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Hypoxia is associated with several diseases, including cancer. Cells that are deprived of adequate oxygen supply trigger tran-
scriptional and post-transcriptional responses, which control cellular pathways such as angiogenesis, proliferation, and metabolic
adaptation. Circular RNAs (circRNAs) are a novel class of mainly non-coding RNAs, which have been implicated in multiple cancers
and attract increasing attention as potential biomarkers. Here, we characterize the circRNA signatures of three different cancer cell
lines from cervical (HeLa), breast (MCF-7), and lung (A549) cancer under hypoxia. In order to reliably detect circRNAs, we integrate
available tools with custom approaches for quantification and statistical analysis. Using this consolidated computational pipeline,
we identify ∼12000 circRNAs in the three cancer cell lines. Their molecular characteristics point to an involvement of complementary
RNA sequences as well as trans-acting factors in circRNA biogenesis, such as the RNA-binding protein HNRNPC. Notably, we detect
a number of circRNAs that are more abundant than their linear counterparts. In addition, 64 circRNAs significantly change in
abundance upon hypoxia, in most cases in a cell type-specific manner. In summary, we present a comparative circRNA profiling
in human cancer cell lines, which promises novel insights into the biogenesis and function of circRNAs under hypoxic stress.
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Introduction
Hypoxia occurs when cells are deprived of adequate oxygen

supply. Tissues react by activating endothelial cells and express-
ing specific growth factors to stimulate angiogenesis, thereby
improving the oxygen delivery to cells. The transcriptional
response to hypoxia is primarily due to the stabilization of
hypoxia-inducible factors (HIFs), which control processes such
as metabolic adaptation, cell survival, and apoptosis (Semenza,
2012). In addition to physiological scenarios, hypoxia is
associated with several diseases, including cancer. For instance,
in many solid tumors, insufficient vascularization as well as high

metabolic and proliferative rates cause the formation of hypoxic
cores (Semenza, 2014). The hypoxic tumor microenvironment
drives cancer progression by promoting angiogenesis, malignant
tumor progression, and therapy resistance (Schito and Semenza,
2016). Consequently, the expression of hypoxia markers
predicts aggressive phenotypes and poor prognosis in multiple
solid cancers (Graham and Unger, 2018). Extending beyond
the transcriptional response, recent studies also reported large
changes in alternative splicing in hypoxic cancer cells, which
could modulate their oncogenic properties (Brady et al., 2017;
Han et al., 2017).

Circular RNAs (circRNAs) represent a novel class of mainly
non-coding RNAs, which are generated in a particular mode of
alternative splicing, named back-splicing or head-to-tail splic-
ing. In regular (linear) splicing, a 5′ splice site (or donor splice
site) at the end of an exon is joined to a downstream 3′ splice
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site (acceptor splice site) of a subsequent exon, resulting in a
linear transcript. In contrast, circRNAs are characterized by the
presence of a covalent bond that links the 3′ end of an exon to
an upstream 5′ end of the same or another exon. The involved
splice sites (termed back-splice sites) mainly originate from gen-
uine exons of protein-coding genes (PCGs), but may also reside
within introns, untranslated regions (UTRs), and non-coding loci
(Memczak et al., 2013; Guo et al., 2014; Zheng et al., 2016).
Benefiting from major progress in the experimental protocols
to capture circRNAs in large-scale RNA sequencing (RNA-Seq)
approaches, thousands of circRNAs have been identified in var-
ious organisms from Archaea to mammals (Danan et al., 2011;
Salzman et al., 2012; Wang et al., 2014). While the function of
most of them remains unknown, several circRNAs have by now
been described to interfere with microRNAs (miRNAs) or RNA-
binding proteins (RBPs), to act as regulators of transcription or to
compete with expression of their linear host transcript (Li et al.,
2018). Moreover, recent studies suggested that some circRNAs
can be translated to produce small peptides (Legnini et al., 2017;
Pamudurti et al., 2017; Yang et al., 2017).

In humans, circRNAs are present in most tissues and cell types,
and multiple transcriptome-wide studies documented cell-,
tissue-, and developmental stage-specific expression patterns
(Memczak et al., 2013; Salzman et al., 2013; Rybak-Wolf et
al., 2015; Kristensen et al., 2017b). Intriguingly, circRNAs
are often dysregulated in human cancers, including lung and
breast cancer, and allow to distinguish tumors from adjacent
normal tissue (Geng et al., 2018). However, little is known
about the biogenesis and function of circRNAs in cancer cells
under hypoxia. A recent study identified the circRNAs that are
regulated in human endothelial cells upon hypoxia and revealed
that circZNF292 promotes angiogenesis (Boeckel et al., 2015).
The same circRNA was shown to be involved in glioma cell
proliferation and tube formation (Yang et al., 2016). Similarly,
the circRNA circDENND4C was found to be upregulated in human
breast cancer cells (MCF-7) under hypoxia (Liang et al., 2017b).
Nevertheless, the influence of hypoxia on the circRNA repertoire
in cancer cells remains to be fully explored.

Here, we present a consolidated computational pipeline to
detect and quantify circRNAs from RNA-Seq data. Using this
approach, we profile the expression, regulation, and molecular
features of circRNAs in three different human cancer cell lines
under hypoxia. We predict ∼12000 circRNAs, including about
a quarter that were not previously described. The results show
that 210 circRNAs exceed their linear counterparts in abundance
and 64 circRNAs significantly change their expression upon
hypoxic stress in at least one cell line. In silico analyses suggest
an involvement of the RBP HNRNPC in circRNA biogenesis.
Altogether, we identify a compendium of aberrantly expressed
circRNAs in three human cancer cell lines, which promises new
insights into this universal class of non-coding RNAs in the
future.

Results
Hypoxia induces widespread changes in gene expression

In order to characterize the circRNA signature of human
cancer cells and its changes in response to hypoxia, we chose

three human cell lines from cervical (HeLa), breast (MCF-7),
and lung (A549) cancer. To elicit hypoxic stress, MCF-7 and
A549 cells were incubated for 48 h at 0.5% oxygen (O2),
or 24 h at 0.2% O2 in case of HeLa cells, and compared
to normoxic control cultures (21% O2). In order to monitor
both linear and circRNAs, we sequenced total RNA depleted
of ribosomal RNA (rRNA), obtaining 60–144 million reads per
sample (Supplementary Table S1). As previously described, we
observed extensive changes in the transcriptome, with >11000
genes that significantly altered their expression upon hypoxia
(false discovery rate, FDR < 5%; Supplementary Figure S1A
and B). Also, 4976 (42%) of the differentially expressed genes
were shared between at least two cell lines, including classical
hypoxia-induced genes, such as CA9, NDRG1, ANGPTL4, VEGFA,
PDK1, and BNIP3 (Chi et al., 2006; Benita et al., 2009; Lendahl
et al., 2009; Sena et al., 2014). In general, genes that were
upregulated showed an overrepresentation of Gene Ontology
(GO) terms related to response to decreased oxygen levels,
metabolic adaptation, and cell migration, while downregulated
genes were enriched in terms related to ribosome biogenesis and
DNA replication (P-value/q-value < 0.05; Supplementary Figure
S1C). In contrast to the convergent transcriptional response, the
splicing changes upon hypoxia were rather divergent, with only a
few significantly regulated cassette exons overlapping between
the three cell lines (30 out of 6062, 0.5%; Supplementary Figure
S1D). In essence, we find that the three human cancer cell lines
coincide in their gene expression profiles but differ in their
alternative splicing response to hypoxic stress. Prompted by
this observation, we set out to investigate the expression of
circRNAs, which are generated by back-splicing as a special
mode of alternative splicing.

