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Abstract

Bacterial endospores can survive harsh environmental conditions and long-term dormancy

in the absence of nutrients, but can rapidly germinate under favorable conditions. In the

present study, we employed transposon sequencing (Tn-seq) to identify genes with previ-

ously uncharacterized roles in spore germination. Identified genes that encoded spore inner

membrane proteins were chosen for study of defined mutants, which exhibited delayed ger-

mination in several assays in response to varying germinants. Significantly slowed release

of DPA indicated that mutants were affected in Stage I of germination. Several mutants

exhibited phenotypic traits consistent with failure of a GerA germinant receptor-mediated

response, while others appeared to have a more general loss of response to varied germi-

nants. Use of a gerA-lacZ transcriptional fusion and quantitative western blotting of GerAC

allowed mutants to be classified based upon normal or decreased gerA transcription and

normal or reduced GerA accumulation. Fourteen genes were identified to have newly

described roles within Bacillus spore germination. A more complete understanding of this

process can contribute to the development of better spore decontamination procedures.

Introduction

Bacterial endospores are capable of extended periods of dormancy while remaining resistant

to a variety of chemical and physical decontamination measures [1]. Dormant spores can rap-

idly germinate when in a suitable environment, returning to a vegetative state [2, 3]. These fac-

tors allow endospores produced by certain species of Bacillus and Clostridium to excel as

human pathogens, act as potential bioterrorism agents, and contribute to significant food con-

tamination events [4, 5]. Preservation of dehydration of the metabolically inactive spore core is

the greatest factor in spore resistance properties and maintenance of spore dormancy [1]. This

dormant state is maintained by the inner spore membrane, which exists in a largely non-fluid

state [6], and a thick layer of peptidoglycan termed the cortex [7]. Additionally, the accumula-

tion of small molecule solutes within the core, such as calcium dipicolinic acid (DPA), contrib-

ute to spore dehydration and resistance properties [1].
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When dormant spores sense an environment conducive to vegetative growth, they will rapidly

germinate. Environmental sensing is achieved through the action of proteins expressed late in spor-

ulation, termed germinant receptors. Bacillus subtilis encodes three functional Ger receptors: GerA,

GerB, and GerK [8]. The GerA receptor responds to amino acids such as L-Alanine and L-Valine,

while the GerB and GerK receptors work together to respond to a mixture of L-Asparagine, D-glu-

cose, D-fructose and K+ ions (AGFK) [2]. The mechanism of signal transduction from Ger recep-

tors to other spore components to initiate germination is not well understood, but a major event is

the opening of a channel involving SpoVA proteins to release Ca2+-DPA from the spore core [9].

The GerD protein of Bacillus species is required for a rapid response to germinants. Recent work

suggests that GerD is essential for the colocalization of Ger receptors in the spore’s inner membrane

in a cluster termed the germinosome and probably plays an intermediate role in the signal trans-

duction pathway from germinant-receptor complex to downstream germination effectors [9, 10].

Each Ger receptor is composed of three subunits: A, B, and C. The A subunits are trans-

membrane proteins featuring sizable domains on each side of the membrane [3, 8]. The B sub-

unit proteins are thought to be integral membrane proteins that may be involved in germinant

recognition [11]. The C subunits are lipoproteins attached to the other surface of the mem-

brane [12]. Following triggering of the Ger receptors, water begins to partially rehydrate the

spore core, and Ca2+-DPA is released along with other ions contained within the spore core.

The spore cortex is then degraded through the action of germination-specific lytic enzymes

(GSLEs) which allow the spore core to continue to expand and return to a fully hydrated state

[13]. The spore will then resume metabolism and continue through outgrowth, eventually

returning to a fully vegetative state.

The goals of the current study were to identify additional genes with potential roles in spore

germination. Whereas previous studies have characterized genes whose loss resulted in a near

complete block of germination, we sought to find genes with more subtle phenotypes that

were potentially missed by previous procedures. Creation of a transposon-insertion mutant

library and submission of spores produced by that library to germination conditions, in com-

bination with Transposon Sequencing (Tn-seq)[14], facilitated identification of 61 genes that

exerted significant effects on germination efficiency or rate. Among these, 14 genes had not

been previously associated with spore germination and had been shown to produce proteins

within the spore membrane proteome, and these were selected for further characterization.

Defined gene knockout strains demonstrated reduced germination. Further studies implicated

certain genes in affecting the overall GerA receptor abundance within the dormant spores.

Materials and methods

Strain constructions

All strains are listed in Table A in S1 File. DNA extracted from a previously constructed Tn-

insertion library [15] was transformed into PS832 with selection for spectinomycin resistance

(100 μg/mL). Roughly 150,000 independent transformants were pooled from plates to produce

a new library.

Mutants lacking single genes were obtained from the Bacillus Genetic Stock Center. Each

mutation was a deletion/insertion, with the gene of interest replaced by an erythromycin resis-

tance gene flanked by two loxP sites [16]. The mutations were introduced into B. subtilis strain

PS832 by natural transformation with selection for erythromycin (2.5 μg/ml) and lincomycin

(12.5 μg/ml) (MLS) resistance.

