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Prognostic value of ATPa
se family, AAA+ domain
containing 2 expression in human cancers
A systematic review and meta-analysis
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Abstract
Background: ATPase family, AAA+ domain containing 2 (ATAD2) is also known as AAA+ nuclear coregulator cancer-associated
protein or PRO2000. ATAD2 has been reported as a prognostic factor in different cancer types, but the association between ATAD2
high expression and survival is still unclear. Thereby, this meta-analysis was performed to evaluate the prognostic value of ATAD2
high expression in human cancers.

Methods: All of the studies included were retrieved from PubMed, EMBASE, and Cochrane Library electronic databases. The
clinical outcomes were evaluated by calculating hazard ratio (HR) with their 95% confidence interval (CI).

Results: Thirteen studies including 2689 patients were eligible for this analysis. The pooled results showed that ATAD2 over-
expression was significantly associated with shorter overall survival (OS) (HR=2.32, 95% CI=1.77–3.02), as well as shorter
recurrence-free survival (RFS), disease-free survival (DFS), and disease-specific survival (DSS) (HR=1.83, 95% CI=1.51–2.23)
among human cancers. Subgroup analyses for OSwere implemented in terms of region, tumor type, and sample size and the results
were coincident with overall pooled results. Begg funnel plot and Egger test showed the presence of publication bias for OS.
Sensitivity analysis indicated that both results were not affected for removing any study.

Conclusion:ATAD2 would be likely to act as a prognostic biomarker for the patients of different cancer types and provide a guide
on clinical treatment. Prospective clinical studies are needed to support these findings.

Abbreviations: 95% CI = 95% confidence interval, AR = androgen receptor, BC = breast cancer, CC = cervical cancer, CRC =
colorectal cancer, DFS = disease-free survival, DSS = disease-specific survival, EC = endometrial cancer, ER = estrogen receptor,
GC = gastric cancer, HCC = hepatocellular carcinoma, HR = hazard ratio, IHC = immunohistochemistry, LAC = lung
adenocarcinoma, NOS = Newcastle–Ottawa Quality Assessment Scale, OC = ovarian cancer, OS = overall survival, RFS =
recurrence-free survival, SCLC = squamous cell lung carcinoma.
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1. Introduction

AAA+ (ATPases associated with various cellular activities)
proteins, an evolutionarily conserved family of enzymes, can
change conformation of their substrate protein complexes.[1]

ATPase family, AAA+ domain containing 2 (ATAD2) is amember
of theAAA+ATPase family.[2] In theGenedatabase, theATAD2 is
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also known as AAA+ nuclear coregulator cancer-associated
protein (ANCCA) or PRO2000. ATAD2 gene contains 2 AAA+
ATPase domains, which mediate protein multimerization and a
bromodomain which is responsible for its binding to histones.[3–5]

Because of the special function of the structure, ATAD2, as a
coactivator of estrogen receptor (ER) and androgen receptor (AR),
mediates the expression of E2 (ER-a andER-b) andAR target gene
in human breast and prostate cancer cells, respectively.[2,6,7] MYC
is a oncogene that contributes to the malignancy of many
aggressive cancers. In addition to participating in the regulation of
the estrogen and androgen receptors pathways, ATAD2 has also
been confirmed to be a MYC cofactor and high expression in
several different human cancers.[8] Subsequently, it was reported
thatATAD2wasover-expressed in varioushormone-dependentor
non-hormone-dependent cancers and played an important role in
cancer cells proliferation, invasion, migration, and differentiation,
such as estrogen-dependent tumors,[9–13] digestive system
tumors,[14–16] lung adenocarcinoma,[17,21] and hepatocellular
carcinoma.[18–20] Hence, the high expression of ATAD2 was
possibly associated with poor prognosis in different cancer types.
In recent years, more and more investigators are devoted to the

studies of prognostic significance of ATAD2 expression in human
cancers, but the view is still unclear. So far, no systematic review has
been reported in this field. Therefore, based on the existing reports,
we first compiled this meta-analysis to systematically evaluate the
prognostic impact of ATAD2 expression in human cancers.
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2. Materials and methods

