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Influence of a patient transfer 
network of US inpatient facilities 
on the incidence of nosocomial 
infections
Juan Fernández-Gracia1,2, Jukka-Pekka Onnela1, Michael L. Barnett1, Víctor M. Eguíluz  2 & 
Nicholas A. Christakis  3

Antibiotic-resistant bacterial infections are a substantial source of morbidity and mortality and have a 
common reservoir in inpatient settings. Transferring patients between facilities could be a mechanism 
for the spread of these infections. We wanted to assess whether a network of hospitals, linked by 
inpatient transfers, contributes to the spread of nosocomial infections and investigate how network 
structure may be leveraged to design efficient surveillance systems. We construct a network defined 
by the transfer of Medicare patients across US inpatient facilities using a 100% sample of inpatient 
discharge claims from 2006–2007. We show the association between network structure and C. difficile 
incidence, with a 1% increase in a facility’s C. difficile incidence being associated with a 0.53% increase 
in C. difficile incidence of neighboring facilities. Finally, we used network science methods to determine 
the facilities to monitor to maximize surveillance efficiency. An optimal surveillance strategy for 
selecting “sensor” hospitals, based on their network position, detects 80% of the C. difficile infections 
using only 2% of hospitals as sensors. Selecting a small fraction of facilities as “sensors” could be a cost-
effective mechanism to monitor emerging nosocomial infections.

Healthcare-associated infections are a significant source of morbidity and mortality, imposing substantial clinical 
and financial costs to the US health care system1–6. Many infections have a common reservoir in inpatient settings 
such as hospitals and rehabilitation facilities, but they are difficult to monitor on a national scale. A 2013 Centers 
for Disease Control and Prevention (CDC) report on antibiotic-resistant bacteria identified the lack of infrastruc-
ture to detect and respond to emerging resistant infections as a pressing gap2. While patient transfers could plau-
sibly act as a mechanism for epidemiologic spread from facility to facility, only a few studies have investigated the 
possible role of transfers for the spread of infections at the country level, which constitutes arguably the biggest 
scale for these kind of systems. Some studies have focused on the structure of the nationwide critical care trans-
fer network7–10, while others have had a more restricted scope, limited to geographical units such as counties or 
states11–14. In this study, we consider nationwide transfers of Medicare patients 65 or older, who constitute about 
15% of the US population15, and about 37% of all hospital admissions16. This population is also arguably at highest 
risk for morbidity and mortality from health care associated infections.

As a case study of nosocomial infections we use data on Clostridium difficile [C. difficile], which is an anaer-
obic, gram-positive, spore-forming bacteria that occurs frequently in health care settings. It is found in >20% 
of patients who have been hospitalized for more than one week. The disease is spread by ingestion of C. difficile 
spores, which are very hardy and can persist on environmental surfaces for months without proper hygiene17. C. 
difficile associated infections reached half a million in the United States only, with 29,000 patients deaths, 15,000 
of which were estimated to be directly caused by C. difficile infections (80% of patients 65 or older). Furthermore, 
approximately two thirds of the C. difficile infections are associated with a stay in an inpatient facility18.
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To better understand the potential role of Medicare patient transfers in the spread of health care associated 
infections, we pursue three interconnected aims. First, we investigate the structure of the facility-to-facility 
Medicare patient transfer network in the US. Second, we correlate the incidence of nosocomial infections (using 
Clostridum difficile [C. difficile] as a case study) on a national scale with properties of this network. Note, however, 
that in the absence of genetic data to ascertain if the bacterial strains coincide, complete certainty on the routes of 
dispersal of the pathogens is not possible. And third, we develop and propose a scalable network based method 
for monitoring the system through “sensor” hospitals against the spread of these infections.

Results
Study population. The average age in the study population was 77.3 years, with 55.8% female patients, and 
85% white. As expected, the cohort had high rates of chronic illness (Table S1).

