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Abstract: Aim and Objective: The rapid increase in the amount of protein sequence data available 

leads to an urgent need for novel computational algorithms to analyze and compare these sequences. 

This study is undertaken to develop an efficient computational approach for timely encoding protein 

sequences and extracting the hidden information.

Methods: Based on two physicochemical properties of amino acids, a protein primary sequence was

converted into a three-letter sequence, and then a graph without loops and multiple edges and its 

geometric line adjacency matrix were obtained. A generalized PseAAC (pseudo amino acid 

composition) model was thus constructed to characterize a protein sequence numerically.

Results: By using the proposed mathematical descriptor of a protein sequence, similarity

comparisons among β-globin proteins of 17 species and 72 spike proteins of coronaviruses were 

made, respectively. The resulting clusters agreed well with the established taxonomic groups. In 

addition, a generalized PseAAC based SVM (support vector machine) model was developed to 

identify DNA-binding proteins. Experiment results showed that our method performed better than 

DNAbinder, DNA-Prot, iDNA-Prot and enDNA-Prot by 3.29-10.44% in terms of ACC, 0.056-0.206 

in terms of MCC, and 1.45-15.76% in terms of F1M. When the benchmark dataset was expanded 

with negative samples, the presented approach outperformed the four previous methods with 

improvement in the range of 2.49-19.12% in terms of ACC, 0.05-0.32 in terms of MCC, and 3.82-

33.85% in terms of F1M.

Conclusion: These results suggested that the generalized PseAAC model was very efficient for 

comparison and analysis of protein sequences, and very competitive in identifying DNA-binding 

proteins. 
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1. INTRODUCTION

DNA-binding proteins (DNA-BPs) are very important 
functional proteins in a cell. These proteins play vital roles in 
various cellular processes, including DNA replication, 
transcription, regulation of gene expression, packaging, and 
other activities associated with DNA [1-5]. It is therefore 
substantially important to distinguish DNA-BPs from non-
DNA-binding proteins (NBPs). In the past, many 
experimental and computational techniques have been 
developed for identifying DNA-BPs. Experimental 
techniques can provide a clear-cut answer to a query protein. 
However, the experimental methods are cost-intensive and 
time-consuming, and thus impractical for large datasets [3-
7]. Computational methods can be broadly divided into two 
categories: structure-based method and sequence-based 
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method. The former can discriminate DNA-binding and non-
binding proteins with high accuracy, but these methods can't 
be employed in high throughput annotation, as they require 
the structure information of a query protein [1]. Though 
tremendous progress has been achieved in experimental 
determination of protein structures in the past five decades, it 
can't keep pace with the explosive growth of sequence 
information resulting from modern sequencing technology 
[8]. Yet as suggested by Anfinsen [9], proteins contain 
within their amino acid sequences enough information to 
determine their native conformation. Therefore, it is more 
promising to use sequence-based methods to identify DNA-
BPs.

One of the core issues to the sequence-based methods is 

how to characterize protein sequences and harvest the fruits 

hidden in them. The most typical approach is using the 

amino acid composition (AAC) to formulate a protein 

sequence. Owing to its simplicity, the AAC model was 

widely applied in a number of earlier statistic-based 

methods. However, as pointed out in Ref [6], if we denote by 
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��� ���� � ��� the counts of 20 standard amino acids in a 

protein sequence, then we can see that there are a total of 
����������� �

��������������
different sequences/strings possessing the 

same AAC. The reason is that AAC model neglects the order 

relation among elements of a sequence. To overcome this 

drawback, the concept of pseudo amino acid composition 

(PseAAC, or Chou’s PseAAC) was proposed [10-18]. The 

essence of PseAAC is that it not only covers AAC, but also 

contains additional order-correlated factors along a protein 

sequence. Another popular way for sequence analysis  is to 

convert the protein primary sequence over 20 amino acids 

into a reduced one. The earliest and simplest reduction was 

the well-known HP model, in which 20 standard amino acids 

are divided into two types, hydrophobic (H) (or non-polar) 

and polar (P) (or hydrophilic). On the basis of the classic

model, a detailed HP model was introduced by dividing the 

polar class into three subclasses: positive polar, uncharged 

polar and negative polar [19]. In addition, a few five-group 

classifications of amino acids were presented for practical 

purposes [20-23]. By considering property-based triples, Li 

et al. [6] put forward a six-letter model of amino acids. Also 

based on three physical-chemical properties of amino acids, 

Yao et al. [24] mapped the 20 standard amino acids to eight 

vertices of a cube with the center of origin, and thus an eight-

group model of amino acids is obtained. 

Motivated by the work mentioned above, we propose a 

generalized PseAAC which is grounded on a three-letter 

model and 2-D graphical representation of a protein 

sequence. We summarize the main work of this paper as 

follows: In section 2, we briefly introduce five datasets used 

in this study. In section 3, on the basis of two important 

physicochemical properties of amino acids, we cluster the 20 

standard amino acids into three groups. By assigning to each 

group a representative symbol, we transform a protein 

sequence into a three-letter sequence. Then a 2-D graph 

without loops and multiple edges and its geometric line 

adjacency matrix are obtained. A sequence-derived feature

vector of dimension (25+ � ) is thus constructed to 

characterize a protein sequence. Our scheme is similar to, but 

obviously different from that of PseAAC. In section 4, we 

apply the presented feature vector to compare � -globin 

proteins of 17 species and 72 spike proteins of coronaviruses 

respectively. Also, we develop a SVM (support vector 

machine) model using the generalized PseAAC to identify 

DNA-binding and non-binding proteins on three datasets. 