An improved pipeline predicts 12000 circRNAs from three
human cancer cell lines

Several computational tools are available to detect circRNAs
from RNA-Seq data (Szabo and Salzman, 2016; Gao and Zhao,
2018), but their predictions can vary considerably (Hansen et
al., 2015; Zeng et al., 2017). We therefore decided to use a
combination of two established algorithms, namely find_circ
(Memczak et al., 2013) and CIRCexplorer (Zhang et al., 2014),
which employ different approaches to detect reads that span the
back-splice junctions (back-splice reads). In essence, find_circ
uses custom scripts to scan reads that cannot be mapped con-
tinuously to the reference genome (with Bowtie2; Langmead and
Salzberg, 2012) and reports separately aligning fragments in a
head-to-tail arrangement. In contrast, CIRCexplorer builds on the
existing splice-aware alignment algorithms TopHat-fusion (Kim
and Salzberg, 2011) or STAR (Dobin et al., 2012), which predict
so-called chimeric alignments, i.e. discontinuous arrangements
in which the two aligned fragments are in a non-linear order.

In line with previous comparisons (Hansen et al., 2015; Zeng
et al., 2017), when applied individually to a representative RNA-
Seq sample, the predictions varied considerably between both
tools(SupplementaryFigure S2A). Even for concordantlydetected
circRNAs, the reported number of supporting back-splice reads
was not always identical between both tools (Supplementary
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Table 1 Main features of tools adopted in this study to detect circRNAs.

find_circ CIRCexplorer Our pipeline

Alignment algorithm Bowtie2 STAR Both
Splice site motifs GU/AG Any GU/AG + GC/AG
Splice sites Annotated + de novo Annotated Annotated + de novo
Genomic distance of

back-splice sites
≤100 kb Within single gene ≤100 kb

Expression filter 2 distinct reads (sequence-based) Any 2 reads 2 distinct reads (coordinate-based)

FigureS2B). Inordertoaddressthisdiscrepancy,wecomparedthe
outputfrombothtoolsandfoundthatseveralstepscandrastically
influence the predictions. These included characteristics of the
employed alignment algorithms (Bowtie2, TopHat2, or STAR)
as well as tool-specific filters on splice-site motifs, maximum
distance of back-splice sites, number of supporting back-splice
reads, and exon annotation (see Table 1 for a brief comparison
of features and Supplementary Note for further details). For
instance, CIRCexplorer is restricted to back-splice events at splice
sites that are present in the reference annotation, whereas
find_circ allows the de novo prediction of cryptic splice sites any-
where within transcripts, including introns. Conversely, find_circ
limits the accepted back-splice events to canonical GU/AG pairs,
which represent the most common motifs at donor/acceptor
splice sites (Burset et al., 2000; Abril et al., 2005).

Based on these conceptual differences, we designed a pipeline
that combines the best features of both tools to obtain a com-
prehensive catalog of circRNAs (Figure 1A; Supplementary Figure
S2; see Supplementary Note for more details). Briefly, for each
cell type, the sequencing reads were merged and mapped to the
human genome (version GRCh38/hg38) with Bowtie2 (Langmead
and Salzberg, 2012) and STAR (Dobin et al., 2012). Unmapped
reads from Bowtie2 served to identify circRNAs with find_circ
as described in (Memczak et al., 2013). Chimeric alignments
from STAR were used to detect circRNAs with CIRCexplorer. We
combined the initial circRNA predictions by both tools and then
filtered out inconsistencies and detection artifacts of either
algorithm. Finally, we harmonized the quantification estimates
by recounting back-splice reads for all circRNAs from the STAR
chimeric alignments. Putative PCR duplicates were flagged based
on genomic mapping positions rather than read sequences. As
a cutoff for a circRNA to be present in a given cell line, we
demanded a minimum of two distinct back-splice reads in at least
one replicate. For the subsequent circRNA abundance estimates,
all back-splice reads were taken into account. We evaluated
the performance of our approach by estimating the number of
false-positives in a published dataset in which circRNAs were
specifically enriched by RNase R digestion (Jeck et al., 2013; see
SupplementaryNoteformoredetails).Wefoundthattheprecision
of our approach was higher than for find_circ and comparable to
CIRCexplorer (Supplementary Figure S2F). Overall, we conclude
that our pipeline provides reliable predictions of circRNAs.

Applying our pipeline to the RNA-Seq datasets from the
three human cancer cell lines, we identified a total of 12006
circRNAs (Figure 1B; Supplementary Table S2). Despite a similar

sequencing depth, the number of detected circRNAs was
considerably higher in MCF-7 cells (7527 circRNAs) compared
to A549 cells (4599; Supplementary Table S1). Accordingly,
circRNAs in MCF-7 were supported by more back-splice reads
compared to A549 cells (Supplementary Figure S3A). This may
reflect not only physiological differences in circRNA abundance
but also experimental variation, e.g. in rRNA depletion efficiency
during library preparation. In HeLa cells, the sequencing depth
was generally lower, resulting in fewer detected circRNAs (3926)
that were supported by less back-splice reads. As previously
observed (Memczak et al., 2013; Salzman et al., 2013; Guo
et al., 2014; Zhang et al., 2014), the majority of circRNAs in
all cell lines were lowly abundant, reflected in <5 back-splice
reads (Figure 1C). Nevertheless, we detected many abundant
circRNAs (1392 circRNAs with ≥10 back-splice reads in at least
one replicate). The most highly expressed circRNAs originated
from the genes ASPH, ATXN7, and CYP24A1 in HeLa, MCF-7, and
A549 cells, respectively, each represented by >150 back-splice
reads in a single replicate (Figure 1C).

In order to test our predictions, we performed a series of
experimental validations. First, we confirmed the presence and
circularity of 10 circRNAs in HeLa cells using reverse transcription
PCR (RT-PCR) with divergent primer pairs flanking the back-splice
junctions (Figure 1D; Supplementary Figure S2G). In addition to
the presence of amplification products, we confirmed that all
tested circRNAs lacked a poly(A) tail and were resistant to RNase
R treatment, further supporting their circularity (Figure 1D; Sup-
plementary Figure S2G).

Comparison to the circRNA databases circBase (Glažar et al.,
2014) or circRNADb (Chen et al., 2016) revealed that 2844 of the
detected circRNAs (24%) had not been reported previously. For
instance, we predicted novel circRNAs from the genes PICALM,
SPIDR, and HUWE1, which were present in all cell lines and often
supported by >20 back-splice reads (Supplementary Table S2).
In summary, our combined pipeline yielded a comprehensive
catalog of 12006 circRNA candidates in three human cancer cell
lines under normoxic and hypoxic conditions combined.

circRNAs predominantly arise from internal exons of PCGs
In order to characterize the circRNAs in more detail, we

first investigated their genomic origin. In line with previous
observations, ∼95% of the 12006 circRNAs originated from
PCGs, with 91% of all back-splice sites residing in the coding
sequence (CDS; Figure 2A). This meant that 21% (4252) of all
annotated PCGs (19940 genes; GENCODE version 24) hosted at
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Figure 1 Identification and validation of circRNAs. (A) Consolidated pipeline for circRNA identification and expression analysis from rRNA-
depleted RNA-Seq data of normoxic and hypoxic cancer cells. The initial circRNA predictions by find_circ (Memczak et al., 2013) and
CIRCexplorer (Zhang et al., 2014) are combined and rigorously filtered to obtain a comprehensive catalog of circRNAs. In parallel, linearly
mapped reads are used for the analysis of differential gene expression and alternative splicing. (B and C) Analyses of the complete catalog of
12006 circRNAs (≥2 supporting back-splice reads in any sample). (B) Venn diagram showing the overlap of circRNAs identified in A549, HeLa,
and MCF-7 cells. (C) Boxplot showing the number of back-splice reads from each cell line. circRNAs hosted by the genes CYP24A1 (circBase ID
hsa_circ_0060927), ASPH (hsa_circ_0084615), and ATXN7 (hsa_circ_0007761) were the top expressed circRNAs in A549, HeLa, and MCF-7
cells, respectively. (D) Validation of circularity for 9 circRNAs in HeLa cells. Due to their lack of a poly(A) tail and free ends, circRNAs are
only amplified from the polyA(−) fraction and resistant to the exonuclease cleavage (RNase R). Top: schematic of oligonucleotides used in
RT-PCR to amplify the circRNA (red) or the related linear transcript isoform (blue). Bottom: RT-PCR products for 9 circRNAs using divergent
oligonucleotides after polyA(+) selection or RNase R treatment. Oligonucleotides amplifying the linear PLOD2 transcript were used as control.