Properties of the transfer network. The transfer network showed strong seasonal, monthly, and weekly 
cycles of patient transfers. The topology of the network and geography of patient transfers were closely related, 
with 90% of transfers between facilities less than 200 km apart. On average, over the 2-year period, a facility 
sent patients to 13.55 ± 0.15 (SE) other facilities and received patients from 13.55 ± 0.25 other facilities. (The 
two means necessarily coincide in a directed network because each directed edge has an outgoing end and an 
incoming end). The average number of patients transferred per edge in the 2-year period was 12.3 ± 0.63 (SE). A 
representation of the aggregated network is shown in Fig. 1 (See SM for more details).

Examining network characteristics by facility type, on average, general hospitals received transfers from 12.9 
other institutions and sent transfers on average to 15.1 other facilities. In contrast, rehabilitation facilities on aver-
age received transfers from 24.7 other institutions and sent transfers to 9.4 other facilities (Table 1).

Figure 1. Facility transfer network. The network consists of facilities that are connected by daily transfers of 
patients, here aggregated over the two-year period. Edge color encodes the number of patients transferred 
through each connection. The insets show this network around Boston (upper inset) and around Los Angeles 
(lower inset). The maps were created using the Basemap Matplotlib Toolkit 1.0.8 (http://matplotlib.org/
basemap/) for Python24.

Hospital Type
Acute general 
medical-surgical

Rehabilitation 
facilities

Other 
facilities

Number of 
hospitals 4546 526 535

Number of beds 
(Mean (SD)) 165 (180) 70 (108) 134 (162)

Network Measures (Mean (SD))

In-degree 12.9 (19.7) 24.7 (14.9) 8.4 (14.2)

In-strength 120 (265) 693 (675) 50 (156)

Out-degree 15.1 (11.4) 9.4 (6.3) 4.9 (7.5)

Out-strength 191 (266) 89.2 (84.8) 39 (184)

Table 1. Network characteristics by type of hospital. In-degree refers to the number of hospitals from which a 
hospital receives transferred patients. In-strength is the total number of transferred patients a hospital receives. 
Out-degree is the number of hospital to which a hospital transfers patients, while out-strength is how many 
patients a hospital transfers to other hospitals.

http://S1
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Spread of C. difficile infections. We examined the relationship between C. difficile incidence for each facil-
ity and the average C. difficile incidence for its network neighbors (Fig. 2). As shown in Fig. 2a, these parameters 
were significantly correlated (Pearson correlation coefficient 0.48, 95% CI: 0.46, 0.50). Using linear regression, 
a 1% change in the C. difficile incidence of facility was associated with a change of 0.53 ± 0.02% in the average 
C. difficile incidence of network neighbor facilities. (p < 0.001, see SM for subgroup analysis by facility type and 
adjusting for hospital size, which shows only a marginal effect of hospital size).

We further examined the strength of the association in C. difficile incidence of hospitals linked by transfers 
up to a certain distance D versus other non-connected nearby hospitals. Across all transfer distances examined, 
there was a stronger association between a hospitals’ C. difficile incidence with its linked neighbors than with 
non-connected hospitals (Fig. 2b). For example, at a distance of 100 km, an increase of one standard deviation 
in the average C. difficile incidence in hospitals connected through the transfer network was associated with an 
average increase of 33.6% in the odds of a patient being diagnosed C. difficile, while for non-connected hospitals 
the increase was only of 10.5%.