Experiment results show that the presented method 

outperforms the existing methods including DNAbinder [1], 

DNA-Prot [2], iDNA-Prot [3] and enDNA-Prot [4]. Finally, 

conclusions are given in section 5. 

2. DATASETS

In this study, the following five datasets are used. For 
convenience, they are denoted by BetaSet, CoVSet, DNASet, 
DNAeSet and DNAiSet, respectively.  

2.1. BetaSet 

The dataset called BetaSet is composed of � -globin 
protein of 17 species: Human (ALU64020), Gorilla 

(P02024), Chimpanzee (P68873), Cattle (CAA25111), 
Banteng (BAJ05126), Goat (AAA30913), Sheep 
(ABC86525), European hare (CAA68429), Rabbit 
(CAA24251), House mouse (ADD52660), Western wild 
mouse (ACY03394), Spiny mouse (ACY03377), Norway rat 
(CAA29887), Opossum (AAA30976), Guttata (ACH46399), 
Gallus (CAA23700), Muscovy duck (CAA33756). This 
dataset is used to determine the adjustable parameters in a 
feature vector. 

2.2. CoVSet 

This dataset consists of 72 spike proteins of 
coronaviruses (CoVs), 23 of which are MERS-CoVs, and 30 
are SARS-CoVs. CoVs can be divided into three groups 
according to serotypes. Group alpha (formerly known as 
CoV-1) and group beta (formerly CoV-2) contain 
mammalian viruses, while group gamma (formerly CoV-3) 
contains only avian viruses. The name, accession number, 
and abbreviation of the 72 sequences are listed in Table 1.
According to the existing taxonomic groups, sequences 1-5
belong to the first group, sequences 6-8 belong to the third 
group, and the remainings belong to the second group. 

2.3. DNASet 

This is a benchmark dataset created in 2007 by Kumar et 
al. [1]. It contains 396 sequences, 146 of which are DNA-
BPs (positive samples), and 250 NBPs (negative samples). In 
both the positive and the negative sets, the sequence 
similarity between any two proteins is not more than 25%. 

2.4. DNAiSet 

This dataset was also generated by Kumar et al. [1] 
which is based on the work of Wang and Brown [25]. It 
originally contains 92 DNA-BPs and 100 NBPs. In order to 
avoid overestimating a given method, those sequences 
having � ��� sequence similarity with DNASet were 
removed by Xu et al. [4], and the final dataset is composed 
of 82 DNA-BPs and 100 NBPs. 

2.5. DNAeSet 

As an expanded benchmark dataset, DNAeSet was 

constructed in 2014 by Xu et al. [4]. According to a 

sequence filter criteria which is identical to DNASet, they 

added a number of NBPs to DNASet, and the total number 

of NBPs is 2125. By removing the sequence which has 

� ��� sequence identity with DNAiSet, the current version 

of DNAeSet has 146 DNA-BPs and 1710 NBPs. 

3. METHODS

3.1. Three-letter Sequence of Protein Sequence and its 2-

D Graphical Representation 

Isoelectric point (pI) and relative distance (RD) are two

important physicochemical properties of the 20 standard 

amino acids [26-28]. Their original numerical values are 

listed in Table 2. As can be seen from this table, the values 

of ��
�(isoelectric point) are in the range [2.97, 10.76], while 
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Table 1. The accession number, name and abbreviation for 72 coronavirus spike proteins.