Chromosomal DNA from B. subtilis strain DPVB724 with a gerB deletion and insertion of a

chloramphenicol (3.0 μg/ml) resistance gene was used to transform strains to GerB-. This was

done to reduce background detection of GerBC during Western blot quantification of GerAC.
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B. subtilis strain DPVB761 with a gerA-lacZ fusion marked with an MLS resistance gene

was obtained from the Setlow lab [17, 18]. Since all the putative Ger mutant strains had the

same resistance gene marker, it was essential to delete the MLS resistance gene in order to

transform the mutant strains with chromosomal DNA carrying the gerA-lacZ fusion. The Cre

recombinase was expressed from plasmid pDR244 [16] to stimulate deletion of the resistance

gene, leaving an unmarked in-frame deletion mutation. The gerA-lacZ fusion was then intro-

duced by natural transformation into the 14 mutant strains carrying an unmarked deletion,

with selection for MLS resistance.

Chromosomal DNA from B. subtilis strain DPVB833, in which gerA expression is under

the control of spore-specific promoter PsspD [19], was introduced by natural transformation

into strains with an unmarked deletions, with selection for MLS resistance. All mutations were

verified by PCR and agarose gel electrophoresis.

Spore preparation

B. subtilis spores, both single strains and the Tn-insertion strain library, were prepared in

2xSG broth [20]. Spores were harvested after 3–4 days incubation at 37˚C and washed by shak-

ing in water at 4˚C and repeated centrifugation for several days. Purified spores were examined

by microscopy and were judged to be>95% phase-bright spores prior to further assay.

To prepare germinated spores from the Tn-insertion library, a 10-ml suspension of dor-

mant spores at an optical density at 600 nm (OD600) of 100 (~3x1011 spores in total) in water

was heat-activated at 70˚C for 30 min and cooled on ice for 10 min. The spores were then sub-

mitted to germination conditions in 50 mM NaPO4 buffer (pH 7.4) with 10 mM L-Valine at

37˚C for 45 minutes. OD600 was monitored to ensure progression through germination. Ger-

minated spores were collected by centrifugation at 12,000 g for 5 min at 4˚C. After germina-

tion, subpopulations of dormant and partially germinated spores (δ�1.25 g/ml) and fully

germinated spores (δ~1.19 g/ml) were collected following centrifugation through a layer of

43% sodium diatrizoate.

Sequencing of Tn insertion sites

All spore samples were decoated using urea, SDS, and DTT as described previously [21]. DNA

was extracted from decoated spores using the Gram-Positive protocol from the Qiagen Blood

and Tissue kit. DNA was digested with MmeI and quantified using Qubit (ThermoFisher).

Samples were sent to the High-Throughput Sequencing and Genotyping Center at the Univer-

sity of Illinois for library preparation and sequencing. Adaptor ligations were performed

including index bar codes as well as flow cell sequences. Following adaptor ligation, samples

were PCR amplified for 18 cycles. After amplification, samples were purified and sequenced

using an Illumina Hi Seq 2500, yielding reads with 5’ transposon sequence followed by a 16-bp

region of genomic DNA. Sequencing read data files were uploaded an analyzed using Gen-

eious (version 10.0) (http://www.geneious.com, [22]). Reads were filtered and trimmed leaving

only genomic sequences and mapped to the JH642 B. subtilis genome. Tables were exported

from Geneious listing number of reads contained within each annotated gene. Reads within

each individual data set were expressed as a function of the total number of reads per million

from that sample. Once normalized, both experimental data sets, dormant and germinated,

were compared against one another allowing reporting of fold change between samples.

DESeq2 was used to determine p-values comparing dormant and germinated samples [23].

Genes with 2-fold higher number of reads in the dormant versus the germinated sample and

significant p-values (�0.05) were selected for further study.
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Germination assays

To quantify change in OD600, purified spores were heat activated at 70˚C for 30 minutes,

quenched on ice for 5 minutes, and diluted to an OD600 of 0.2 in 50 mM NaPO4 buffer (pH

7.4) containing L-Valine (10 mM) or AGFK (10 mM L-Asparagine, 1 mM D-Glucose, 1 mM

D-Fructose, 10 mM KCl). Purified spores were heat activated at 70˚C for 30 minutes,

quenched on ice for 5 minutes, and stimulated to germinate by dilution to an OD600 of 0.2 in

2xYT (Final concentrations: 8 mg/ml Yeast Extract, 12.8 mg/ml Tryptone, 4 mg/ml NaCl).

Changes in OD600 were monitored using a Spectronic Genesys 5 spectrophotometer.

Purified spores of strains with and without overexpressed gerA were heat activated at 70˚C

for 30 minutes, quenched on ice for 5 minutes, and diluted to OD600 of 0.1 in 25 mM HEPES

buffer (pH 7.4). Nutrient germinants were added as described above, and changes in OD600

were monitored using a Tecan M200 plate reader.

To quantify non-nutrient-triggered germination, purified spores at an OD600 of 1.0 were

germinated with 1 mM dodecylamine in 20 mM KPO4 buffer (pH 7�4) at 37˚C. At indicated

times, 1 ml of germinating spore suspensions were centrifuged 15,800 x g for 2 min. The A270

of the supernatant was measured to quantify DPA release, which was expressed as a fraction of

the total spore DPA content. Total spore DPA was determined by boiling spores for 30 min

and measuring the A270 of the resulting supernatant.

To measure DPA release, spores from each mutant strain were heat activated at 70˚C, sus-

pended in 25 mM HEPES buffer (pH 7.4) and submitted to germination conditions with 10

mM L-Valine at 37˚C. Aliquots were taken from the germinating spores at indicated times and

centrifuged at 10,000 g for 45 seconds. The spore exudate was analyzed to determine the

amount of DPA released [24].