least one circRNA in any of the analyzed cell lines. The circRNA-
producing PCGs were significantly longer than average PCGs
(P-value < 2.2E−16, Wilcoxon rank sum test; Supplementary
Figure S3B), and included a higher number of exons (average

of 21 exons compared to 12, respectively). The number of
annotated exons between the back-splice sites ranged between
1 and 40 exons, with a median of 4 exons that were potentially
included into a single circRNA (Figure 2B; Lei et al., 2018). For
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Figure 2 Genomic features of circRNAs. (A) circRNAs are mainly produced from CDS of PCGs. Bar chart displaying the frequency of transcript
regions harboring the 5′ and 3′ back-splice sites that come together in a given circRNA. Inlay: pie chart showing the genomic origin of circRNAs.
(B) Most circRNAs comprise < 5 putative internal exons. Pie chart showing the percentage of circRNAs with a given number of annotated
exons (blue) located between the back-splice sites. (C) Back-splice sites are flanked by longer introns than average. Density plot showing
distribution of intron lengths for circRNA-flanking introns (upstream and downstream) compared to all introns annotated in GENCODE version
24. Dashed lines indicate median. (D) Distribution of exon ranks involved in circRNA formation as acceptor (top) or donor splice site (bottom).
The normalized frequency was obtained by dividing the frequency of a certain exon rank as acceptor/donor splice site by the number of genes
containing at least this number of exons +1 (GENCODE version 24). Only circRNAs produced from PCGs and with both back-splice sites within
the same annotated transcript were evaluated (n = 9676). (E) Strength of 5′ back-splice sites is significantly higher than at flanking 5′ linear
splice sites and 2000 randomly selected 5′ linear splice sites (GENCODE version 24). Splice site strength estimated with MaxEntScan (Yeo
and Burge, 2004). Same circRNA selection as in D, further excluding circRNAs involving first/last exons of annotated transcripts, resulting in
9664 circRNAs. (F) More than 20% of back-splice sites participate in alternative back-splice events. (G) Alternative 3′ (magenta) and 5′ (light
blue) back-splicing generates 14 distinct circRNA isoforms from the BARD1 gene in A549, HeLa, and MCF-7 cells. Genome browser view of
BARD1 gene, showing chimeric alignments (back-splice reads) from RNA-Seq of MCF-7 cells under normoxic and hypoxic conditions. Dashed
lines below connect the paired back-splice sites. The BARD1 gene is located on the minus strand.
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such multi-exon circRNAs (n = 9201), the median distance of
back-splice sites in the unspliced pre-mRNA was almost 10 kb
(Supplementary Figure S3C; Lei et al., 2018). While the introns
flanking the back-splice sites were generally longer than average
annotated introns (Figure 2C; Zhang et al., 2014), the back-
spliced exons were similar in length compared to all exons from
PCGs (median 125–127 bp vs. 143 bp for all annotated exons;
Supplementary Figure S3D). Notable exceptions were single-
exon circRNAs (n = 475), which showed a median exon length of
390 bp (Supplementary Figure S3C; Lei et al., 2018).

Along the pre-mRNAs, back-splicing preferentially occurred at
the first genuine acceptor splice site in the nascent transcript,
i.e. the 3′ splice site of the second exon, irrespective of its splice
site strength (MaxEnt score; Figure 2D and E; Yeo and Burge,
2004). In contrast, no exon position was preferred for the donor
back-splice sites (Figure 2D). However, we found that 5′ splice
site strength at donor back-splice sites was significantly higher
than at flanking or randomly selected 5′ splice sites that did
not engage in back-splicing (Figure 2E). This observation implied
that spliceosome assembly at the 5′ splice site might influence
the decision of circular vs. linear splicing.

Even from a conservative perspective based on back-splice
junctions, more than half of the host genes showed alternative
back-splicing, i.e. they produced multiple circRNA isoforms (Sup-
plementary Figure S3E; Zhang et al., 2016). For instance, we
detected four alternative isoforms of circZNF292, including the
previously published intronic circZNF292 (hsa_circ_0004383)
from a back-splice site in the cryptic exon 1a (Boeckel et al.,
2015), as well as additional variants taking both back-splice
sites from genuine exons of ZNF292. Alternative back-splicing
ranged from 2 up to 36 distinct circRNAs for the TRIM37 gene
(Supplementary Table S2). In many cases, we still observed a
strong prevalence of one single isoform over the others (Supple-
mentary Figure S3F). In general, alternative back-splicing choices
occurred with almost identical frequency at donor and acceptor
splice sites (Figure 2F), as exemplified by the BARD1 gene which
generated up to 14 different circRNA isoforms (Figure 2G). In
addition to alternative back-splicing, the circRNA repertoire is
likely further expanded by internal alternative splicing events
within the circRNAs, which were not taken into account in this
analysis.

The circRNA signatures differ between cell lines
Out of the total of 12006 circRNAs, only 25% were shared

among all three cell lines, suggesting that most circRNAs (75%)
were expressed in a cell type-specific manner (Figure 1C). How-
ever, as outlined above, the majority of circRNAs were sup-
ported by a small number of reads, making it difficult to compare
their expression. We therefore defined a ‘high-confidence set’
of 2205 circRNAs, for which we required a minimum of five
supporting back-splice reads in any two samples. As a conse-
quence, the fraction of cell line-specific circRNAs dropped to
24% (Figure 3A). From these circRNAs, a substantial part seemed
to originate from genuine cell line-specific back-splicing events
rather than differentially expressed host genes, since an addi-

tional filter on host gene expression did not change their relative
contribution (transcripts per million, TPM ≥ 5 in any sample
of a given cell line; Supplementary Figure S3G). The remaining
76% of circRNAs were detected in at least two out of three cell
lines (Figure 3A). GO analysis of 690 genes hosting the circRNAs
shared among the three cell lines documented an overrepre-
sentation of terms ‘covalent chromatin modification’, ‘establish-
ment or maintenance of cell polarity’, and ‘microtubule skeleton
association’ (Supplementary Figure S3H), indicating that they
represent highly expressed genes with potential housekeeping
functions.

Beyond this general association, we observed only a weak
quantitative correlation between the expression of circRNAs and
their respective host genes (Figure 3B). This suggested that in
many cases, circRNA abundance did not just reflect host gene
expression, but was influenced by independent parameters,
such as varying degrees of back-splicing or circRNA stability. To
directly assess back-splicing efficiency, we used the ‘percent cir-
cularized’ metric based on the number of linear and back-splice
junctions in the RNA-Seq reads to estimate the relative abun-
dance of circRNAs in comparison to all isoforms including the
same exon (Figure 3C). As expected, most circRNAs represented
minor transcript isoforms of their host genes. Nevertheless, 210
circRNAs were more abundant than their linear counterparts in at
least one cell line (Figure 3D). For example, a circRNA comprising
exons 3 and 4 was the most abundant isoform from the ATXN7
gene in MCF-7 cells (Figure 3D and E). We therefore concluded
that different regulatory processes can direct the expression of
circRNAs and linear transcript isoforms and that back-splicing
strongly varies in efficiency between host genes.