Monitoring the system for hypothetical epidemics. We investigated the optimal selection of network 
sensors for theoretical detection of emerging nosocomial epidemics, and we focus on two measures: the efficacy 
and fraction of detected cases for four possible selection strategies are shown in Fig. 3. The “eigenvector central-
ity” strategy achieved the highest efficacy using the smallest number of sensors, using only 42 hospitals, or 0.7% 
of all facilities. It was followed by the “in-degree” strategy, for which the maximum efficacy was achieved for 108 
sensors, or 1.9%, of all facilities. The “out-degree” strategy was the third best strategy, at most using only 167 facili-
ties, or 2.9%, as sensors. Both degree-based approaches outperformed the random strategy that uses 332 facilities, 
or 5.9%, as sensors. In terms of the fraction of detected cases, the degree-based and random strategies performed 
similarly at optimal efficacy: 78% for in-degree, 81% for out-degree, and 84% for the random strategy. In contrast, 
the eigenvector centrality performed very poorly at 37%. When the strategies are compared at the level with 80% 
of detected cases, the in-degree strategy performs the best (116 sensors, 2%), followed by the out-degree strategy 
(159 sensors, 2.8%), followed by the random strategy (280 sensors, 4.9%), and finally the eigenvector centrality 
strategy (346 sensors, 6.1%). In Fig. 3c–f, an instance for the optimal sensor set derived from each is plotted on 
the map. Table 2 describes the composition of the optimal sensor sets in terms of types of facilities. The eigenvec-
tor centrality strategy had significantly less proportion of general hospitals and an abundance of rehabilitation 
facilities (p = 0.003 by χ2).

Discussion
We studied a network defined by the transfer of a large number of Medicare patients across 5,667 US facilities 
over a 2-year period. We found the transfer network to be strongly bound by geography with 90% of all transfers 
spanning a distance less than 200 km. We also found that the transfer network could plausibly serve as a substrate 
for the spread of nosocomial infections: we observed a positive correlation among mean C. difficile incidences 
between facilities and their network neighbors. This association was significantly stronger with a hospital’s net-
work neighbors than with nearby non-connected hospitals across a wide range of geographic distances. This result 
is in line with the recent work of Simmering et al.14 which demonstrated a correlation of C. difficile incidence with 
weighted and unweighted in-degree of the transfer network. Here, we consider not only topological properties 

Figure 2. C. difficile incidence in a general facility and its neighbors. (a) Here we plot the C. difficile incidence 
of every general facility with less than 0.05 incidence on the x-axis and the average C. difficile incidence of the 
neighboring facility in the transfer network, where a neighboring facility is one that either sends it patients 
to or receives its patients from the case facility. Facility size in beds is represented by color: the first (lowest) 
quartile (in size) of facilities shown is plotted in blue, the second in green, third in orange and the fourth 
(largest) quartile in red. 74 hospitals (1.6% of sample) with C. difficile incidence greater than 0.05 were excluded 
from the plotting area. (b) Logistic regression coefficients as a function of distance. Coefficient for the average 
incidence in network neighbors (red) and not linked through transfers (blue) up to a distance D. Error bars 
show the 95% CI. This result can be interpreted in terms of z-scores: at a distance of 100 km, an increase of one 
standard deviation in the average C. difficile incidence in hospitals connected through the transfer network was 
associated with an average increase of 33.6% in the odds of a patient being diagnosed C. difficile, while for non-
connected hospitals the increase was only of 10.5%.
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Figure 3. Efficacy and spatial locations of optimal sensors. (a) Efficacy of strategies. When focusing on the most 
efficacious sensor set for each strategy, eigenvector centrality results in the smallest sensor set, followed by in-
degree, out-degree, and the random strategy. Sensor sets are selected using the four possible strategies at 80% 
coverage of C. difficile cases in panel (b). Panels (c, d, e and f) show instances of the sensor sets at 80% coverage 
for the different strategies (in-degree, out-degree, random, eigenvector centrality). The colored nodes are 
included in the sensor set, the dark gray nodes are neighbors of the sensor hospitals, and the light gray nodes are 
not covered by the sensor set. Hospital size is proportional to the number of C. difficile cases in that hospital. The 
in-degree strategy uses the least number of sensors and it is followed by the out-degree and then the random 
strategy. The eigenvector centrality strategy unexpectedly performs worse than the random strategy. The maps 
were created using the Basemap Matplotlib Toolkit 1.0.8 (http://matplotlib.org/basemap/) for Python24.
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of the network, but also the C. difficile incidence at hospitals neighboring an index hospital, and therefore more 
directly test the hospital-hospital infection hypothesis. In addition, we consider the role of different spatial scales 
and their interaction with the structure of the transfer network. Note that establishing complete certainty about 
the spread of a particular strain of C. difficile bacteria would require genetic data, which was not available in this 
study. Finally, we showed that selecting facilities as sensors based on their in-degree was able to detect a large 
fraction of infections with only 2% of the facilities acting as sensors. A key strength of our approach is its reliance 
on routinely collected administrative data. These results support our conceptual model of using the nationwide 
patient transfer network to monitor health-care associated infections, likely well beyond the illustrative case of 
C. difficile considered here. In particular, our work demonstrates the potential benefit of using a network of inter-
connected facilities to monitor incipient outbreaks. Of course, it is possible that different pathogens might need a 
different number of sensor facilities, a different set of sensor facilities, or different surveillance windows.