To measure release of cortex fragments, mutant spores were heat activated at 70˚C, sus-

pended in 25 mM HEPES buffer (pH 7.4) and incubated with 10 mM L-Valine at 37˚C. OD600

was recorded and aliquots were taken from the germinating spores at indicated times. Samples

were centrifuged, and the spore exudate was subjected to amino acid/amino sugar analysis as

previously described [25]. Peaks representing N-acetyl muramic acid (NAM) were identified

based on elution times and quantified by integration of peak areas in comparison to known

standards.

Dormant spores were observed using phase-contrast microscopy prior to germination,

such that there were 70–100 spores per field of view and images were collected for 10 fields per

sample. Spores were then heat activated at 70˚C for 30 minutes, quenched on ice for 5 minutes,

resuspended in 50 mM NaPO4 buffer (pH 7.4) and stimulated to germinate by addition of 10

mM L-Valine for 1 hour, and observed by microscopy again. The image processing toolkit Fiji

was combined with segmentation machine learning algorithms [26], in the open-source soft-

ware project Trainable Weka (Waikato Environment for Knowledge Analysis) Segmentation

(TWS)[27]. This prototype segmentation algorithm was used to classify phase-bright and

phase-dark spores. To segment the input image data, TWS transforms the segmentation prob-

lem into a pixel classification problem in which each pixel can be classified as belonging to a

specific segment or class such as phase-bright or phase-dark. A set of input pixels that has been

labeled is then used as the training set for a selected classifier. Once the classifier is trained, it

can be used to classify either the rest of the input pixels or completely new image data. Data

were analyzed for images from 3 fields per sample.

Assay of gerA transcription

B. subtilis strains with a gerA-lacZ transcriptional fusion were grown and sporulated at 37˚C in

2xSG medium. Purified spores were chemically decoated, washed, and extracted, and β-
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galactosidase activity was assayed using methyl-umbelliferyl-D-galactoside (MUG) as previ-

ously described [28–30]. MUG fluorescence was measured in a microplate reader (Tecan)

using excitation and emission wavelengths of 365 nm and 450 nm, respectively. Standard solu-

tions of methylumbelliferone were prepared in the same mix of buffers in order to calibrate

the fluorescence readings. The average activity of PS832 (wildtype without gerA-lacZ fusion)

samples was subtracted from the values for all samples containing the gerA-lacZ fusion, and all

readings were normalized to decoated spore OD600 values.

Western blotting

Quantitative western blots were performed on strains carrying a gerB deletion to avoid cross-

reactivity with the GerAC antibody. Purified dormant B. subtilis spores (~100 OD600 units)

were decoated and proteins were extracted as previously described for western blot analysis

[21]. Samples were then serially diluted with 2x SDS-PAGE sample loading buffer and gerA
gerB or gerD spore protein extract. TGX Stain-Free Fast Cast premixed acrylamide solution

(Bio-Rad) was used, which enabled rapid fluorescent detection of tryptophan residues in pro-

teins directly within gels and blots. The proteins were Trp-modified after separation by a tri-

halo compound included in the electrophoresis gel, allowing fluorescent visualization and

quantitation of proteins on gels and blots immediately after the completion of electrophoresis

and transfer. The total protein load and recovery for each lane was measured as the total fluo-

rescence intensity for each lane of the blot. This was followed by probing with anti-GerAC

[30] or anti-GerD [30] antibodies via chemiluminescent western blot. Band intensity was nor-

malized to the protein present in each lane. Biorad Image Lab 6.0 was used to perform data

analysis of quantitative blots. Dilutions of 1.0, 0.5, 0.25, and 0.125 concentration were blotted.

Only the 1.0 and 0.5 concentrations were found to be within the linear range of detection, and

these were used for quantification. Quantitative GerAC and GerD western blots were per-

formed in triplicate.

Results

Identification of mutant strains with slowed or reduced germination

Seeking to identify additional genes that contribute to spore germination, Tn-seq was used to

reveal genes functioning in the early stages of germination. A library of magellan6x transposon

insertions [15] was transformed into a B. subtilis wild type strain, PS832, that is highly efficient

at spore formation and germination. An estimated 150,000 independent transformants were

pooled into a library from which dormant spores were produced. A sample of this spore library

was collected for Tn insertion site sequencing.

Dormant spores were heat-activated and were submitted to germination-inducing condi-

tions with 10 mM L-Valine at 37˚C for 45 minutes. A 45% drop of the starting OD600 was

observed as an indication of germination. Following germination, a density gradient was used

to separate dormant (and possibly partially germinated) spores (�1.25 g/ml) from fully germi-

nated spores (~1.19 g/ml)[31]. This procedure was performed using two independent dormant

spore preparations.

DNA was extracted from the starting spore population and the dormant and germinated

spores, and the Tn insertion sites were sequenced as described [15] and mapped to the B. subti-
lis genome. Sequence data is available at https://www.ncbi.nlm.nih.gov/sra/PRJNA544251.

The total library was found to have 5.5 x 104 unique insertions spread over 3,114 genes featur-

ing�10 unique insertions per gene. The number of reads within each gene were normalized

as a fraction of the total reads obtained for that sample. Normalized data sets from germinated

and dormant spores were then compared against one another to determine fold change. Genes
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with a higher proportion of reads in the dormant population indicate a possible role in germi-

nation. DESeq2 was implemented to determine p-values to further differentiate mutant abun-

dance between sample sets [23, 32].