Several circRNAs change in abundance upon hypoxia
Next, we addressed whether the hypoxic stress modulates

circRNA abundance in the cancer cell lines. First, we did not
observe a difference in the overall number of circRNAs present
under hypoxic and normoxic conditions (Supplementary Table
S1). In order to test for individual circRNAs that significantly
change in abundance, we performed a combined DESeq2
analysis (Love et al., 2014) of linear and circRNAs to improve
library size estimation, normalization, and statistical power.
We identified a total of 64 circRNAs that were significantly
regulated upon hypoxia in any of the analyzed datasets,
ranging between 6 and 38 per cell line (FDR < 10%; Figure 4A;
Supplementary Figure S4A and Table S3). Out of the 64 circRNAs,
only six were detected as downregulated within the timeframe
of the experiment, probably due to the high intrinsic stability
of circRNAs. Moreover, 97% were regulated in a cell type-
specific manner (62 out of 64 circRNAs). The exceptions were
circPLOD2 (Figures 1D and 4B) and the alternative isoform of
circZNF292 (circZNF292_exonic; Supplementary Figures S2G
and S4B), which significantly increased in abundance in both
HeLa and MCF-7 cells. circZNF292 was previously reported to be
upregulated upon hypoxia in endothelial cells (Boeckel et al.,
2015), underlining its robust response in different physiolog-
ical contexts. We did not recover a significant regulation of
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Figure 3 CircRNA profiles in human cancer cells. (A) Comparison of high-confidence circRNAs across A549, HeLa, and MCF-7 (supported by
a minimum of 5 back-splice reads in any 2 samples). Most circRNAs are expressed in at least two cell types. A similar partition occurs when
a further filter on minimum expression of the host gene is applied (Supplementary Figure S3H). (B) Scatter plot comparing the expression
of circRNAs in back-splice RPM to the expression of the host gene in TPM. circRNA expression does not generally reflect the abundance of
the host gene. Mean expression across replicates is shown for each cell line under hypoxic (blue) and normoxic (red) conditions. Linear
regression lines and Pearson correlation coefficients with associated P-values are reported. (C) Scheme showing how ‘percent circularized’
metric is computed from back-splice reads and reads spanning the corresponding linear splice junctions. (D) In total, 210 circRNAs are more
abundant than their linear counterparts, as exemplified by circATXN7 (hsa_circ_0007761; labeled in orange; Huang et al., 2019) in MCF-7
cells. Violin plot shows distribution of ‘percent circularized’ values for circRNAs from the three cell lines (mean per cell line across all replicates
and conditions). Orange lines indicate circRNAs with >20% and 50% relative abundance. (E) Genome browser view of ATXN7 gene showing
RNA-Seq data from MCF-7 cells under normoxic conditions. Coverage of chimeric alignments (back-splice reads, red, bottom) documents
back-splicing of exon 4 to exon 3 to produce circATXN7. The high abundance of circATXN7 is reflected in a peak in the coverage of linearly
mapped reads (blue, top) corresponding to internal regions of the circRNA, while the remainder of the linear transcript shows less coverage.

https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
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Figure 4 Hypoxia-induced changes in circRNA levels. (A) Sixty-four circRNAs significantly change in abundance upon hypoxia. Volcano plots
show log2-transformed moderated fold changes in expression (hypoxia over normoxia, taken from DESeq2) of circRNAs in the three cancer cell
lines against associated P-values (−log10). Differentially expressed circRNAs are highlighted in red (FDR < 0.05). Labels indicate circRNAs
that were validated by RT-qPCR in E and F. Only high-confidence circRNAs with at least 5 reads in any 2 samples of a single cell line were
tested for differential expression. (B) circPLOD2 is consistently upregulated upon hypoxia. Genome browser view of exons 2–3 of the PLOD2
gene. The gene is located on the minus strand. Chimeric alignments (back-splice reads) from RNA-Seq data for MCF-7 and HeLa cells under
normoxic and hypoxic conditions are shown. (C) Many upregulated circRNAs originate from upregulated host genes. Scatterplot compares
log2-transformed moderated fold changes in expression (hypoxia over normoxia, taken from DESeq2) of 64 hypoxia-regulated circRNAs and
their host genes in the three cancer cell lines (indicated by color). Pearson correlation coefficients and associated P-values are given for each
cell line. Selected circRNAs are labeled. (D) Most circRNAs do not change in back-splicing rate between conditions. Scatterplots compare
circular-to-linear ratios (CLRs) of all high-confidence circRNAs in the three cell lines under hypoxic and normoxic conditions. Red lines indicate
>2-fold change in CLR between conditions. The hypoxia-regulated circRNAs (significantly changed in overall abundance according to DESeq2)
in each cell line (as shown in A) are highlighted in orange. (E and F) Expression changes of hypoxia-regulated (bold) and control (regular)
circRNAs in HeLa (E) and MCF-7 (F) cells kept in hypoxic conditions (24 h and 48 h, respectively). Dot plot shows relative circRNA levels (over
normoxia) based on RT-qPCR normalized to U6 snRNA for HeLa and P0(MPZ) for MCF-7 (Supplementary Figure S4F). Mean and standard
deviation of the mean are shown together with red circles for replicate measurements. In HeLa cells, all seven expected circRNAs were
significantly upregulated (n = 3, *P < 0.05, **P < 0.01). We additionally included intronic circZNF292, known to be hypoxia-induced in
HUVEC cells (Boeckel et al., 2015), although its regulation did not reach significance in our RNA-Seq data analysis. In MCF-7 cells, six of the
seven expected circRNAs were significantly upregulated (n ≥ 3, *P < 0.05, **P < 0.01), as well as circHIPK3 that was not found as significantly
regulated in the RNA-Seq data. Upregulation of VEGFA mRNA served as control for hypoxia treatment.

https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
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circDENND4C as it had been reported previously (Liang et al.,
2017b) due to the low overall counts for this circRNA.

In order to control whether the changes in circRNA abundance
reflected host gene regulation, we compared circRNA and host
gene expression for the hypoxia-induced circRNAs. Although not
quantitatively correlated, many of the hypoxia-induced circRNAs
still originated from upregulated genes, indicating that the
observed circRNA upregulation could be related to an increased
transcription of the host gene (Figure 4C). For other upregulated
circRNAs, such as circBARD1 and circRANBP17, the level of the
host gene remained stable. Other than recently suggested, we
did not observe evidence that circRNAs were produced from read-
through transcription of upstream genes (Liang et al., 2017a;
Supplementary Figure S4C).

In order to directly assess changes in back-splicing, we com-
pared normoxic and hypoxic cells at the level of ‘circular-to-
linear ratio’ (CLR), i.e. the number of reads containing back-
splice vs. linear exon–exon junctions involving the same splice
site. We found that although back-splicing rates varied consid-
erably between circRNAs, they were stable between replicates
and cell lines (Supplementary Figure S4D and E), indicating that
the back-splicing efficiency was determined by the molecular
features at each locus. The majority of the 64 circRNAs that
changed their overall abundance under hypoxia displayed little
changes at the level of CLR (Figure 4D), further supporting the
notion that the observed upregulation was coupled to transcrip-
tional activation of the host gene rather than differential back-
splicing. Despite this general trend, circRNAs like circHNRNPM
and circRAPGEF5 showed a >2-fold increase in back-splicing in
MCF-7 cells (Supplementary Table S3).