2.1. Literature search

Using the electronic databases, PubMed, EMBASE, and
Cochrane Library, 2 authors (H-JH and Q-YH) independently
completed a comprehensive search for the articles relevant with
this topic, ending on March 2, 2019. The inconsistencies on
findings were resolved through discussing with a third reviewer.
We performed the literature search by the listed keywords.
“ATAD2” or “ANCCA” or “PRO2000”; and “cancer” or

“neoplasm” or “carcinoma” or “tumor”. The reference of
relative articles was manually screened to ensure that all were
enrolled.
2.2. Literature selection

Inclusion studies needed to meet the following criteria: studies
based on cancer patients; ATAD2 expression was detected from
tumor tissue with immunohistochemistry (IHC) staining; clinical
studies regarding prognostic impact of ATAD2 expression;
Kaplan–Meier curve or the survival data including hazard ratio
(HR) and 95% confidence interval (95% CI) were available;
publication with a full paper in English. Studies were excluded
according to the following criteria: conference abstracts, reviews,
case reports, and comments; the samples of studies derived from
cells lines or animals. All articles were screened independently by
the 2 authors based on inclusion and exclusion criteria. When the
studies were published by a same group, only the latest articles
with the largest sample size were included. The inconsistencies on
findings were resolved through discussing with a third reviewer.
2.3. Data extraction and quality assessment

Twoauthors (H-JHandQ-YH) independently extracteddata from
qualified studies that we screened and evaluated quality according
to Newcastle-Ottawa Quality Assessment Scale (NOS). The
scoring projects include the selection of the research population,
comparability, and measurement of the outcome and the score
range is 0 to 9 points. Scores equal to or higher than 6 out of 9 are
regarded as qualified. The relevant details were extracted from
each article as follows: name of First author, year of publication,
cancer types, country, number of patients, detection method and
staining site, cut-off value for high ATAD2 expression, percentage
of ATAD2 expression, follow-up period, survival outcomes,
methods of data extraction, and quality assessment score. The
inconsistencies onfindingswere resolved throughdiscussingwith a
third reviewer. Prognostic value of high ATAD2 expression were
assessed by several different clinical outcomes, including overall
survival (OS), recurrence-free survival (RFS), disease-free survival
(DFS), and disease-specific survival (DSS). HR and 95% CIs were
obtained directly from reported studies. For the articles containing
only Kaplan–Meier curves, survival data were estimated by using
Engauge Digitizer V 10.8 and spreadsheets that were provided by
Tierney et al.[22]HRand95%CIswere collected frommultivariate
analysis, besides 1 study,[9] of which the method of survival
analysis was not reported.
2.4. Statistical analysis

The prognostic value of ATAD2 expression in human cancers
was measured through meta-analysis. Pooled HR with 95% CIs
was used to evaluate the correlation between ATAD2 expression,
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andOS, DFS, RFS, andDSS by using STATA12.0 (StataCorp LP,
College Station, TX). Subgroup analyses were implemented in
terms of region, tumor type, and sample size. The chi-square test
and I2 metric were used to determine statistical heterogeneity.
I2>50% or P< .1 were regarded as significant heterogeneity and
random effect model was used. If the results reversed, fixed-effect
model was applied. The effect of single study on the pooled
outcomes was assessed via sensitivity analysis which was used to
analyze possible causes of heterogeneity. By using Begg funnel
plot and Egger linear regression test, potential publication bias of
the studies was evaluated. P value< .05 was regarded as
statistically significant.
2.5. Ethics approval

All patients are not directly involved in the study, so ethical
approval is not required.
3. Results

3.1. Eligible studies

A total of 170 articles were found from PubMed, Embase, and
Cochrane Library. The process of selection was illustrated in
Fig. 1. One hundred ten articles were retained after removing the
duplicate records. We excluded 89 articles including some
conference abstracts, reviews, case reports, comments, non-
English studies, and studies related to animals or cells lines by
reviewing the titles and abstracts, and some of them were
unrelated to our study. The remaining 21 articles were reviewed
in detail, and 8 articles were excluded due to publication reported
by a same research group or insufficient data. Finally, 13 articles
were identified as qualified in the meta-analysis.