In total, Tn insertions in 61 genes were found to be�2-fold underrepresented in the germi-

nated spores compared to those unable to complete germination (Table 1). These included all

three genes of the gerA operon, gerE, coat proteins cotH and cotE, and genes from the gerP
operon, all of which have known strong effects on germination. Slightly less than half of the

genes identified were known previously to have either sporulation or germination defects.

The identified genes that were not previously implicated in spore germination were cross-

referenced against proteins found in the inner spore membrane proteome [44, 45], identifying

a group of 14 genes that were studied further (Table 2). The majority of these genes were

largely uncharacterized and were annotated with a wide range of putative functions. Many of

the genes are not known to be expressed via sporulation-specific regulatory factors but rather

are regulated by vegetative cell transcriptional controls.

Characterization of germination of mutant strains

Strains carrying insertion mutations [16] in each of the genes listed in Table 2 were obtained

from the Bacillus Genetic Stock Center, and these mutations were transformed into PS832.

Mutant strains were characterized with regard to growth rate and sporulation efficiency

(Table 3). A number of the mutants exhibited significant growth rate defects, and the ytxG
mutant had a severely reduced sporulation frequency. For comparison, gerA mutants grow

and sporulate at wild type rates [34]. Purified spores were analyzed using several germination

assays to verify the defects indicated by the Tn-seq data in addition to providing insight into

potential function of these genes in germination. Spores were germinated with the addition of

10 mM L-Val, and OD600 was monitored; an example assay is shown in Fig 1 (Additional data

in Figure A in S1 File). Each mutant strain exhibited a significant germination rate defect in

response to L-Val in comparison to the wild type (Table 4). The most severe delays in germina-

tion rate were observed for the ylbC, dnaJ, sipT, and hfq mutants. For comparison, a gerA
mutant exhibited <1% germination even in the presence of 200 mM L-Ala, which is more

strongly stimulatory than 10 mM L-Val [61].

The slowed germination phenotype was further characterized by examining the individual

stages of germination using assays for release of dipicolinic acid (DPA) (Stage I) and N-acetyl-

muramic acid (Stage II)[3]. Spores from each mutant strain were heat-activated, suspended in

25 mM HEPES buffer, and submitted to germination conditions with 10 mM L-Val at 37˚C.

The amount of DPA released from many of the mutant strains was vastly reduced compared

to that of PS832 (Table 3). For comparison, spores of a gerA mutant release�1% of their DPA

over 120 min in the presence of L-Val [62]. The only strains that were not significantly differ-

ent from PS832 were the yybT, ytxG, pcrB, and phoR mutants. Mutant strains lacking sipT,

ylbC, or ytpA demonstrated NAM release significantly less (p<0.05) than that of PS832

(Table 3, Figure B in S1 File). The rest of the mutants exhibited reduction compared to PS832

but due to high variation among replicates were not found to be significantly different

(Table 3, Figure B in S1 File).

When mutant spore populations exhibit a decreased OD600 change during germination, it

could result from a large percentage of the spore population germinating incompletely or from

a smaller percentage of the population germinating at a normal rate with the remainder

remaining fully dormant. Spores of the various strains were imaged using phase-contrast

microscopy, both prior to and one-hour post-germination with 10 mM L-Val (Fig 2), and

spores were classified as phase-bright or phase-dark based on pixel intensities (Figure C in S1
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Table 1. Genes in which Tn insertions altered germination.

Gene p-valuea Fold-change Sample 1b Fold-change Sample 2b Reference for Ger defect

cotH 2.2E-35 15.0 10.9 [33]

gerAA 4.4E-31 150.1 43.7 [18, 34]

gerAC 2.0E-29 279.9 73.9 [18, 34]

cotE 3.8E-24 17.0 12.0 [35]

ygaC 2.3E-18 4.6 4.2

yqfT 3.0E-16 15.4 8.8

ypzK 6.3E-16 10.1 9.7

yqeF 2.0E-15 3.3 5.5

ymzD-ymcCc 5.7E-13 2.5 2.7

gerPF 5.8E-13 7.4 4.1 [36]

safA 1.1E-11 7.3 4.1 [37]

pcrB 2.3E-11 3.0 2.6

ylbC 3.9E-11 4.1 2.9

gidA 1.3E-10 4.2 2.8

gerPB 1.0E-09 5.9 3.6 [36]

gerPC 3.1E-09 11.7 3.9 [36]

nocA 4.2E-09 2.0 2.2

veg 1.1E-08 4.8 3.2 [38]

gerE 1.8E-08 Infinite 32.0 [34]

ytoA 2.2E-08 5.1 4.1

ytpA 1.0E-07 5.3 4.6

ytpB 1.1E-07 3.9 3.5

rsbW 1.2E-07 2.2 2.5

yfhD 2.8E-07 4.2 4.6

cotZ 7.7E-07 2.1 3.1 [39]

yqhL 1.1E-06 4.3 2.5

kinB 1.8E-06 1.6 1.9

skfC 1.9E-06 7.9 3.7

skfE 3.8E-06 8.4 3.7

gerAB 5.8E-06 181.7 73.6 [18, 34]

ymaB 6.6E-06 1.9 2.9

sipT 7.5E-06 2.5 2.8

skfG 9.7E-06 3.5 2.3

phoR 1.0E-05 2.5 3.0

cotN (tasA) 1.5E-05 2.1 2.2 [40]

yhbJ 2.8E-05 1.8 1.7

yhaM 3.3E-05 4.6 2.5

ymaF 3.7E-05 8.1 2.8

yabG 1.7E-04 2.5 2.3 [41]

spoVID 1.8E-04 2.7 2.1 [42]

yqhR 3.6E-04 2.3 2.0

yonF 4.7E-04 1.8 3.0

spoVAF 4.8E-04 2.2 1.8 [43]

hfq 6.7E-04 3.2 2.5

yosK 9.2E-04 4.4 6.4

yozE 9.4E-04 3.0 4.8

yopI 1.1E-03 2.3 2.8

(Continued)
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File). All spore samples had�95% phase-bright spores prior to germination. Post-germina-

tion, the wildtype spores had 95% phase-dark spores while most of the mutant strains had sig-

nificantly decreased percentages of phase-dark spores (Table 3), indicating that much of the

mutant strain spore populations did not initiate germination.