No. Accession number Virus name/strain Abbreviation 

1. CAB91145 Transmissible gastroenteritis virus, genomic RNA TGEVG

2. NP_058424 Transmissible gastroenteritis virus TGEV

3. AAK38656 Porcine epidemic diarrhea virus strain CV777 PEDVC

4. NP_598310 Porcine epidemic diarrhea virus PEDV

5. BAL45637 Human coronavirus 229E HCoV-229E

6. AAP92675 Avain infectious bronchitis virus isolate BJ IBVBJ

7. AAS00080 Avain infectious bronchitis virus strain Ca199 IBVC

8. NP_040831 Avain infectious bronchitis virus IBV

9. NP_937950 Human coronavirus OC43 HCoV-OC43

10. AAK83356 Bovine coronavirus isolate BCoV-ENT BCoVE

11. AAL57308 Bovine coronavirus isolate BCoV-LUN BCoVL

12. AAA66399 Bovine coronavirus strain Mebus BCoVM

13. AAL40400 Bovine coronavirus strain Quebec BCoVQ

14. NP_150077 Bovine coronavirus BCoV

15. AAB86819 Mouse hepatitis virus strain MHV-A59C12 mutant MHVA

16. YP_209233 Murine hepatitis virus strain JHM MHVJHM

17. AAF69334 Mouse hepatitis virus strain Penn 97-1 MHVP

18. AAF69344 Mouse hepatitis virus strain ML-10 MHVM

19. NP_045300 Mouse hepatitis virus MHV

20. AAU04646 SARS coronavirus civet007 civet007

21. AAU04649 SARS coronavirus civet010 civet010

22. AAU04664 SARS coronavirus civet020 civet020

23. AAV91631 SARS coronavirus A022 A022

24. AAV49730 SARS coronavirus B039 B039

25. AAP51227 SARS coronavirus GD01 GD01

26. AAS00003 SARS coronavirus GZ02 GZ02

27. AAP30030 SARS coronavirus BJ01 BJ01

28. AAP13567 SARS coronavirus CUHK-W1 CUHK-W1

29. AAP37017 SARS coronavirus TW1 TW1

30. AAR87523 SARS coronavirus TW2 TW2

31. BAC81348 SARS coronavirus TWH genomic RNA TWH

32. BAC81362 SARS coronavirus TWJ genomic RNA TWJ

33. AAQ01597 SARS coronavirus Taiwan TC1 TaiwanTC1

34. AAQ01609 SARS coronavirus Taiwan TC2 TaiwanTC2

35. AAP97882 SARS coronavirus Taiwan TC3 TaiwanTC3

36. AAP13441 SARS coronavirus Urbani Urbani

37. AAP72986 SARS coronavirus HSR 1 HSR1

38. AAQ94060 SARS coronavirus AS AS

39. AAP94737 SARS coronavirus CUHK-AG01 CUHK-AG01

40. AAP94748 SARS coronavirus CUHK-AG02 CUHK-AG02

41. AAP94759 SARS coronavirus CUHK-AG03 CUHK-AG03

42. AAP30713 SARS coronavirus CUHK-Su10 CUHK-Su10

(Table 1) Contd….
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No. Accession number Virus name/strain Abbreviation 

43. AAP33697 SARS coronavirus Frankfurt 1 Frankfurt1

44. AAR14803 SARS coronavirus PUMC01 PUMC01

45. AAR14807 SARS coronavirus PUMC02 PUMC02

46. AAR14811 SARS coronavirus PUMC03 PUMC03

47. AAP41037 SARS coronavirus TOR2 TOR2

48. AAP50485 SARS coronavirus FRA FRA

49. AAR23250 SARS coronavirus Sin01-11 Sino1-11

50. AHX00731 MERS coronavirus KFU-HKU1 

51. AHX00711 MERS coronavirus KFU-HKU13 

52. AHX00721 MERS coronavirus KFU-HKU19Dam 

53. AIY60578 MERS coronavirus Abu-Dhabi_UAE_9

54. AIY60568 MERS coronavirus Abu-Dhabi_UAE_33

55. AIZ74417 MERS coronavirus Hu-France(UAE)-FRA1

56. AIZ74433 MERS coronavirus Hu-France-FRA2

57. ALJ54502 MERS coronavirus Hu/Qunfidhah-KSA-Rs1338

58. AKN24821 MERS coronavirus KFMC-1

59. AKN24830 MERS coronavirus KFMC-7

60. ALJ76282 MERS coronavirus Hu/Taif,KSA-2083

61. ALJ76281 MERS coronavirus Hu/Taif,KSA-5920

62. ALJ54493 MERS coronavirus Hu/Makkah-KSA-728

63. ALB08267 MERS coronavirus KOREA/Seoul/014-1

64. ALB08278 MERS coronavirus KOREA/Seoul/014-2

65. ALR69641 MERS coronavirus D2731.3

66. AKQ21055 MERS coronavirus ADFCA-HKU1

67. AKQ21064 MERS coronavirus ADFCA-HKU2

68. AKQ21073 MERS coronavirus ADFCA-HKU3

69. ALA50001 MERS coronavirus camel/Taif/T68

70. ALA50012 MERS coronavirus camel/Taif/T89

71. ALT66813 MERS coronavirus Jordan_1

72. ALT66802 MERS coronavirus Jordan_10

��
� (relative distance) varies between 1469 and 3355. 

Therefore, the normalization of these values is needed. Here,

we scale them into the interval [0,1] by the formulary below: 

��
�
��� �

��
�
��� ������������ ��

�
���

����������� ��
�
��� ������������ ��

�
���

,

� � ����� � ��, � � ���� (1)

The corresponding values are listed in Table 3. The last row 

in this table gives the average values.   

For the i-th amino acid ���, if ��
�
��� � ��, then we 

label it by “+”, otherwise we will label it by “-”. Similarly, if 

property ��
� is considered, the second label for amino acid 

��� can be obtained. In this way, each of the 20 standard 

amino acids has a label pair. In Table 3, the corresponding 

labels are also listed. Amino acids with a same label pair are 

viewed as members of a same group. Thus, the 20 standard 

amino acids are distributed to the following groups:

GI={ A,Y,V,Q,M,L,I,E }, 

GII={ C,W,S,N,G,F,D }, 

GIII={ H,T,R,P,K }. 