This study builds on prior research examining physician networks19, 20 and facility networks by incorporating 
nationwide data on hospital transfers together with epidemiologic data on healthcare associated infections by 
C. difficile21 Using methods from network analysis, we find that a facility’s rate of C. difficile cases is significantly 
correlated with those of its transfer neighbors. There are two possible explanations for this phenomenon: first, 
that transfers can serve as a substrate for the spread of C. difficile, correlating the infections rates of connected 
hospitals, or second, that community factors driving C. difficile infection rates influence nearby hospitals. Prior 
epidemiologic research suggests that there are significant reservoirs of C. difficile in both hospitals and the com-
munity, therefore both of these explanations may contribute to the pattern we observe22. However, our findings 
support the hypothesis that C. difficile incidence is plausibly related to hospital transfers, due to the stronger asso-
ciation we observe between a hospital’s C. difficile incidence and its network neighbors than with non-connected 
nearby hospitals (Table 2).

Regardless of the causal mechanism of this correlation, using facilities with significant numbers of inbound 
transfers as “sensors” for new outbreaks of known or emerging infections could serve an important role for public 
health surveillance. Using different strategies to select a small group of facilities as potential “sensors,” we find 
that choosing facilities prioritizing those with the greatest number of inbound transfers optimizes the fraction 
of C. difficile cases detected while minimizing the number of facilities needed. These facilities serve as “hubs” for 
transfers from a geographically diverse set of other facilities in their region, so are optimally positioned to see the 
leading edge of any new infection23, 24. It is also notable that a disproportionate number of rehabilitation facilities 
form part of the optimal sensor set we describe. Rehabilitation facilities are an important reservoir for healthcare 
associated infections and should be considered as a crucial part of the epidemiologic network connecting the 
entire US inpatient care system25.

We wish to point out the connection between our sensor method and three different lines of related work: con-
trol theory on complex networks26, the vertex covering problem27, and Borgatti’s “key player” approach28. In these 
three problems, one tries to find a minimum set of nodes that will have a maximal global impact in the network, 
whether in terms of controlling some dynamical process taking place on it (control theory), finding the minimum 
set of nodes such that every edge of the network is incident to at least one of the nodes in the set (vertex cover), 
or finding the set of k nodes that is maximally connected to all other nodes. In our case, the proposed method 
attempts to find a minimum set of nodes that will cover most of the observed infected nodes. In this sense our 
approach is most similar to the vertex cover problem with the added nuance that we now have different numbers 
of observed cases within different nodes (hospitals).