Additional assays were performed using the germinants AGFK and 2xYT (Table 4), which

began to differentiate the mutants into distinct phenotypic groups. The first group features a

reduction in germination rate to all nutrient germinants tested: L-Val, AGFK, and 2xYT, and

Table 1. (Continued)

Gene p-valuea Fold-change Sample 1b Fold-change Sample 2b Reference for Ger defect

flgN 1.2E-03 14.2 3.6

gerD 1.2E-03 2.6 1.9 [34]

fliW 2.0E-03 1.9 3.4

yfbJ 2.0E-03 3.1 2.3

ytmO 2.1E-03 4.0 3.5

gerPE 2.1E-03 6.5 1.7 [36]

phoP 2.3E-03 3.2 3.4

gerPD 4.7E-03 8.2 3.2 [36]

tufA 5.2E-03 5.7 3.1

ispA 5.7E-03 2.9 2.8

yoqL 1.7E-02 6.1 3.7

dnaJ 4.7E-02 2.5 2.9

yaaB (remB) 5.0E-02 7.4 2.3

ytxG 2.1E-01 2.7 2.9

yybT (gdpP) 2.4E-01 7.5 2.1

a p-value determined using DESeq2 [23] comparing Dormant and Germinated sample read counts.
b Fold change in read counts of Dormant/Germinated samples
c Intergenic region

https://doi.org/10.1371/journal.pone.0218220.t001

Table 2. Genes without previously known germination role identified by Tn-seq and in spore membrane proteome.

Gene Function Locus structure Regulation of expression

dnaJ Protein quality control hrcA-grpE-dnaK-dnaJ-
yqeTUV

σA, HrcA [46]

hfq RNA chaperone hfq Increased protein during transition to stationary

phase [47]

pcrB Heptaprenylglyceryl phosphate synthase pcrB-pcrA-ligA-yerH LexA regulon [48]

phoP Response regulator, phosphate metabolism phoPR σA, σB, σE, CcpA, ScoC [49, 50]

phoR Sensor kinase, phosphate metabolism phoPR σA, σB, σE, CcpA, ScoC [49, 50]

sipT Signal peptidase I sipT DegU [51]

skfE Export of spore killing factor (SkfA) skfABCEFGH Spo0A, AbrB, PhoP [52–54]

ygaC Unknown ygaCD
ylbC Unknown ylbBC σF [55]

yqeF Unknown yqeF
yqhL Unknown yqhL mRNA processed by RNase Y [56]

ytpA Phospholipase, Bacilysocin synthesis ytpAB σM [57]

ytxG General stress ytxGHJ σB, σH [58]

yybT
(gdpP)

c-di-AMP phosphodiesterase. Functions in DNA damage and acid

resistance [59]

yybS-gdpP-rplI σA, σD-induced antisense RNA [60]

https://doi.org/10.1371/journal.pone.0218220.t002
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includes strains with mutations in skfE, ylbC, hfq and dnaJ. The second phenotype includes

strains with a significantly delayed L-Val germination response, via a GerA receptor, but other-

wise germinate normally in response to rich medium and AGFK, via the GerB and GerK

Table 3. Phenotypic properties of B. subtilis strains.

Genotype Doubling timea (min) Sporulation efficiencyb (%) DPA releasec (μg/ml/OD) NAM releasec (nmole/ml/OD) % phase-dark sporesd

Wild type 20 66 5.3 ± 0.1 61.0 ± 14.2 95

dnaJ 31 89 1.1 ± 0.4� 25.9 ± 12.7 14

hfq 40 63 2.2 ± .03� 30.1 ± 6.2 48

pcrB 31 68 3.0 ± 0 30.3 ± 8.0 41

phoP 44 83 2.7 ± 0.4� 46.6 ± 5.8 63

phoR 35 54 3.9 ± 0.5 39.2 ± 9.5 86

sipT 34 54 2.3 ± 1.0� 23.5 ± 10.2� 22

skfE 27 59 1.8 ± 0� 40.6 ± 10.7 38

ygaC 21 71 3.1 ± 0.4� 36.6 ± 9.9 60

ylbC 29 48 1.1 ± 0.3� 14.3 ± 3.4� 19

yqeF 23 84 1.9 ± 0� 37.2 ± 9.4 50

yqhL 20 53 2.6 ± 0.4� 36.1 ± 8.1 69

ytpA 22 95 1.63 ± 0� 17.7 ± 2.7� 55

ytxG 31 18 4.8 ± 0.3 50.9 ± 4.8 90

yybT 21 69 4.7 ± 0.4 56.6 ± 14.1 92

a Growth in 2xSG medium at 37˚C
b Heat-resistant count/total viable count after 24 hr incubation on 2xSG medium at 37˚C.
c Release of DPA and NAM 30 or 45 min, respectively, after exposure to 10 mM L-Val at 37˚C.

