aSyn aggregates in proximity to Aβ

plaques in the brains of AD subjects and of APP-transgenic Tg2576 mice. The pGlu79-
modified aSyn variant also appears to be generated in reactive astrocytes and to induce an
astrocytic protein unfolding response that involves HSP27 expression. Our observations are
consistent with a cross-disease mechanism of pathological protein aggregation in AD and
PD. The results support the crucial role of pGlu modifications of different amyloidogenic
peptides in neurodegeneration and the importance of QC for their formation. Together, this
provides further evidence for the concept of QC inhibition in neurodegenerative disorders,
which is currently in clinical testing.
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