3.2. Study characteristics

Themain characteristics of all qualified studieswere summarized in
Table 1. These studies were reported since 2010. In our study, 9
different cancer types with 2689 patients were included[9–21] and
the studies were completed in 4 different countries (including
China, USA, Korea, andNorway). All ATAD2 expression levels in
tumor tissue were detected by IHC staining and each study defined
definite cut-off value to assess low or high ATAD2 expression.
Unexpectedly, the ATAD2 expression of all of inclusion studies
wasmore than 50%.Among 13 studies,OS, as a primary outcome
of survival analysis, was applied in 11 studies[9–19] and was not
described in the rest 2. The secondary outcomes including RFS,
DFS, andDSSwere applied in 6 studies with 7 effect sizes: RFSwas
evaluated in 3 studies; DFS was in 2 studies; DFS was in 2 studies.
For the studies involvingbothmultivariate andunivariate analyses,
HR with 95% CIs were obtained from multivariate analysis. The
survival data from 12 studies were reported and only 1 was
estimated from survival curve, which greatly ensured the reliability
of the results. Since theNOSscoreswere equal toormore than6, all
of the studies included were of high quality.

3.3. ATAD2 as a prognostic factor for human cancers

The meta-analysis about the association between ATAD2 over-
expression and prognostic value in human cancers is involved in
11 articles. High ATAD2 expression was significantly associated
with shorter OS in human tumors (HR=2.32, 95% CI=1.77–
3.02, P value< .001). Since heterogeneity test for the pooled
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Figure 1. Flowchart of screening relevant studies.

Table 1

Characteristics of studies included in this meta-analysis.

First author Year Cancer Country
No of

patients
Method
staining Cut-off

ATAD2
expression (%)

Median/follow-up
time (mouth)

Survival
analysis

Data
extract Score

Kalashnikova[9] 2010 BC USA 225 IHC,N ≥26% 176/225 (78.0) 132 OS,RFS Curve 8
Wan WN[10] 2014 OC China 110 IHC,N Index≥3 72/110 (65.5) NR OS (M) Reported 7
Krakstad C[11] 2015 EC Norway 564 IHC,N Index≥3 283/564 (50.2) NR OS (M) Reported 7
Shang P[12] 2015 EC China 207 IHC,N Index≥3 159/207 (76.8) 70 (9–78) OS (M),DFS (M) Reported 8
Zheng L[13] 2015 CC China 135 IHC,N/C Index≥5 96/135 (71.1) NR OS (M) Reported 7
Luo Y[14] 2015 CRC China 300 IHC Index≥6 176/300 (58.7) NR OS (M) Reported 6
Hou M[15] 2016 CRC China 155 IHC,N Index≥3 90/155 (58.1) 72 OS (M),DFS (M) Reported 8
Zhang M[16] 2016 GC China 166 IHC,N Index>3 86/166 (51.8) 96 OS (M) Reported 8
Zhang Y[17] 2013 LAC China 143 IHC,N H-score≥15 74/143 (51.7) NR OS (M,RFS (M) Reported 7
Wu G[18] 2014 HCC China 129 IHC,N/C Index≥5 83/129 (64.3) 60 OS (M) Reported 8
Huang J[19] 2016 HCC China 221 IHC,N/C ≥0% 142/221 (64.3) NR OS (M) Reported 6
Hwang HW[20] 2015 HCC Korea 182 IHC,N ≥5% 119/182 (65.4) 120 (14–151.4) RFS (M),DSS (M) Reported 8
Wang D[21] 2016 SCLC China 152 IHC,N Index≥4 82/152 (54.0) NR DSS (M) Reported 7

BC=breast cancer, C= cytoplasm, CC=cervical cancer, CRC= colorectal cancer, DFS=disease-free survival, DSS=disease-specific survival, EC= endometrial cancer, GC=gastric cancer, HCC=
hepatocellular carcinoma, IHC= immunohistochemistry, LAC= lung adenocarcinoma, M=multivariate, N=nuclear, NR=not reported, OC= ovarian cancer, OS= overall survival, RFS= recurrence- free
survival, SCLC= squamous cell lung carcinoma, semiquantitative H-score= staining intensities� staining distributions, staining index= staining intensity� proportion of positively stained tumor cells.
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Figure 2. Forest plot of studies evaluating the association of ATAD2 expression and OS in different cancer types. ATAD2=ATPase family, AAA+ domain containing
2, OS=overall survival.
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results showed significant heterogeneity with I2=62.4% and P
value= .003, a random effect model was applied in our study
(Fig. 2). Subgroup analyses were implemented in terms of region,
tumor type, and sample size, and the results were illustrated in
Table 2. The analysis results of region suggested the high ATAD2
expression was associated with shorter OS of cancer patients in
Table 2