� indicates a significant difference from the wild type (T-test, p<0.05). Values are indicative of averages and standard deviations of three biological replicates.
d Spores pixel intensities quantified and classified as described in Materials and Methods after 60 min exposure to 10 mM L-Val at 37˚C.

https://doi.org/10.1371/journal.pone.0218220.t003

Fig 1. Germination rates of B. subtilis strains. Purified spores were heat activated, stimulated to germinate by

addition of 10 mM L-Val, and shaken at 37˚C, during which the OD600 was monitored. Values are averages of three

assays and error bars are standard deviations. Each assay was performed on three replicate spore preparations. For the

ylbC (■) and phoP (▲) mutants, all points after 10 min are significantly different from those of the wild type(●);

P�0.05.

https://doi.org/10.1371/journal.pone.0218220.g001
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receptors. The following strains featured this phenotype: yybT, ygaC, yqhL, yqeF and sipT. The

final group included strains with significantly slower germination rates in response to L-Val

but have a delay in response to either AGFK or 2xYT, but not both. Mutants lacking ytpA,

phoP, phoR, pcrB and ytxG feature these phenotypes. In addition, like a gerA mutant [63], all

mutant strains were capable of normal non-nutrient, non-Ger-receptor-mediated germina-

tion, in response to dodecylamine (Table 4).

Table 4. Response of B. subtilis strains to varied germinants.

Genotype % OD600 lossa % DPA released by dodecylamineb

L-Val

(60 mins)

AGFK

(60 mins)

2xYT

(40 mins)

Wild type 60 ± 1 41 ± 2 60 ± 2 75 ± 1

dnaJ 6 ± 0�� 28 ± 10� 40 ± 3� 68 ± 4

hfq 26 ± 5� 30 ± 1� 52 ± 2� 75 ± 1

pcrB 47 ± 10� 27 ± 3� 58 ± 4 87 ± 2

phoP 28 ± 1� 36 ± 10 53 ± 1� 59 ± 6

phoR 44 ± 2� 22 ± 10� 56 ± 1 52 ± 6

sipT 7 ± 0�� 33 ± 10 57 ± 7 69 ± 5

skfE 35 ± 10� 28 ± 6� 50 ± 3� 82 ± 5

ygaC 22 ± 3� 37 ± 10 55 ± 2 67 ± 5

ylbC 8 ± 1�� 13 ± 2�� 23 ± 8�� 66 ± 3

yqeF 38 ± 3� 33 ± 7 58 ± 1 84 ± 1

yqhL 33 ± 6� 37 ± 10 54 ± 3 71 ± 2

ytpA 32 ± 3� 41 ± 3 47 ± 3� 73 ± 4

ytxG 35 ± 0� 28 ± 8 53 ± 1� 72 ± 4

yybT 47 ± 2� 44 ± 7 60 ± 0 76 ± 4

a Values are averages and standard deviations of assays on three replicate spore preparations. OD600 of purified spore suspension monitored at the indicated time after

addition of 10 mM L-Valine, 1X AGFK, or 2xYT while shaking at 37˚C.

� indicates a significant difference (T-test, p<0.05)

�� indicates a significant difference (T-test, p<0.01) from the wild type.
b Values are averages and standard deviations of assays on three replicate spore preparations. DPA release by purified spore suspension monitored 100 min after

addition of 1 mM dodecylamine while shaking at 37˚C.

https://doi.org/10.1371/journal.pone.0218220.t004

Fig 2. Phase-contrast microscopy of germinating B. subtilis spore populations. Purified spores of B. subtilis wild

type and mutant strains were heat-activated and stimulated to germinate by addition of 10 mM L-Val followed by

incubation at 37˚C for 60 mins. A) PS832 B) ytpA mutant strain C) ylbC mutant strain All panels are the same

magnification; the bar in panel C is 5 μm.

https://doi.org/10.1371/journal.pone.0218220.g002
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To determine if spores from mutant strains were blocked in germination or if they were

simply severely delayed, spores were plated and colonies that appeared over a 48-hour period

were counted. After 24 hours, all strains produced cfu/OD600 values similar to that of the wild

type strain, and none of the strains produced a >4% increase in colonies after the first 24

hours (Table B in S1 File), indicating that the defects were a significantly slowed germination

process and not death of the spores.

Expression of the GerA receptor in mutant strains

Decreased germination in response to L-Val can result from a low abundance of the GerA

receptor [29, 30]. A gerA-lacZ transcriptional fusion was used to determine if germination

defects were correlated to reduced gerA transcription. Mutant strains lacking sipT, ytpA, ylbC,

or ygaC showed a significant decrease in gerA transcription in comparison to the wildtype (Fig

3). To determine if this was a general effect on σG-dependent transcription, the effects of these

mutation on the expression of pbpF and sspB were examined using lacZ fusions. The expres-

sion of these two genes was unaffected by these mutations (Figure D in S1 File).

Quantitative GerAC western blots were performed to determine the amount of GerA recep-

tor in spores of all strains. An example Western blot is in Fig 4A, and additional blots are in

Figure E in S1 File. Many of the mutant strains exhibited significant decreases in GerAC abun-

dance; the most significant being a 75% decrease in a dnaJ mutant (Fig 4B). The abundance of

GerD was also determined using quantitative Western blots for spores of all mutant strains, as

a GerD deficiency could result in reduced germination efficiency. All the strains contained

amounts of GerD similar to that of the wild type, suggesting that GerD remains unaffected in

these mutant strains (Figure F in S1 File).