For each group, the first amino acid is used to stand for 
the group. Thus the three groups have three representative
letters, they are A, C and H, respectively. The value for the 
property of a group is defined as the average value for the 
property of all members in the group. In the left-hand side of 
Table 4, we list the corresponding values of the three groups.
Obviously, each group can be viewed as a 2-D vector. In 
order to make the vectors of the three groups have unit 
length, we further normalize them to be unit vectors, and list 
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Table 2. The original numerical values for properties of the 

20 standard amino acids.

Amino acid

(AA)

pI 
a

(��
�)

RD
a

(��
�)

A

C

D

E

F

G

H

I

K

L

M

N

P

Q

R

S

T

V

W

Y

6.02

5.02

2.97

3.22

5.48

5.97

7.59

6.02

9.74

5.98

5.75

5.42

6.30

5.65

10.76

5.68

6.53

5.97

5.89

5.66

1889

3355

2209

1812

1916

2078

1507

1765

1797

1822

1689

1943

1720

1538

1697

2000

1469

1680

2317

1787

a: taken from [26-28]

Table 3. The scaled values for properties of the 20 standard 

amino acids.

AA ��
� lable1 ��

� Lable2

A

C

D

E

F

G

H

I

K

L

M

N

P

Q

R

S

T

V

W

Y

0.3915

0.2632

0

0.0321

0.3222

0.3851

0.5931

0.3915

0.8691

0.3864

0.3569

0.3145

0.4275

0.3440

1.0000

0.3479

0.4570

0.3851

0.3748

0.3453

-

-

-

-

-

-

+

-

+

-

-

-

+

-

+

-

+

-

-

-

0.2227

1.0000

0.3924

0.1819

0.2370

0.3229

0.0201

0.1569

0.1739

0.1872

0.1166

0.2513

0.1331

0.0366

0.1209

0.2815

0

0.1119

0.4496

0.1686

-

+

+

-

+

+

-

-

-

-

-

+

-

-

-

+

-

-

+

-

�� 0.3994 0.2283

Table 4. The values for properties of the three groups.

Group Representative ��
�

��
�

�� ��

GI

GII

GIII

A

C

H

0.3291 

0.2868 

0.6693

0.1478

0.4193

0.0896

0.9122

0.5646

0.9912

0.4097

0.8253

0.1327

Fig. (1). The 2-D map of the 20 standard amino acids.

the normalized values (��) in the right-hand side of Table 4.
In Fig. (1), we show the 2-D map of the 20 standard amino 
acids according to the classification above.  

By substituting each amino acid with its representative 

letter, a protein primary sequence is reduced into a three-

letter sequence. For example, the three-letter sequence of the 

sequence segment EKAAVTGFWGKVKVDEVGAEA  is 

AHAAAHCCCCHAHACAACAAA. To obtain the 

graphical representation of a reduced sequence, we start from 

the origin (0,0) and move in xoy-plane in the direction 

dictated by Fig. (1). In mathematics, one can let � �

����� �� be a given three-letter sequence. And then one 

has a map �, which maps S into a plot set. Explicitly, 

� �� � ���� � �� ������, and � is given by 

� �� � ��� ��
�
� ��

�

�

���

� ��
�

�

���

�

where, T represents the transpose of a matrix, �
�

�
(j=1,2) 

represents the j-th component of the unit vector 

corresponding to �� (cf. Fig. 1 and Table 4). Connecting all 

points of the plot set in turn, a 2-D curve is drawn. In Fig.

(2), we show the 2-D graphical representation of sequence 

AHAAAHCCCCHAHACAACAAA. It is not difficult to 

find that the 2-D graphical representation has no degeneracy, 

and thus is a simple graph, that is, a graph without loops and 

multiple edges.
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0
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0.2

0.3
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Fig. (2). The 2-D graphical representation.

3.2. (25 + �) Dimensional Feature Vector

In this section, we give a numerical characterization of a 

protein sequence that will facilitate quantitative comparisons 

of protein sequences. As is known, once a graphical 

representation is given, it can be transformed into some 

structural matrices, such as the matrices ED, GD, M/M, and 

L/L [6, 24, 29-37]. Here we employ the L/L matrix. L/L is a 

nonnegative symmetric matrix whose off-diagonal entries 

are defined as a quotient of the Euclidean distance between 

two vertices of the graph and the sum of geometrical lengths 

of edges between the two vertices. By definition all diagonal 

elements are zero. Obviously, the entries in a L/L matrix are 

less than or equal to one. The higher order 
k
L/

k
L matrix is the 

matrix whose (i,j)-entry is ��� ��
�

. As the exponent k
approaches positive infinity, 

k
L/

k
L converges to a (0,1) 

matrix (denoted by 
b
L/

b
L). With respect to the proposed 2-D

graph, [
b
L/

b
L]ij=1 if and only if the two corresponding 

vertices lie on a straight line in the curve, including the cases 

of adjacency and non-adjacency. In this sense, we call such a 

matrix a geometric line adjacency matrix (GLAM), or simply 

a generalized adjacency matrix (GAM), generated by a 

graph, and denote it by ��.