Subgroup analysis of studies included in the outcome of overall surv

Analysis No. of studies No. of patients

Overall survival 11 2355
Region
Asian 9 1566
Non-Asian 2 789
Tumors type
Estrogen-dependent tumors 5 1241
Hepatocellular carcinoma 2 350
Gastrointestinal tumors 3 621
Lung adenocarcinoma 1 143
Sample size
≥200 5 1517
<200 6 838

95% CI=95% confidence interval, HR=hazard ratio, NA=not applicable.

4

both Asian and non-Asian countries (HR=2.47, 95% CI=1.81–
3.36 and HR=1.72, 95% CI=1.10–2.69, respectively). Howev-
er, compared with Asian countries, the heterogeneity of non-
Asian subgroup significantly declined (I2=66.6%, P= .002 vs
I2=16.2%, P= .275). The subgroup analysis by the tumor type
indicated that ATAD2 over-expression was correlated with
ival.

HR (95% CI) Heterogeneity P value

2.32 (1.77,3.02) I2=62.4%, P= .003 <.001

2.47 (1.81,3.36) I2=66.6%, P= .002 <.001
1.72 (1.10,2.69) I2=16.2%, P= .275 .017

2.01 (1.41,2.85) I2=46.4%, P= .113 <.001
3.12 (1.56,6.24) I2=76.7%, P= .038 .001
1.78 (1.36,2.34) I2=0.0%, P= .501 <.001
7.76 (2.96,20.37) NA <.001

2.66 (1.55,4.55) I2=74.7%, P= .003 <.001
2.32 (1.77,3.02) I2=49.8%, P= .077 <.001



Han et al. Medicine (2019) 98:39 www.md-journal.com
shorter OS in 4 different types of tumors: estrogen-dependent
tumors (HR=2.01, 95% CI=1.41–2.85, and I2=46.4%,
P= .113), hepatocellular carcinoma (HR=3.12, 95% CI=
1.56–6.24, and I2=76.7%, P= .038), gastrointestinal tumors
(HR=1.78, 95% CI=1.36–2.34, and I2=0.0%, P= .501), lung
adenocarcinoma (HR=7.76, 95% CI=2.96–20.37). The het-
erogeneity of the both subgroups including estrogen-dependent
and gastrointestinal tumors was greatly lower than that of
hepatocellular carcinoma. Likewise, no matter how many
samples, the high ATAD2 expression was correlated with shorter
OS of cancer patients (sample size ≥ 200: HR=2.66, 95% CI=
1.55–4.55 and sample size < 200: HR=2.32, 95% CI=1.77–
3.02) and the heterogeneity of the subgroup with few samples
decreased (I2=49.8%, P= .077).
Six studies with 7 effect sizes evaluated the correlation between

ATAD2 over-expression and the secondary outcomes including
RFS, DFS and DSS by using a fixed effect model (I2=0.0%,
P= .582). The results indicated that ATAD2 over-expression was
greatly associated with poor RFS, DFS, and DSS in human
tumors (HR=1.83, 95% CI=1.51–2.23). The pooled results
were shown in Fig. 3.
Figure 3. Forest plot of studies evaluating the association between ATAD2 expres
AAA+ domain containing 2, DFS=disease-free survival, DSS=disease-specific s

5

3.4. Publication bias and sensitivity analysis

Begg funnel plot and Egger test were used to assess potential
publication bias (Fig. 4). The results indicated the presence of
publication bias for OS (Begg P value= .043, Egger P value
= .010), yet no publication bias was found for the secondary
outcomes including RFS, DFS, and DSS (Begg P value= .764,
Egger P value= .182). As shown in Fig. 5, sensitivity analysis
regarding removing any single study from all included studies
indicated that had no significant effect on both the primary and
secondary outcomes, confirming the pooled results of this study
were robust.