In order to independently support these results, we used
quantitative PCR (RT-qPCR) to measure the expression of two
circZNF292 isoforms and 13 further circRNAs, adding up to eight
stable and seven significantly changed circRNAs according to
our RNA-Seq analyses. Experiments were performed in HeLa
and/or MCF-7 cells. RT-qPCR with divergent primers spanning
the back-splice junctions confirmed a significant change upon
hypoxia for all seven regulated circRNAs in HeLa cells and 6 out
of 7 circRNAs in MCF-7 (plus circHIPK3 which was significantly
changing in RT-qPCR but stable in RNA-Seq; Figure 4E and F). In
line with the RNA-Seq results (Figure 4A; Supplementary Figure
S4A), circPLOD2 and both circZNF292 isoforms displayed a
strong and consistent upregulation in both tested cancer cell
lines. Altogether, we identified several circRNAs that significant-
ly responded to hypoxic stress in the cancer cell lines.

circRNAs can be generated via intron complementarity
As a first step toward the molecular mechanisms underlying

circRNA biogenesis and regulation, we revisited the molecular
features of circRNAs in our samples. It was shown that back-
splicing can be initiated by complementary sequences in the
flanking introns that enclose the circularizing exons and poten-
tially bring the back-splice sites in close proximity (Figure 5A).
Such complementary sequences commonly originate from
repetitive elements, in particular Alu element retrotransposons

(Zhang et al., 2014). In line with a contribution to circRNA
biogenesis, the introns flanking the back-splice sites in our
dataset were longer than average annotated introns and
displayed an elevated frequency of Alu elements (RepeatMasker
annotation; Figures 2C and 5B). Moreover, Alu element pairs
flanking the back-splice sites preferentially occurred in inverted
orientation, thereby enabling complementary base pairing
(Figure 5C). Focusing on the 64 hypoxia-regulated circRNAs,
we complemented these analyses with an unbiased approach
based on pairwise local alignments of the flanking introns.
We detected complementary regions in seven circRNA-flanking
intron pairs, which all originated from Alu element insertions
(Figure 5D). Inverted Alu elements thus occurred with similar
frequency in hypoxia-regulated and other circRNAs in our dataset
(Chi-squared test, P-value > 0.1; Figure 5B and C), supporting
the general notion that complementary Alu elements may drive
circRNA biogenesis in some, but not all cases.

Lariat formation from exon skipping has been proposed as
another way to produce circRNAs from a pre-mRNA (Kelly et al.,
2015; Khan et al., 2016). However, we could not detect linear
transcripts skipping the circularized exons for any of the hypoxia-
regulated circRNA, indicating that this mechanism did not play a
prominent role in this scenario. Alternatively, the skipped tran-
scripts could be unstable and quickly degraded.

The RBP HNRNPC can regulate circRNA biogenesis
It has been reported that RBPs can influence circRNA formation

(Ashwal-Fluss et al., 2014; Conn et al., 2015; Errichelli et al.,
2017). In order to investigate this, we first predicted putative
RBP binding sites in the introns flanking the back-splice sites
of the 2205 circRNAs in the high-confidence set using Find
Individual Motif Occurrences (FIMO) (Grant et al., 2011). Among
the most frequently represented RBPs at hypoxia-regulated
circRNAs were HuR, HNRNPC, and PABPC4 (Supplementary Figure
S5A and B). Of these, HuR had already been linked to circRNA
function, although not at the level of biogenesis (Abdelmohsen
et al., 2017). Neither of the three RBPs showed a preference for
the hypoxia-regulated compared to other circRNAs, suggesting a
more general function in circRNA biogenesis.

Since we had previously found HNRNPC to directly interfere
with 3′ splice site recognition (König et al., 2010; Zarnack et al.,
2013), we decided to investigate its role in more detail. Using
published iCLIP datasets from HeLa cells (Zarnack et al.,
2013), we assessed the binding of HNRNPC around back-
splice sites and control splice sites from linearly spliced exons.
HNRNPC showed a predominant peak immediately upstream
of the 3′ back-splice sites, as exemplified for circSMARCA5
(Figure 5E and F). In line with the in silico predictions, HNRNPC
was equally enriched on hypoxia-regulated and other circRNAs.
Notably, the peak in HNRNPC binding was substantially increased
at back-splice sites compared to linearly spliced exons, sug-
gesting a role of HNRNPC in circRNA biogenesis. In order to
test this hypothesis, we used two independent siRNAs to
deplete HNRNPC from HeLa cells and confirmed the functional
knockdown (KD) by measuring the splicing changes in four

https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
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Figure 5 Biogenesis of hypoxia-regulated circRNAs. (A) Schematic visualization of how pairing of inverted Alu elements in flanking introns
can promote circRNA formation. (B) circRNA-flanking introns are enriched in Alu elements. Barchart shows the percentage of introns with
Alu elements in a 500-bp window next to splice sites of annotated internal exons (Ctrl, white) compared to back-splice sites of all (All,
dark gray) and hypoxia-regulated (Reg, light gray) circRNAs. (C) circRNA-flanking Alu element pairs are more often in inverted orientation.
Barchart shows the percentage of Alu element pairs in the same (gray) or inverted (blue) orientation. Exon categories and windows as in B.
(D) Some regulated circRNAs harbor extended complementary sequences in their flanking introns. Barchart depicts that length and identity of
longest local alignment (left and right scales, respectively) from pairwise alignments of flanking introns (500-bp window) for the 64 hypoxia-
regulated circRNAs. The upper and lower dashed lines indicate 85% identity and a minimum alignment length of 40 nt, respectively. Mutation
experiments demonstrated that inverted repeats of 30–40 nt are sufficient to promote circularization (Liang and Wilusz, 2014). (E) HNRNPC
binding shows more binding at back-splice sites compared to linearly spliced exons. Metaprofile of HNRNPC binding (iCLIP) in a 300-nt window
around back-splice sites, including 250 nt intron and 50 nt into the circularized exons. circRNAs of the high-confidence set expressed in HeLa
(n = 1133) were separated into hypoxia-regulated and non-regulated circRNAs and compared to 4853 linear exons from expressed PCGs that
do not undergo circularization. For each position, the mean coverage in each set is shown by a dot. Lines were smoothed with locally weighted
polynomial regression (loess, span = 0.05). (F) HNRNPC binds upstream of the 3′ back-splice site of circSMARCA5, which is upregulated upon
HNRNPC depletion. Genome browser view shows section of the SMARCA5 gene including RNA-Seq data (chimeric alignments) for HeLa cells
under normoxic conditions (top) and HNRNPC iCLIP data from HeLa cells. Binding sites predicted by PureCLIP are shown below. (G) Expression
changes of a panel of 25 circRNAs upon HNRNPC depletion with two independent siRNAs in HeLa cells. Barchart shows the relative circRNA
levels based on RT-qPCR normalized to U6 snRNA. Data were shown as mean ± SD. circCDYL2, circRARS, and circSMARCA5 were significantly
deregulated (n = 3, *P < 0.05, **P < 0.01).
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previously described HNRNPC target exons (Zarnack et al.,
2013; Supplementary Figure S5C–E). Next, we tested a panel
of 25 circRNAs, for which we had primers available. Using this
untargeted approach, we identified three circRNAs significantly
changed in both HNRNPC KDs, including the downregulation
of circCDYL2 as well as the upregulation of circRARS and
circSMARCA5 (Figure 5G). Although we cannot rule out confound-
ing effects from changes in the underlying transcript abundance,
it is tempting to speculate that HNRNPC acts as a regulator of
circRNA biogenesis, possibly via direct binding at the 3′ back-
splice sites (see Discussion).

The majority of circRNAs do not seem to act as miRNA sponges
It has been shown that some circRNAs present numerous

miRNA target sites and thereby act as miRNA sponges to indi-
rectly regulate gene expression (Hansen et al., 2013; Memczak
et al., 2013; Wang et al., 2016; Zheng et al., 2016). To test
whether circRNAs in the analyzed cancer cells might exert such
a function, we predicted miRNA target sites within the puta-
tive internal circRNA sequences using the miRanda algorithm
(Enright et al., 2003). We found that in general, circRNAs did
not show a higher density of miRNA target sites compared to
randomly selected annotated 3′ UTRs and CDS regions (Supple-
mentary Figure S5F). The same held true for the 64 hypoxia-
regulated circRNAs, for which the number of predicted miRNA tar-
get sites directly followed the putative length of the fully spliced
circRNA (Supplementary Figure S5G). This was different for the
control circRNA CDR1as/ciRS-7, which was previously shown to
harbor dozens of functionally relevant target sites for miR-7 and
miR-671 (Hansen et al., 2013; Memczak et al., 2013). In line with
other studies (Guo et al., 2014; Boeckel et al., 2015; You et al.,
2015), these analyses suggest that miRNA sequestration is not
a predominant mechanism of action of circRNAs in the analyzed
human cancer cell lines.