The first Zagreb index is a well-known vertex-degree-

based molecular structure descriptor. This index was first 

time considered by Gutman and Trinajstic about 45 years 

ago, and since then discussed and used in numerous studies 

(see [38-40] and the references cited therein). The first 

Zagreb index is defined as 

��� � ��� � � ��
�

��� (2)

where du denotes the degree (=number of first neighbors) of 

the vertex u in graph G. If G is a simple graph (i.e. without 

loops and multiple edges), Zg1 can be also obtained directly 

from its adjacency matrix since the row-sums of this matrix 

are equal to degrees of the corresponding vertices. 

It should be mentioned that the Zagreb index gives 

greater weights to inner vertices and edges than to outer 

vertices and edges of a graph [38]. One way to amend it is to 

insert inverse values of the vertex-degree into Eq(2), and 

thus the modified Zagreb index has been proposed [38]: 

���� �
������� � ��

� ��
��� (3)

Clearly, 
m

Zg1 gives greater weights to outer vertices/edges 

than to inner ones in a graph.

At the same time, on the basis of our geometric line 

adjacency matrix, we can count the vertex-pair with 

generalized adjacency relationship. It should be noted that, in 

our case, the 'neighbors' include not only the conventional 

neighbors, i.e. the first neighbors, but also the second 

neighbors, the third neighbors, and so on. We call the 

corresponding number of graph G a line-adjacency index, 

and denote it by La(G). Then we have a graph-based index: 

��� �
�����

��������
�������

For a symmetric matrix, eigenvalue-based indices, such 

as the leading eigenvalue [29-33, 35] and the graph energy 

[17], are often used as the matrix invariants. Moreover, in 

our previous paper [41], an alternative invariant called 

‘ALE-index’ was proposed. The ALE-index is defined by the 

following formula: 

� �
�

�

�

�
� �� �

���

�
� � (4)

where L is the order of the matrix,  � �� and � � are the 

m1- and F-norms of a matrix respectively. In order to reduce 

variations caused by comparison of matrices with different 

sizes, we consider a normalized ALE-index �� �� �
�����

��

instead of  �����. For convenience, we denote this matrix-

based index by ���.

In addition, with respect to three-letter sequence 

� � ����� ��, we define a coupling mode function ����� ��
by

�� �� � � �� �� � �� ����
�

���
���

, (n=1, 2) (5)

where P1 and P2 are values for properties of the 

corresponding representative letter (group), integer k 

represents the counted rank (or tier) of the coupling mode.

Then, following the similar procedures in [10, 11], we can 

extract global sequence-order information of the three-letter 

sequence S by 

�� �
�

���
�
�

�
� ����� ��

�

��� ,

�� �
�

���
�
�

�
� ����� ��

�

��� ,

�

�� �
�

���
�
�

�
� ����� ��

�

��� .

�� � �� (6)

where ����� � ����� � �� is called the k-th tier correlation 

factor. Clearly, �� reflects the coupling mode between the 

most contiguous elements along three-letter sequence S, ��
is the coupling mode between the second most contiguous, 

�� the third most contiguous, and so forth.

Furthermore, if the respective counts of the three 

representative letters (A, C and H) in sequence S are 

��� ��� �� , respectively, then we can obtain a so-called 

group composition (GC): 

��

�

�

�

�

�

	




�

�

�
� � 	 � � �� �� �	 �� ��

�����
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���� ���� ��� � ��

��

� ��

�
�

��

� ��

�
� �

��

� ��

�

where, � � denotes the size of a group (set).  

Consequently, � � � elements are derived, which reflect 

the information about the reduced sequence and, particularly, 

the 2-D graphical representation. By combining these

elements with the conventional amino acid composition 

(AAC), a �� � � dimensional feature vector ��� can be 

constructed to numerically characterize a protein sequence:

��� � ����� � ���� ������� � ������ �������� ��������, (7)

where

�� �

����������������������������������� � � � �������

���������� �� � � � ��

������� �� � � � � � �� � �

������������ �� � � � � � � � �� � � � �

(8)

Here, ��� ���� � ��� are frequencies of occurrence of the 20 

standard amino acids in a protein sequence, ����� and ��

are weight factors. As will be described later in detail, the 

four adjustable parameters in Eqs (7) and (8) can be 

determined by a set of known samples. Roughly speaking, 

the vector contains the feature of AAC, and the information 

beyond AAC as well, which is similar to Chou’s PseAAC in 

form. Therefore, we call such a vector formulated by Eqs (7) 

and (8) the generalized PseAAC of a protein sequence.

4. RESULTS AND DISCUSSION 

In this section, we will discuss the use of the generalized 
PseAAC. As can be seen from Eqs (7) and (8), the present 
mathematical descriptor contains four uncertain parameters: 
�, w1, w2 and w3. Here � represents the total number of 
correlation ranks counted (cf. Eq(6)), which is an integer. 
Generally speaking, the greater the value of �, the more 
sequence-order effects will be incorporated. However, if the 
value is too large, it might cause the overfitting problem or 
‘high dimension disaster’ [15], therefore, we endeavour to 
limit the value of � to a small integer. In this study, the five 
datasets (BetaSet, CoVSet, DNASet, DNAeSet and 
DNAiSet) are arranged into two groups: one contains 
BetaSet, the other includes the rest. The first group is used 
for determining the four adjustable parameters, and the 
second group for testing purpose. 