4. Discussion

ATAD2 was reported to be involved in the occurrence and
development of tumors in 2007.[2] Since then, a lot of relevant
studies have been published, highlighting the expanding interest
in the prognostic influence of high ATAD2 expression in different
tumor types. To our knowledge, this is the first meta-analysis to
assess the relationship between ATAD2 high expression and
clinical outcomes. We included 2689 patients from 13 studies
sion and RFS, DFS, and DSS in different cancer types. ATAD2=ATPase family,
urvival, OS=overall survival, RFS= recurrence-free survival.

http://www.md-journal.com


Figure 4. Begg funnel plot and Egger linear regression test for evaluating potential publication bias in the meta-analysis. Begg funnel plot for the effect of ATAD2
expression in OS (A). Egger linear regression test in OS (B). Begg funnel plot in RFS, DFS, and DSS (C). Egger linear regression test in PFS, DFS, and DSS (D).
ATAD2=ATPase family, AAA+ domain containing 2, DFS=disease-free survival, DSS=disease-specific survival, OS=overall survival, RFS= recurrence-free
survival.
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with 9 different cancer types in this meta-analysis. The pooled
results showed that ATAD2 over-expression was significantly
associated with shorter OS, RFS, DFS, and DSS. There was no
significant heterogeneity in the pooled secondary outcomes, but it
was observed in OS. Subgroup analyses were implemented to
search the possible causes about heterogeneity. The subgroup
analysis by the region indicated that the heterogeneity of non-
Asian group significantly declined compared with Asian
countries. Heterogeneity of the both subgroups including
estrogen-dependent and gastrointestinal tumors was lower than
that of hepatocellular carcinoma, and the heterogeneity of
subgroup with few samples also decreased. The phenomenon
suggested that heterogeneity of studies was likely to be caused by
the differences of Region, tumor type, or sample size. Fortunately,
most of survival data were directly extracted from multivariate
analysis in the included studies, which greatly ensured the
reliability of the results. The number of studies is so limited in the
subgroup analysis that more available studies are needed to
support the conclusion. However, we conducted the sensitivity
analysis for the primary and secondary outcomes, which
indicated that both results were not affected after removing
any study. In addition, 2 vital causes cannot be ignored. On one
hand, the cut-off values and scoring method used to define
ATAD2 expression have no uniform standard, on the other hand,
the testing environment of each study is quite different.
6

ATAD2 gene is located at chromosome 8q24 and encodes for a
predicted protein of 1390 amino acids, of which molecular mass
is 158.5 kDa. For many different types of tumors, the 8q24 is
considered the most frequently amplified region.[23] The
retinoblastoma protein pathway plays an important role in the
control of cells proliferation. Therefore, deregulation of the
retinoblastoma protein pathway or specific amplification of the
ATAD2 locus may cause the high levels of ATAD2 in many
human tumors. E2F target genes (such as MYC, cyclin E1, and
EZH2) are a class of oncogenes, which usually amplify and over-
express in human tumors. ATAD2 combines the E2F and MYC
pathways, and involves in the development of aggressive tumor
through enhancing the MYC-dependent transcription.[8,24]

ATAD2 gene expression at protein level is likely to be enhanced
by the AR and E2F1, indicating that ATAD2 is a direct target of
AR and E2F1.[2,8] AR binding sequence and E2F DNA binding
sites are respectively located at the distal enhancer of ATAD2
regulatory region and ATAD2 promoter sequence. So both AR
and E2F1 may regulate human ATAD2 gene expression via
binding with corresponding binding site.[8,25] ATAD2 over-
expression is correlated with aggressive and proliferative tumor
cells and appears to act as a driver of proliferation. It was
reported that ATAD2 mainly expresses in G1/S phase of the cell
cycle in tumor cells and is likely to be involved in DNA
repair.[26,27] Furthermore, ATAD2 is upregulated in the S phase



Figure 5. Sensitivity analysis of the meta-analysis. Included studies in OS (A). Included studies in RFS, DFS, and DSS (B). DFS=disease-free survival, DSS=
disease-specific survival, OS=overall survival, RFS= recurrence-free survival.
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and functions as a coactivator for E2F transcription factors to
promote the transitions of G1 to S phase. High ATAD2
expression, together with some S-phase expressed multifunction-
al chromatin remodeling proteins, forms functional loops to drive
tumor cells proliferation.[27] ATAD2 acts on upstream and basic
cellular processes, and controls chromatin dynamics and genome
transcriptional activities to enhance oncogenesis in a variety of
cell types.[28]