Discussion
circRNAs are a special class of non-coding RNAs, which

receive increasing recognition for their unique RNA biology,
their molecular and physiological functions, and their distinctive
expression patterns. Due to their underrepresentation in clas-
sical transcriptome profiling protocols based on polyA(+) RNA-
Seq, their abundance had long been overlooked. Moreover, since
circRNAs overlap in most parts with their linear RNA counter-
parts, they offer little discriminative sequence information for
reliable detection, and the de novo prediction of back-splicing
events at cryptic splice sites remains particularly challenging
(Szabo and Salzman, 2016). In recent years, numerous algo-
rithms have been developed to predict and quantify circRNAs
from total RNA-Seq data, each offering unique advantages, but
also high levels of false positives (Szabo and Salzman, 2016).
A combination of tools is therefore advised to gain highest
accuracy in circRNA predictions (Hansen, 2018).

Here, we present a combined computational pipeline based
on the widely used algorithms find_circ and CIRCexplorer (Mem-
czak et al., 2013; Zhang et al., 2014). The two tools comple-

ment each other, as they rely on different alignment algorithms
(Bowtie2 and STAR) and conceptual approaches. While the cus-
tom approach by find_circ tends to suffer from false positives due
to inaccurate back-splice junction assignments, CIRCexplorer is
limited to exon coordinates from reference annotation. In order
to gain most in terms of sensitivity and specificity, we combine
the output from both tools and then rigorously filter to counteract
the tool-specific weaknesses. Finally, we recount the supporting
back-splice reads for all predicted circRNAs in the chimeric align-
ments from STAR to obtain consistent quantitative estimates.
Our pipeline thus outputs a comprehensive list of accurately
quantified circRNAs as an entry point into downstream analyses.

Using our pipeline, we identified ∼12000 circRNAs in three
human cell lines from cervical, lung, and breast cancer patients.
About one quarter had not been reported before. In our study,
many circRNAs were selectively expressed in just one cell line,
suggesting that the analyzed cancer cells displayed a unique
circRNA signature (Xia et al., 2016). In line with this notion, a
recent study reported >1000 circRNAs that were deregulated
in tumors, but not neighboring tissue, from 51 breast cancer
patients (Lü et al., 2017). Even if some of these circRNAs may
represent splicing by-products and reflect general differences
in gene expression, their abundant appearance could provide
meaningful signatures to indicate cancer incidences.

Beyond their abundant expression in cancer cells, an increas-
ing number of circRNAs were reported to promote oncogenic
mechanisms. For instance, circGFRA1 was previously found to be
highly expressed in triple-negative breast cancer patients where
it correlated with poor clinical outcome (He et al., 2017). In
our study, this circRNA was highly abundant in MCF-7 cells, but
absent from the other two cancer cell lines, although this largely
reflected the expression of the host gene (hsa_circ_0005239;
Supplementary Table S2). An association with tumor progression
and malignancy was also reported for circHIPK3 and circPIP5K1A
(Geng et al., 2018), which were both present in at least one
cancer cell line in our analysis.

Because of their high abundance and their inherent stability
due to their covalently closed structure, circRNAs offer promising
targets for cancer diagnosis, prognosis, and therapy (Lü et al.,
2017; Kristensen et al., 2017a). In particular, with advanced
tumor progression, circRNAs may serve as robust indicators of a
hypoxic tumor microenvironment. Moreover, several circRNAs
have been implicated in oncological pathways, where their
appearance correlates with poorer prognosis (Verduci et al.,
2019). In addition, circRNAs have been explored for protein
expression (Wesselhoeft et al., 2018) and miRNA sequestration
(Jost et al., 2018), which may open new therapeutic avenues in
the future.

Using our analysis pipeline, we identified 64 circRNAs that
are significantly deregulated upon hypoxia in the studied
cancer cell lines (Supplementary Table S3). In particular, we
observed a consistent and robust upregulation of circZNF292
isoforms. The intronic circZNF292 variant (hsa_circ_0004383)
was among the first circRNAs found as regulated upon hypoxia
(Boeckel et al., 2015) and associated with cell proliferation

https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
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and tube formation in human glioblastoma (Yang et al., 2016).
An aberrant expression in glioblastoma was also detected
for the second shared hypoxia-regulated circRNA circPLOD2
from our analysis (hsa_circ_0122319). Moreover, our analyses
revealed a 3–5-fold upregulation of two circPRELID2 isoforms in
hypoxic MCF-7 cells. In a previous study, one of these circRNAs
(hsa_circ_0006528) was highly expressed in chemotherapy-
resistant MCF-7 cells, indicating a potential use as therapeutic
target or prognostic biomarker for therapy response (Gao et al.,
2017). The fact that only 6 circRNAs were found as downregu-
lated in our study is likely attributable to the increased stability
of circRNAs compared to linear RNAs, which can mask changes
when looking at short-term stimuli. In addition, specific mech-
anisms of circRNA degradation have been described, such as
the slicing of CDR1as/ciRS-7 by miR-671 as part of intricate reg-
ulatory feedback loops (Hansen et al., 2011; Kleaveland et al.,
2018).

Multiple RBPs, such as MBNL, QKI, FUS, and SR proteins,
can impact on circRNA formation (Ashwal-Fluss et al., 2014;
Conn et al., 2015; Kramer et al., 2015; Errichelli et al., 2017).
Our data suggest HNRNPC as a novel RBP involved in circRNA
biogenesis. Using an untargeted approach, we identified three
circRNAs that responded to HNRNPC depletion in HeLa cells.
Although we cannot rule out changes in transcript abundance,
several mechanisms are conceivable how HNRNPC may exert this
regulation at the level of back-splicing. For instance, HNRNPC was
previously shown to interfere with U2AF2 binding at genuine and
cryptic 3′ splice sites to prevent exon inclusion, thereby main-
taining splicing fidelity (Zarnack et al., 2013). With respect to
the HNRNPC-repressed circRNAs, it is tempting to speculate that
similar mechanisms are in place to interfere with back-splicing.
In addition, HNRNPC may also exert a regulatory function via
Alu elements, which often act as drivers of RNA circularization
(Chen, 2016). Notably, HNRNPC was previously shown to exten-
sively bind to Alu elements in nascent transcripts (Zarnack et al.,
2013) and could thereby suppress the pairing of inverted Alu
repeats. In line with this notion, siRNA-mediated HNRNPC deple-
tion in MCF-7 cells was recently reported to trigger an increased
abundance of double-stranded RNA regions, which were highly
enriched in Alu elements (Wu et al., 2018). It remains to be
investigated whether, as in linear alternative splicing, the posi-
tioning of HNRNPC relative to the back-splice sites as well as its
integration with further regulatory elements may determine the
regulatory outcome for each circRNA.

In summary, we performed a comparative circRNA profiling of
three human cancer cell lines under hypoxic stress conditions.
A detailed knowledge about the expression and putative func-
tions of circRNAs in human physiology and disease will open
possibilities for the development of new disease biomarkers and
therapeutic approaches in the future.

Materials and methods
Cell culture and treatments

HeLa cells were cultured in 10-cm plates in high glucose
(4.5 g/L) DMEM (Sigma Aldrich) supplemented with 10% FBS,

100 U/ml penicillin, and 100 µg/ml streptomycin (Pen Strep, all
from Thermo Fisher Scientific). The cells were plated and grown
in a normal incubator until they reached 60% confluency (21%
O2, 37◦C, 5% CO2), and then either kept in the normal incubator
(normoxic conditions) or transferred to a hypoxia chamber (0.2%
O2, 37◦C, 5% CO2) for 24 h.

A549 (DSMZ no. ACC-107) and MCF-7 (DSMZ no. ACC-115) cells
were cultured in T75 flasks in DMEM (Sigma-Aldrich) and RPMI-
1640 medium (Sigma-Aldrich), respectively, supplemented with
10% FBS, 1 mM sodium pyruvate, and Pen Strep (all from
Thermo Fisher Scientific). For hypoxia treatment, 100000 A549
or 200000 MCF-7 cells were seeded in 12-well plates. Twenty-
four hours after seeding, cells were exposed to hypoxia (0.5%
O2, 37◦C, 5% CO2) for 48 h.