Overexpression of the GerA receptor in spores has previously been shown to increase the

response to GerA-specific germinants [19]. A fusion of the gerA operon to the forespore-

Fig 3. Expression of a gerA-lacZ transcriptional fusion. Purified spores carrying a gerA-lacZ transcriptional fusion

were decoated and lysed, and extracts were assayed for β-galactosidase. Values are expressed as a percentage of that

detected in DPVB761, the wild type strain containing the gerA-lacZ fusion. Values are averages of assays on three

replicate spore preparations and error bars are standard deviations. � indicates a significant difference from the wild

type (p� 0.05).

https://doi.org/10.1371/journal.pone.0218220.g003
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specific sspD promoter [19] was introduced into strains in order to determine if GerA overex-

pression could reverse the germination defects associated with the mutations under study. In

almost all cases, GerA overexpression reversed the germination deficiency with L-Val

(Table 5), suggesting that decreased GerA abundance made a significant contribution to the

reduced germination efficiency in these mutant strains. Strikingly, in the ytxG mutant, overex-

pression of GerA increased the germination deficiency. As previously observed [19], overex-

pression of GerA resulted in significant decreases in the germination response to AGFK in all

strains (Table C in S1 File). In mutant strains that exhibited reduced germination in response

to 2xYT, GerA overexpression reversed this deficiency (Table C in S1 File).

Discussion

The germination and return to growth of bacterial spores is an essential step in the initiation

of several diseases and of some causes of food spoilage. This Tn-seq analysis identified 42 B.

subtilis genes that had not previously been associated with germination but are required for a

highly efficient germination response to L-Val. As the majority of proteins previously found to

play major roles in germination are membrane-associated, fourteen of these genes, whose

Fig 4. GerAC is reduced in the spores of several B. subtilis mutant strains. Equal quantities of spore suspensions

were decoated and broken, and proteins were extracted, serially diluted, separated on SDS-PAGE, and transferred to

PVDF membrane as described previously [21]. The membrane was probed with anti-GerAC antibodies [30] (Panel A

and Figure E in S1 File). Strain genotype (All strains were also ΔgerB.) and sample dilution is indicated above each

lane. Protein load and transfer to membrane in each lane was normalized as described in Materials and Methods, and

the amount of GerAC detected in each strain was compared to that found in the wild type (Panel B). Error bars

indicate standard deviations. � indicates a significant difference from the wild type (p� 0.05).

https://doi.org/10.1371/journal.pone.0218220.g004
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products had also been identified in studies of the spore membrane proteome [44, 45], were

further characterized. Well-defined mutations in these genes caused significantly reduced

responses to L-Val, and in some cases a decreased response to other nutrient germinants. Sev-

eral of these strains also exhibited slowed vegetative growth; such a growth defect could cer-

tainly alter gene expression and progression through the sporulation process, potentially

affecting the germination apparatus. Future work on the specific mechanism by which these

mutations alter germination may reveal such effects. For all these mutants, the germination

defect appears to largely be a slow initiation of germination rather than a specific slowing of a

subsequent step in the germination process. The reduced percentage of spores within the pop-

ulation that do initiate germination appear to progress through Stages I and II of germination

at a near normal pace; rates of OD loss and phase darkening are largely mirrored by rates of

DPA and NAM release. This suggests that the genes under study play a role in the earliest steps

of germination initiation.

Consistent with this idea, many of the mutant strains had reduced abundance of the GerA

receptor, indicating effects on receptor expression and stability or membrane incorporation. A

GerA deficiency is not surprising, given that the primary screen for identification of these

genes was for a reduced response to L-Val, which is recognized via GerA [2]. Based on

responses to additional germinant classes, the mutant strains could be separated into distinct

phenotypic groups. The first group features a reduction in germination rate with all nutrient

germinants tested (L-Val, AGFK, and 2xYT), demonstrating reduced germination efficiency

mediated through all receptors: GerA, GerB, and GerK. Mutant strains lacking skfE, ylbC, hfq,

or dnaJ fall in this group, which also includes the strains with the greatest decreases in GerA

abundance. These genes may play roles in expression or assembly of all Ger receptors or in

facilitating signal transduction from germinant receptors to other parts of the germination

apparatus. The well-studied function of DnaJ as a protein chaperone [64] might explain its

effect on GerAC abundance in spores, and this effect suggests that DnaJ is active in the

Table 5. Overexpression of gerA suppresses germination defect of multiple mutants.

Genotype % OD Lossa

without sspDp-gerA with sspDp-gerA
Wild type 35 ± 4 38 ± 2

ΔskfE 23 ± 5� 38 ± 3

ΔpcrB 34 ± 7 37 ± 1

ΔygaC 26 ± 1� 36 ± 1

ΔsipT 9 ± 5� 41 ± 1

ΔylbC 7 ± 0� 37 ± 0

Δhfq 27 ± 3� 38 ± 3

ΔyqhL 29 ± 3� 37 ± 0

ΔdnaJ 12 ± 2� 36 ± 2

ΔyqeF 28 ± 2� 31 ± 2

ΔphoR 37 ± 1 42 ± 9

ΔphoP 32 ± 1 36 ± 0

ΔytxG 25 ± 6� 15 ± 4�

ΔytpA 25 ± 0� 38 ± 2

ΔyybT 37 ± 2 37 ± 2

a Values are averages and standard deviations of assays on three replicate spore preparations. OD600 of purified spore

suspension monitored 45 min after addition of 10 mM L-Valine while shaking at 37˚C.