As mentioned previously, although ATAD2 is induced by
estrogen and acts as a coregulator for ER and AR, high
expression is not limited to hormone-dependent tumors.[9–21] In
2007, investigators evaluated the prognostic value of 8 identified
drug-regulated candidate genes on osteosarcoma therapy
7

outcome, and the results showed that the event-free survival
was significantly decreased in the patients with ATAD2 over-
expression (6.3-fold), which demonstrated that ATAD2 gene was
a valuable marker for the prediction of osteosarcoma therapy
outcome.[29] Two years later, ATAD2 was reported that the
expression levels were correlated with clinical outcomes of breast
cancer patients.[8] Thereby, ATAD2 possibly participates in the
progress of human tumors. After that ATAD2 over-expression
was reported by other studies in different cancer types. In this
study, multivariate analysis of Hwang et al[20] showed that
ATAD2 over-expression was correlated with poor RFS, but was
correlated with favorable DSS in hepatocellular carcinoma
patients. However, Wang et al[21] showed significantly poor

http://www.md-journal.com
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DSS in squamous cell lung carcinoma patients, which suggested
ATAD2 expression in different cancer types may cause different
clinical outcomes. In addition, several aspects, including the assay
conditions, the cut-off values, and scoring method used to define
ATAD2 expression, are possible limiting factors and cannot be
neglected. Other included studies showed obvious correlation
between high ATAD2 expression and primary and secondary
outcomes. Wan et al and Zheng et al[10,13] reported that knock-
down of ATAD2 in tumor cell lines was found to reduce cells
proliferation, invasion, and migration, which is consistent with a
recent related study in colorectal cancer.[30]

According to our pooled results, the ATAD2 over-expression
was significantly correlated with poor OS, RFS, DFS, and DSS,
which suggested that both primary and secondary outcomes were
indicative measurements for the prognostic significance of
ATAD2 over-expression in human cancers, and no significant
heterogeneity was observed in the analysis for RFS, DFS, and
DSS. Based on the results of subgroup analyses for OS, the
correlation between high ATAD2 expression and poor prognos-
tic was consistent in Asian and non-Asian regions. The capacity
that over-expression/knockdown of ATAD2 regulates the
proliferation andmigration to affect clinical outcomes establishes
a therapeutic target for human cancers. Luo et al[14] showed that
suppression of ATAD2 expression with siRNA could significant-
ly inhibit growth in colorectal cancer cells. Lu et al[31] showed
that suppression of ATAD2 expression in hepatocellular
carcinoma cell lines decreased cells viability, migration, and
invasion by using RNA interference. All of these views are in
agreement with the literature published by Hong et al and Koo
et al.[30,32] Furthermore, the bromodomain, a functional domain
of ATAD2 gene, may be a potential epigenetic therapeutic target
which is inhibited by small-molecule inhibitors. In the last few
years, researchers attempt to develop bromodomain inhibitors
about ATAD2 and have achieved preliminary effective
results.[33–35] However, the development of effective therapeutic
strategies against human cancers with high ATAD2 expression
currently remains a challenging task. Therefore, this study is
likely to provide effective evidence for the clinical treatments of
progressive cancers.
This meta-analysis has several limitations. First, except English

papers, the articles in other languages were not included. Second,
the number of studies included for the pooled analysis was
limited. Third, there was significant heterogeneity among the
included studies, although subgroup analyses explain the reasons
of heterogeneity, the difference including the cut-off values and
scoring method used to define ATAD2 expression and the testing
environment of each study, cannot be excluded. Finally, Begg
funnel plot and Egger test have shown that there was publication
bias among the studies for OS.
5. Conclusion

In a conclusion, this study showed a strong association between
increased ATAD2 expression and clinical outcomes among
human cancers. It is clear that ATAD2 is a novel prognosis
biomarker for the patients of different cancer types, although
prognostic feature among cancer types may be different. As
mentioned above, more adequate clinical trials are demanded
to support the prognosis value of ATAD2 over-expression,
especially in a single cancer type. We first evaluate the
relationship between increased ATAD2 expression and prognosis
significance to establish its prognostic biomarker value for
8

clinical treatment and look forward to improving the prognosis
of cancer patients.
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