RNA preparation and sequencing
For RNA-Seq, total RNA was isolated using the miRNeasy Mini

kit (Qiagen), including the optional on-column DNA digestion
with the RNase-Free DNase Set (Qiagen). After isolation, 500 ng
RNA were quality checked on a 1% agarose gel. rRNA was
depleted using the RiboZero kit (Zymo). Libraries were prepared
and sequenced on a Illumina NextSeq sequencer with High-
Output (75-nt single-end reads) obtaining ∼100 Mio reads per
sample. For HeLa cells, two and three biological replicates were
prepared for the hypoxic and normoxic conditions, respectively.
For A549 and MCF-7 cells, two biological replicates were
prepared for each cell line and condition.

Processing of sequencing reads and genomic mapping
Quality checks were performed to all sequenced reads using

FastQC (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Reads were filtered based on sequencing quality (Phred
score > 20) and read length (>20 nt) using Flexbar (version 2.5;
Dodt et al., 2012).

For each sample, filtered reads were mapped to the human
genome (version hg38/GRCh38), based on GENCODE reference
annotation (release 24). For differential gene expression analysis
and circRNA quantification (see below), mapping was performed
using STAR version 2.4.5a (Dobin et al., 2012), a splice-aware
mapper capable of predicting so-called chimeric alignments,
i.e. discontinuous alignments in which two fragments of
the read align in a non-linear order (including head-to-tail
arrangements). We allowed up to two mismatches and kept
only uniquely mapped reads for downstream analysis. In order
to detect chimeric reads, we set the following parameters:
−−chimSegmentMin 15 −−chimScoreMin 15 −−chimScore-
Separation 10 −−chimJunctionOverhangMin 15. For circRNA
quantification using find_circ, the same reads were also mapped
using Bowtie2 as described in Memczak et al. (2013) using the
parameter −−score-min=C,–15,0.

Identification and quantification of human circRNAs
To comprehensively identify circRNAs from the RNA-Seq data,

sequencing reads of the different conditions were merged into
a single fastq file and mapped to the human genome (version
GRCh38/hg38) with Bowtie2 (Langmead and Salzberg, 2012)

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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and STAR (Dobin et al., 2012), as described above. Unmapped
reads from Bowtie2 were used to detect circRNAs with find_circ
as described in (Memczak et al., 2013). Chimeric junctions
reported by STAR were used to detect circRNAs with CIRCexplorer
as described in (Zhang et al., 2014). In the next step, we
combined the circRNAs identified by either algorithm and then
systematically filtered out detection artifacts. In particular, we
kept only circRNAs with a genomic distance between back-splice
< 100 kb and a GU/AG or GC/AG pairing of splice site motifs, and
excluded circRNAs spanning multiple non-overlapping genes.
We used a custom script (R version 3.4.3) to obtain unified read
count estimates from the predicted chimeric alignments by STAR
for each sample, discriminating putative PCR artifacts based on
the mapping position rather than read sequence. To detect a
circRNA as present in a given cell line, we demanded a minimum
of two distinct reads supporting the back-splice junction in at
least one sample (for further details, see Supplementary Note).

Expression analysis of circRNAs and host genes
To estimate the expression value of circRNAs (Figure 3B), we

normalized the number of back-splice reads (unique and non-
unique) per million mapped reads as ‘reads per million’ (RPM). To
evaluate the expression level of the host gene, we used the tool
htseq-count (Anders et al., 2015) to count overlapping reads per
gene using default parameters. Then, we estimated the relative
expression level of the host gene in TPM using custom scripts.
In order to avoid bias introduced by the associated circRNA
produced from the same gene, we omitted reads from exons that
were predicted to be internal to the circRNAs.

In order to estimate the back-splicing rate, we count back-
splice reads supporting a given circRNA as well as reads support-
ing linear junctions from the same splice sites (linear-junction
reads), taking the mean count of linear junctions from either
splice site. For the CLR (Figure 4D; Supplementary Figure S4D
and E), we divided the back-splice reads by the linear-junction
reads after adding a pseudocount of 1. For the ‘percent circu-
larized’ metric (Figure 3D), we divided the back-splice reads by
the sum of back-splice and linear-junction reads, multiplied by
100. We note that both metrics can be flawed when the circRNAs
include cryptic back-splice sites that are not activated under nor-
mal conditions, such as exon 1A in circZNF292 (intronic; Boeckel
et al., 2015). Moreover, the metric currently ignores isoforms
which completely skip the involved exon(s), which can result
in an overestimation of the relative abundance of the circRNA
isoform.

To evaluate the differential expression and alternative splicing
of genes between normoxia and hypoxia in the three cell lines
(Supplementary Figure S1), we used DESeq2 version 1.18 (Love
et al., 2014), setting an adjusted P-value threshold of 0.05.
The analysis was restricted to genes with a total of at least 10
reads (raw counts) in the tested cell line. To detect alternative
splicing events, we used rMATS version 3.2.5 (Shen et al., 2014)
with parameter –c 0.0001, considered reads mapped to splice
junctions, setting a cutoff at a FDR < 0.05 and absolute change
in ‘percent spliced in’ (|�PSI|) ≥ 10%.

To evaluate the differential expression of circRNAs (Figure 4A;
Supplementary Figure S4A), we relied on back-splice reads and
DESeq2 (Love et al., 2014) to identify significant differences
(FDR < 0.1). For this analysis, the raw back-splice read counts
of the circRNAs were combined with the raw read counts on the
complete genes to improve library size estimation, normaliza-
tion, and statistical power.

RNA preparation and RT-(q)PCR for validation experiments
HeLa and MCF-7 cells were cultured and exposed to hypoxia as

described above. After hypoxia treatment, cells were harvested
and resuspended in Trizol for RNA extraction, followed by DNase
treatment (Turbo DNase, Invitrogen).

For validation of circularity, two approaches were taken, based
on (i) polyA(+) RNA separation and (ii) RNase R treatment. All
validation experiments were performed with a representative
sample of HeLa cells under normoxic conditions. PolyA(+) RNA
separation was performed using Oligo d(T)25 magnetic beads
(New England Biolabs) following the manufacturer’s protocol
with small modifications. Briefly, 10 µg total RNA were incubated
with 50 µl beads. The supernatant was collected and saved as
polyA(−) fraction. To achieve higher purity, the polyA(−) fraction
was incubated a second time with fresh beads, and the protocol
repeated. For the bead-bound polyA(+) fractions, protocol and
washes were continued as recommended by the manufacturer.
After washing, eluted polyA(+) RNA and polyA(−) RNA suspen-
sion were precipitated overnight by adding ethanol to a final
concentration (f.c.) of 70% and sodium acetate (0.3 M f.c.). For
the RNase R treatment, 10 µg total RNA were incubated at 37◦C
for 40 min with or without 10 units of RNase R (Epicenter), fol-
lowed by 3 min incubation at 95◦C for RNase R inactivation. The
reaction was performed in 20 µl. After treatment, ethanol (70%
f.c.) and sodium acetate (0.3 M f.c.) were added for precipitation.