� indicates a significant difference from the wild type (T-test, p<0.05)

https://doi.org/10.1371/journal.pone.0218220.t005

Bacillus subtilis germination genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0218220 June 14, 2019 13 / 20

https://doi.org/10.1371/journal.pone.0218220.t005
https://doi.org/10.1371/journal.pone.0218220


forespore late into sporulation. While the role of Hfq in Gram-positive species is not as well

studied as in some Gram-negative species, its known role as an RNA chaperone [65] might

exert post-transcriptional effects on the production of proteins important in the germination

process. Interestingly, several other genes found in this study to affect germination (dnaJ,
ylbBC, yqeF, yqhL, yybT) have sizable 5’ untranslated regions in their mRNAs, which might be

sites for post-transcriptional regulation, or for which antisense RNAs have been identified (See

http://subtiwiki.uni-goettingen.de/ for genes yqeF, yqhL, and yybT). A mechanism by which

SkfE, which is involved in export of a sibling-killing antimicrobial [66], might affect germina-

tion is harder to imagine, but the fact that Tn insertions in two other genes in the skf operon

also reduced germination supports the importance of this effect. Interestingly, expression of

the skf operon is regulated by PhoPR [52], genes also implicated by this study in altering ger-

mination response.

One of the more interesting genes identified for future study may be ylbC, which is likely

expressed as the downstream gene in the σF-regulated ylbB-ylbC operon [55]. YlbC contains

two conserved domains: an N-terminal cysteine rich secretory “CAP” domain, and a YkwD

domain of unknown function that is found only in proteins of spore-forming bacteria [67].

YlbB contains two conserved CBS domains [67], which in at least one case has a role in ATP-

binding [68]. Tn insertions in ylbB were significantly underrepresented in the germination

screen (p = 0.014) but did not achieve the cutoff of a 2-fold change. Thus, ylbB may function

with ylbC, but might be partially redundant with the paralogous yhcV, which is σG-dependent

[55, 69] and encodes one of the most abundant transcripts in the dormant spore [70]. The

mechanism by which YlbC affects gerA transcription and GerA abundance is a topic for ongo-

ing study.

A second phenotypic group is composed of mutant strains with significantly delayed germi-

nation via a GerA-mediated response but germinate normally through GerB and GerK sens-

ing. Strains lacking yybT, ygaC, yqhL, yqeF, or sipT exhibit this phenotype, and all except the

yybT mutant have significantly reduced spore GerA content. The roles of these genes in germi-

nation are unclear, as most are relatively uncharacterized. YybT (GdpP) acts as a c-di-AMP

phosphodiesterase and exerts pleotropic effects on physiology and gene expression [71–74].

SipT, acting as a signal peptidase [75], could certainly exert effects on assembly of membrane

proteins important for germination, including GerA.

The third phenotypic group includes strains with significantly slower germination rates in

response to L-Valine but either have a decreased response to AGFK or 2xYT but not both.

Mutants lacking ytpA, phoP, phoR, pcrB or ytxG feature these phenotypes. It is not clear how

or why a mutant would be deficient in GerA mediated response, have a normal GerB and

GerK response, but still be deficient for germination in rich media. The PhoPR mutants have

poor vegetative growth and pleotropic effects on gene expression [76, 77], which might exert

quite variable effects into the sporulation process. These mutants seemed to exhibit significant

variability between multiple spore preparations. Three mutants in this group may exert effects

on membrane structure. YtpA is a phospholipase [57, 78], PcrB is a heptaprenylglyceryl phos-

phate synthase [79], and a ytxG mutant exhibits defects in membrane morphology [80]. Alter-

ations in the spore inner membrane might affect assembly or function of the germination

initiation apparatus. None of these three genes are specifically expressed in sporulating cells,

and thus their activity levels and effects on germination might be more varied among spore

preparations and possibly with regard to different germinants. Interestingly, the ytxG mutant

was the only strain in which overexpression of gerA did not correct the L-Val germination

defect. This overexpression in the ytxG mutant did decrease AGFK germination, as in other

strains, suggesting that the gerA overexpression was successful. Perhaps a membrane defect in

this mutant renders Ger protein complexes nonfunctional regardless of their expression level.
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Four of the mutants identified here exhibit decreased gerA transcription. The predicted

functions of these gene’s products provide no simple explanation for how such an effect on

transcription could come about, and the mechanisms may therefore be indirect. The expres-

sion of two other σG-dependent genes, pbpF and sspB, was not decreased in the mutant strains,

indicating that this was not an effect on the entire regulon. Altered activity of a transcription

factor involved in gerA transcription, SpoVT or YlyA [17, 55, 69, 81, 82], could be an expected

pathway for such an effect. Future work should examine the effects of these mutations on

other genes within forespore-specific regulons to resolve this.

Among the germination mutants identified in our Tn-seq screen, strains that could com-

plete Stage I of germination but were blocked in Stage II were not present. This may be due to

the mutant screening process utilized. Mutants with Tn insertions in cwlD, which should

exhibit this phenotype [83, 84], were slightly enriched in our non-germinating spore pop-

ulation, but not above the significance cutoff value used. Spores blocked at stage II were

expected to pellet with dormant spores in the density gradient utilized [31]. One possibility is

that spores blocked at Stage II were unstable through the time of incubation with germinant,

density gradient separation, and subsequent washing, and thus were not efficiently recovered.

Utilization of an alternative isolation method might allow identification of mutants with this

phenotype.
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