4.1. Parameter Determination

According to the method mentioned above, we first 

associate each of 17 protein sequences in BetaSet with a 

� � �� � � dimensional vector (cf. Eqs (7) and (8)), and

then calculate the pair-wise Euclidean distance between any 

two of the 17 protein sequences via their m-D vectors. Thus 

a ����� real symmetric matrix ��� is obtained. On the basis 

of the achieved distance matrix ��� , a UPGMA tree is 

constructed using MEGA4 package. The result will depend 

on values of the rank � and the three weight factors. It is 

found that when � � � , �� � ���� �� � ���� , and �� �

���, the three non-mammals (Muscovy duck, Gallus and 

Guttata) form a separate branch and stay outside of the 

mammals. Moreover, in the subtree of mammals, primate 

species (Human, Chimpanzee, Gorilla) are grouped closely. 

Also, rodent species (Norway rat, Spiny mouse, House 

mouse, Western wild mouse) and lagomorph species (Rabbit, 

European hare) are situated at independent branches,

respectively. While Goat, Sheep, Cattle and Banteng appear 

to cluster together (Fig. 3). This result is analogous to that 

reported in the literature [6, 29, 30, 35, 36]. Accordingly, the 

four numerical values are respectively used for the four 

uncertain parameters, and a 31-D feature vector is thus 

obtained.  

Fig. (3). The relationship tree of 17 species.

4.2. Test I: Phylogenetic Analysis of Coronavirus Spike 

Proteins 

In order to evaluate the effectiveness of our method, we 
test it by phylogenetic analysis on the CoVSet dataset. 
Coronaviruses (CoVs) belong to the genus Coronavirus of 
family Coronaviridae [42]. The first coronavirus (HCoV-
229E) was isolated from humans in 1965. Until 2003, 
coronaviruses attracted little interest beyond causing mild 
upper respiratory tract infections. However, this 
phenomenon changed dramatically with the emergence of 
SARS-CoV and MERS-CoV. As of July 2017, 2040 
laboratory-confirmed cases of MERS-CoV infection were 
reported in over 27 countries, and at least 710 individuals 
have died (crude CFR 34.8%) [43]. 

Using the above-determined values for parameters �, w1,
w2, and w3, we calculate the 31-D feature vectors of 72 
coronavirus spike proteins and their Euclidean distance 
matrix; then the corresponding phylogenetic tree (Fig. 4) is 
constructed. Observing Fig. (4), we find that the 72 
coronavirus spike proteins are clustered into three groups: 
one contains the five alpha coronaviruses (PEDVC, PEDV, 
TGEVG, TGEV, and HCoV-229E), the second includes the 
three gamma coronaviruses (IBV, IBVBJ, IBVC), and the 
third corresponds to the group beta. A closer look at the 
subtree of beta coronaviruses shows that MERS-CoVs are 
clearly clustered together, so it is with SARS-CoVs, while 
MHV, MHVA, MHVM, MHVP, MHVJHM, BCoV, 
BCoVE, BCoVL, BCoVM, BCoVQ and HCoV-OC43 are 
situated at an independent branch. The resulting cluster 
agrees well with the established taxonomic groups. 
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4.3. Test II: Identification of DNA-binding Proteins

To further assess the effectiveness of the porposed 
method, we conduct a series of experiments of identification 
of DNA-binding proteins on three datasets: DNASet, 
DNAeSet and DNAiSet. Among them, DNASet and 
DNAeSet serve as training datasets, while DNAiSet serves 
as an independent testing dataset.  

Support vector machine (SVM) is employed as the 

classifier, and R package ‘e1071’ v1.6-8 [44] is used to 

implement SVM. For a given set of binary-labeled training 

examples, SVM maps the input space into a higher-

dimensional space and seeks a hyperplane to separate the 

positive samples from the negative ones [25]. The optimal 

hyperplane maximizes the separation margin between the 

two classes of training data. The distance measurement 

between the data points in the high-dimensional space is 

defined by the kernel function. In this study, we use the 

radial basis function (RBF) kernel � ��� �� � �
�� �����

�

.

This model involves two tunable parameters: the kernel 

width � and the penalty parameter C. Prediction performance 

can be assessed using some quality indices including 

Accuracy (ACC), Sensitivity (Se), Specificity (Sp), F-

measure (F1M) and Matthews correlation coefficient (MCC) 

[2, 4, 5, 25, 37, 45]:  

�� �
��

�����
,

�� �
��

�����
,

��� �
�����

�����������
, (9)

��� �
�����������

����� ����� ����� �����
,

� �
��

�����
,

� �
��

�����
,

��� �
�����

���
.

where TP, TN, FP, and FN are defined as the numbers of 

true positive, true negative, false positive, and false negative 

samples obtained from the prediction respectively, while P 

and R denote Precision value and Recall value, respectively. 

One can also use the alternative definition by a series of 

studies published recently [15, 46-48]. The higher the values 

of these measurements, the better the quality of prediction. 