After treatment and precipitation, RNA was recovered and
cDNAs were synthetized by RT-PCR using SuperScript III Reverse
Transcriptase (Life Technologies), dNTPs, and random hexamers
(dNTP Mix and Hexanucleotide Mix, Sigma-Aldrich) following
the SuperScript III protocol recommended by the manufacturer.
The presence of the circRNAs specifically in the polyA(−)
fraction and the RNase R-treated samples was confirmed using
divergent primers flanking the back-splice junctions (primers
were designed using SnapGene and ordered at Sigma-Aldrich) by
semi-quantitative PCR. Primers against linear PLOD2 mRNA were
used as control. The PCR reaction was performed with Phusion
Polymerase (New England Biolabs), 10 mM dNTPs (dNTP Mix,
Sigma-Aldrich), 10 nM forward and reverse primers, and 1:1
DMSO per Phusion volume. After preparing the master mix, 1 µl
cDNA was added to the reaction, and the PCR was performed
in the following conditions: 98◦C for 2 min, 34 cycles of 98◦C
for 30 sec, 55◦C–60◦C (depending on the primer) for 30 sec,
and 72◦C for 30 sec, and final extension at 72◦C for 5 min. PCR
products were visualized using 2% agarose gel electrophoresis
(VWR Maxi or Midi Electrophoresis System). The 2% agarose gels
were pre-stained with RedSafe (HiSS Diagnostics).

https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
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For validation of differentially expressed circRNAs under
hypoxia, RNA was prepared from hypoxic and normoxic HeLa
and MCF-7 cells, and reverse transcription was performed from
2 µg total RNA as described above. Differential expression was
validated by RT-qPCR using 1× final concentration of 2X ORA
qPCR Green ROX L Mix (highQu GmbH), 500–2000 nM forward
and reverse primers (depending on the primer) and 1 µl of 1:8
dilution of cDNA. Primers targeting U6 for HeLa and P0 for MCF-7
were included in each experiment, and its quantification cycle
number (Cq value) posteriorly used for normalization. The RT-
qPCR was performed in a PikoReal 96 Real-Time PCR System
(Thermo Fisher Scientific) using the following program: 95◦C for
2 min, 30 cycles of 95◦C for 20 sec, 60◦C for 20 sec, and 72◦C for
30 sec, and final extension at 72◦C for 5 min, followed by a step-
wise melting curve (60◦C–95◦C). The same primers were used for
semi-quantitative PCR and RT-qPCR (Supplementary Table S4).

Genomic annotation and molecular characterization of circRNAs
We used custom scripts (R version 3.4.3) to compare the

genomic coordinates of the circRNAs to genomic/transcript fea-
tures taken from GENCODE reference annotation (release 24,
basic annotation). Only genes with support level 1 or 2 were
considered, thus discarding automatically annotated genes. In
order to assign exon ranks and possible internal exons of the
circRNAs, we relied on canonical splice variants (knownCanon-
ical, downloaded from UCSC Genome Browser) where possible.
If back-splice junctions did not match a canonical transcript,
we searched for non-canonical transcripts with coincident splice
sites, thus defining a best parental transcript. For the internal
structure of the circRNA, we conservatively assumed that all
annotated exons of the parental transcript that lay between the
back-splice sites were included into the circRNA. If no annotated
exons overlapped with a circRNA, it was considered as intron-
ic/intergenic depending on its genomic location. circRNA over-
lapping with >1 annotated gene were labeled as ‘ambiguous’.
Finally, we further excluded putative back-splicing events span-
ning multiple non-overlapping genes (n = 70) for downstream
analysis.

Splice site strengths were predicted using the sequence anal-
ysis software MaxEntScan (Yeo and Burge, 2004; Figure 2C). GO-
enrichment analysis was performed using the overrepresenta-
tion test implemented in clusterProfiler package version 3.6.0
(Yu et al., 2012) in the R statistical software environment (version
3.4.3). Enrichment was tested against the union of all genes that
were tested in the DESeq2 analysis of any cell line. P-value and
q-value cutoffs were set to 0.05. Biological process and molecu-
lar function categories were explored.

Alu elements in flanking introns were analyzed based on
RepeatMasker annotation (www.repeatmasker.org) downloaded
from UCSC Genome Browser. For the 64 hypoxia-regulated
circRNAs, we additionally performed pairwise local alignments
of sequences in a 500-bp window up- and downstream of
the back-splice sites using the R package Biostrings (version
2.46.0; parameters gapOpening = 10 and gapExtension = 4).
The difference in the association of regulated (Reg) vs. all

circRNA with Alu elements (Figure 5B) did not reach statistical
significance in a Chi-squared test (P-value > 0.1).

Prediction of miRNA target sites and RBP binding sites
In order to predict potential interactions between circRNAs and

miRNAs, the sequences and annotation of a high-confidence
set of 542 miRNAs in humans (high_conf_mature.fa.gz) were
obtained from the miRBase database (http://www.mirbase.
org/). Next, we used miRanda (version 3.3a) to predict miRNA
target sites on circRNAs, setting match score >150 and using
the parameter strict to demand a strict alignment in the seed
region. This yielded a set of high-confidence miRNA target sites.
The analysis was performed on a subset of 9754 circRNAs
(only high-confidence circRNAs are shown in the figures),
for which we could assign a parental transcript as described
above. The previously published, intronic isoform of circZNF292
(hsa_circ_0004383) was manually added to the list (Boeckel
et al., 2015; excluding the cryptic intron between exons 1A
and 2). As a control, we included the circRNA CDR1as/ciRS-7
(Hansen et al., 2013; Memczak et al., 2013). The frequency of
miRNA target sites within the circRNA sequences was compared
to 10000 CDS and 3′ UTR sequences that randomly selected from
the GENCODE annotation. The number of detected targets sites
in a circRNA, CDS, or 3′ UTR was normalized by the size of the
region (Supplementary Figure S5F).

Putative RNA binding sites were searched in regions flank-
ing the 64 hypoxia-regulated circRNAs as well as the 2141
unchanged circRNAs from the high confidence set, considering
a 1000-bp window up- and downstream of the back-splice
sites. We used FIMO (version 5.0.2; Grant et al., 2011), a
program integrated in the MEME suite (http://meme-suite.org/),
to search for known RBP motifs from in vitro binding assays
(Ray et al., 2013) downloaded from the MEME database
(Ray2013_rbp_Homo_sapiens.dna_encoded.meme). A P-value
cutoff of 0.0001 was applied. Only predicted binding sites with
q-value < 0.05 were considered for downstream analysis.

HNRNPC iCLIP data analysis
To verify the binding of HNRNPC to regions flanking circRNAs,

we analyzed HNRNPC iCLIP data in HeLa cells from Zarnack et al.
(2013). Peak calling was performed on merged iCLIP tracks
with PureCLIP version 1.1.2 (Krakau et al., 2017) setting the
parameter -ld to use higher precision to compute emission
probabilities. Crosslink sites were merged when located at a
distance ≤8 nt. To investigate the spatial distribution of HNRNPC
binding to regions flanking circRNAs, the average read coverage
at each position was calculated considering an intronic window
of 1000 nt up-/downstream of the back-splice sites plus the
first/last 50 nt of the circularized exon(s). A total of 1133 high-
confidence circRNAs expressed in HeLa cells and originated from
PCGs were investigated, separated into hypoxia-regulated and
non-regulated circRNAs. HNRNPC binding to circularizing exons
was compared to linear control exons from expressed PCGs that
do not undergo circularization. Similar to the criteria for the
high-confidence set of circRNAs, only internal, linearly spliced

https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
www.repeatmasker.org
http://www.mirbase.org/
http://www.mirbase.org/
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz094#supplementary-data
http://meme-suite.org/
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exons with a minimum of five inclusion junction reads in any two
samples in HeLa were used as control exons in this comparison
(Figure 5E).

siRNA transfection for HNRNPC knockdown
HNRNPC KD was performed using previously described siRNAs

(Zarnack et al., 2013): Stealth Select RNAi siRNAs HSS179304
and HSS179305 as well as control siRNA Stealth RNAi siRNA
Negative Control. For KD experiments, HeLa cells were cultured
under normal conditions and seeded into 6-cm dishes 24 h prior
to siRNA transfection. A final concentration of 20 nM of each
siRNA was transfected into HeLa cells using jetPRIME® DNA and
siRNA transfection reagent (VWR) following the manufacturer’s
protocol. KD was performed for 48 h, and cells were subse-
quently harvested for RNA extraction as described above. The
functional KD was confirmed by measuring the splicing changes
in four known target exons from HNRNPC (Zarnack et al., 2013).

Data availability
The RNA-Seq data from this study have been submitted to the

Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo/)
with accession number GSE131379.

Supplementary material
Supplementary material is available at Journal of Molecular

Cell Biology online.
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