4.3.1. Predictive Performance on Benchmark Dataset 

This experiment is made on DNASet itself. To obtain a 
reliable result with few error, the SVM model on DNASet is 
established by 5-fold cross-validation (5CV) with 3 runs. 
Here the 31-D feature vector of a protein sequence serves as 
the input for SVM. In a 5CV, the positive and negative 
samples are randomly distributed into five subsets or the so-
called folds, and the test is repeated five times. In each of the 
five iterations, one subset is used as the testing set, while the 
remaining four subsets are combined together and used to 
build a classifier (training). The predictions made for the test 
data instances in all the five iterations yield the final result. 
The sensitivity, specificity, ACC, MCC and F1M are 
calculated for each run, and the corresponding results and 
their average values are listed in Table 5. As can be seen 

Fig. (4). The relationship tree of 72 coronavirus spike proteins.

��
�
�
�

��
�
�

�
�
��������

������������������
���

����� !"#���
����� !"#��

���$"%&'��"()�������$"%&'��"()�������*�+�*��,-

���*�+�*��,-�

���*�+�*��,-�

����.��"//"0�,1*����

����.��"()�,1*�����

����.��"()�,1*����


������
�


���,23�*�1&�.'���	��

���,23�*�1&�.
'���

	��

���,+����

���,+����

����
.�4

.#
).!

0"
0�,

1*�3
���




�

���*
5.

��
0"

5(�
-*�

��

�
��

*5
.�
�0

"5
(�-

*�
�




�
��

,+
-�

�,
-�

��
�#

%
�*

�6
��

��
�

�
�
�,

+-
��

,-
�


�*
�
6�

��
��

�
�
�,

+-
��

,-
��

*�
6�

��

�

�
�
��

.�
+ 

"#
$&

�+
3
*
�

�
�

��
.�

+ 
"#

$&
7-

*
�
��
+3

*
� �

�
��

�

�
�

��

�
�

��
8

�
�

��
2

�
�

��
�

�
�

���2
�

	

�

�
�
��

�
�

�
�
�

�
�
��

�
�
�*

�
�
�

$(9&����

$(9&����

*���

$(9&����

��
�

�:��

����

�23�

+ "#/). �

+3*

�-�,�;�

����

1(#�����

*1

�-�,�*����-�,�*����-�,�*��
�-�,�1.���13��-
�����-

���
�

�-
�
��


�"
'<

"#
��

�
�"

'<
"#

��
�

�"
'<

"#
��




�;
�

�;
�

�;
�

�;
�

-
 5

"#
(



108 Combinatorial Chemistry & High Throughput Screening, 2018, Vol. 21, No. 2 Li�et al.

from this table, we achieve the accuracy (ACC) of 89.65%, 
with MCC of 0.776 and F1M of 84.91%. This result shows 
that our SVM model performs well on the benchmark dataset 
DNASet. 

Table 5. The results of 5CV for 3 runs.

Test 1 2 3 Average

Se(%) 78.77 78.77 79.45 79.00

Sp(%) 96.00 96.00 95.60 95.87

Acc(%) 89.65 89.65 89.65 89.65

MCC 0.7761 0.7761 0.7758 0.776

F1M(%) 84.87 84.87 84.98 84.91

4.3.2. Predictive Performance on Blind Dataset

It is important to examine the performance of the newly 
developed method on an independent dataset. In this 
experiment, we establish the classifier with the benchmark 
dataset DNASet and then test it on the independent dataset 
DNAiSet. To decide the parameter pair (γ, C), we utilize a 
systematic grid search for � � �

� and � � �
�, where integers 

i and j are in ranges [-3, 3] and [0, 3], respectively. It is find 
that � � ����� and � � � are the optimal values for 
DNASet. With the best pair (γ, C), DNAiSet is fed to the
SVM. As a result, our model correctly predicts 68 out of 82 
DNA-BPs and 92 out of 100 NBPs. The ACC arrives at 
87.91%, with the MCC, sensitivity, specificity, and F1M of 
0.756, 82.93%, 92.00% and 86.07%, respectively (see Table 
6). This demonstrates that our SVM model performs equally 
well on independent dataset. 

For convenience of comparison, results of some existing 
methods including DNAbinder [1], DNA-Prot [2], iDNA-
Prot [3] and enDNA-Prot [4] are also listed in Table 6.
DNAbinder developed by Kumar et al. [1] can extract 
evolutionary information in form of position specific scoring 
matrix (PSSM) from the corresponding protein sequence. 
PSSM-21 and PSSM-400 are two feature vectors generated 
by means of PSSM, whose dimensions are 21 and 400, 
respectively. In [1], PSSM-400 based SVM model was 
mainly used for predicting DNA-BPs. DNA-Prot [2] is a 
Random Forest based method, in which the feature vector 
includes sequence information and structure information, 
such as the composition of 20 standard amino acids, 
composition of 10 amino acid groups, and secondary 
structure information predicted from a protein sequence. 
iDNA-Prot [3] constructs the feature vector via the grey 
model, and Random Forest is also used as the operation 
engine. EnDNA-Prot [4] is a predictor which encodes a 
protein sequence into a feature vector with dimension of 188 
and adopts an ensemble classifier constructed with four types 
of machine learning classifiers. All these methods are tested 
on the same datasets to make an unbiased comparison with 
our method. Observing Table 6, we can see that the current 
approach outperforms other methods by 3.29-10.44% in 
terms of ACC, 0.056-0.206 in terms of MCC, and 1.45-
15.76% in terms of F1M. This result indicates that our 
method achieves highly comparable performance.

Table 6. Performance of different methods (trained on 

DNASet and tested on DNAiSet).

Method ACC(%) MCC F1M(%) Se(%) Sp(%)

This work 87.91 0.756 86.07 82.93 92.00

DNAbinder(PSSM-
21) 

79.00 0.61 70.31 54.87 98.08

DNAbinder(PSSM-
400) 

80.11 0.62 72.73 58.53 97.97

DNA-Prot 84.61 0.69 81.08 73.17 94.00

iDNA-Prot 77.47 0.55 75.73 78.05 77.00

enDNA-Prot 84.62 0.70 84.62 73.18 94.00

4.3.3. Impact of the Number of Negative Samples 

When the size of positive samples is comparable to that 

of negative samples, many machine learning algorithms 

should have better performance. However, in real life, the 

number of non-binding proteins is much greater than that of 

DNA-BPs, i.e.,

�� � �� � �� � ��. (10) 

In this case, the frequency of NBPs is generally much greater 

than that of the binding ones in the predictions, that is, 

�� � ��. (11) 

Eqs (10) and (11) lead to that the value of ACC defined by 

Eq (9) tends towards 1. To solve this problem, instead of 

using the definition of ACC in Eq (9), here we use the 

alternative definition [49, 50]: 

��� �
�

�
�� � �� . (12)

In order to analyze the influence of the number of 

negative samples in a benchmark dataset on the predictive 

performance of the current method, we construct a series of 

subsets �� of DNAeSet and use them as training set in turn, 

while DNAiSet is always used as the testing set. Each subset 

�� contains all the 146 DNA-BPs and a part of NBPs in 

DNAeSet. In detail, if the set of NBPs in �� is denoted by 

��
� , k=1, 2, ..., then ��

� consists of 250 NBPs randomly 

selected from DNAeSet. And ����
� is obtained by adding 50 

NBPs to ��
�, until 1700 NBPs are contained in it. For each 

subset ��, k=1, 2, ..., 30, we develop the SVM model by 

5CV with 3 runs. The results averaging over the three runs 

are given in Fig. (5). From Fig. (5) we can see that the curves 

of ACC and acc visibly split with each other when n, the size 

of ��
�, is larger. With increasing of n, ACC increases rapidly, 

while acc tends to be steady. The value of ACC seems higher 

and higher on the surface, but it cannot correctly reflect the 

performance because it is nothing but a false appearance. 

In order to show the advantage of their method, Xu et al.
[4] created a dataset called expanded benchmark dataset1100 
with all the 146 positive samples and 1100 negative samples 
in DNAeSet, which is employed as another training dataset 
to evaluate the predictive performance on the independent 
dataset DNAiSet. For convenience of comparison, we also 
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select the expanded benchmark dataset ������ � ����� to 
establish the classifier and test it on DNAiSet. Repeating this 
procedure five times, the average results are given in Table 7
(the first row). Results obtained by the other four methods 
(DNAbinder, DNA-Prot, iDNA-Prot and enDNA-Prot) 
trained on the expanded benchmark dataset with n=1100 are 
also listed in Table 7. From this table we see that the overall 
accuracy of our method is about 92%, with MCC of 0.84 and 
F1M of 91.24%, which outperforms other methods with 
improvement in the range of 2.49-19.12% in terms of ACC, 
0.05-0.32 in terms of MCC, and 3.82-33.85% in terms of 
F1M. This suggests that our method performs well on 
unbalanced datasets. 

Fig. (5). The influence of the number of negative samples.

Table 7. Performance of different methods (trained on 

DNAeSet and tested on DNAiSet).

Method ACC(%) MCC F1M(%)

This work 92.05 0.84 91.24

DNAbinder(PSSM-21) 72.93 0.52 57.39

DNAbinder(PSSM-400) 78.45 0.61 68.80

DNA-Prot 76.37 0.58 64.46

iDNA-Prot 76.92 0.58 66.13

enDNA-Prot 89.56 0.79 87.42

CONCLUSION 

Based on two important physicochemical properties, 20 
standard amino acids were distributed into three groups, and 
to each of which a representative symbol was assigned. By 
replacing each amino acid with its representative letter, a 
protein primary sequence was converted into a three-letter 
sequence, which can be viewed as a coarse-grained 
description of the protein primary sequence. On the basis of 
the three-letter sequence, a graph without loops and multiple 
edges was obtained. By taking the advantage of the 2-D
graph, we constructed a geometric line adjacency matrix 

(GLAM) and then the corresponding ALE-index, the line-
adjacency index, the first Zagreb index and its modification
were calculated. In addition, � order-correlated factors were 
extracted via the reduced sequence. By combining these 
elements with the frequencies of occurrence of 20 standard 
amino acids and their three representative letters, a
generalized PseAAC model of a protein sequence was 
constructed. On five popular datasets, the proposed method 
was tested by phylogenetic analysis and identification of 
DNA-binding proteins. The results illustrated the better 
performance of our method. 
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