Our results are in agreement with previous findings, starting from research showing that healthcare out-
comes can be associated with the structure of the transfer network of patients8–10. The risk of C. diff spreading 
through the transfer network of patients is supported by the empirical results of Huang et al.13 and Simmering 
et al.14, and the by the simulation results of Lee et al.12. This literature has demonstrated that the incidence of 
C. diff in connected hospitals is associated with incidence in a central hospital, and also that the in-degree of a 
hospital is positively correlated with its C. diff incidence. Others have shown that the structure of the network is 
spatially constrained and heterogeneous11. Finally, Karkada and collaborators7 showed through simulation that 

Facility set N (%) % General hospitals % Rehabilitation facilities % Others Coverage

All facilities 5667 (100%) 4595 (81.1%) 531 (9.4%) 541 (9.5%) 100%

Sensor strategy

In-degree (max. efficacy) 108 (1.9%) 88.9% 5.6% 5.6% 78%

Out-degree (max. efficacy) 167 (2.9%) 95.2% 2.4% 2.4% 81%

Eigenv. Centrality (max. efficacy) 42 (0.7%) 78.6% 11.9% 9.5% 37%

Random (max. efficacy) 332 (5.9%) 81.1% 9.4% 9.5% 84%

In-degree (80% cov.) 115 (2.0%) 88.7% 6.1% 5.2% 80%

Out-degree (80% cov.) 158 (2.8%) 94.9% 2.5% 2.5% 80%

Eigenv. Centrality (80% cov.) 346 (6.1%) 84.1% 10.7% 5.2% 80%

Random (80% cov.) 279 (4.9%) 81.1% 9.4% 9.5% 80%

Table 2. Configuration of optimal sensor sets. The table describes the characteristics of the optimal sensor sets 
(percentage of the total number of facilities, percentage of genera/rehab/other facilities) and the coverage of 
cases. The optimal sensors, depending on the strategy, are compared both at maximum efficacy and at an 80% 
coverage rate.
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any network-aware algorithm for resource allocation will be better than a random strategy. In their study the 
betweenness centrality strategy performs the best, and they also provide a greedy strategy, an approach we discuss 
in the SM.

Our study has several limitations. First, the data we used to map the facility networks are from 2006 and 2007. 
However, given that facility transfer patterns are strongly embedded in the geography of the country, we do not 
expect the age of the data to affect our results substantially. Second, we cannot assess the extent to which unob-
served policies or commercial constraints might have affected the flow of patients from one facility to another; 
however, these policies merely affected patient transfers, which are observable in the current and similar future 
data. Third, our analyses and models assume that patient transfers are the only mechanism responsible for the 
spread of infections. There are, of course, other vectors or means that might result in facilities being infected, such 
as the movement of physicians, nurses, and other health care staff, and equipment, between facilities. In addition, 
our analysis is limited by our use of the Medicare population to model infection spread. Even though Medicare 
patients represent a substantial proportion of hospitalizations nationally, it is possible that our results may not 
generalize to other populations. Finally, in this analysis we did not make use of the fine-scale temporal informa-
tion available in transfer data; future work could evaluate how bursts of infected patients might contribute to an 
epidemic.

Understanding the structure and dynamics of the facility transfer network for the spread of real infections 
has a number of important implications. Empirical data could be used either periodically, or in real time, to 
map networks of patient movement in the US health care system, and this network could then be used monitor 
the spread of nosocomial and other infections in the network. In our estimation, such an approach could detect 
80% of C. difficile cases among Medicare patients using just 2% of facilities as network sensors. Furthermore, the 
method for choosing sensor hospitals, namely in-degree, relies only on local network measures, which provides 
a scalable method easy to implement dynamically without the need of global network structure knowledge. The 
approach is also expected to be robust even if the network data is not fully up to date, which makes the approach 
more useful in practice (see Robustness of sensor set performance in the SM). Finally, this approach would be 
useful not only for public health interventions, in the case of natural epidemics, but also in the case of deliberate 
ones, such as those due to a possible bioterror attack. Public health and clinical care can be enhanced through a 
deeper understanding of the network of health care facilities in which patients and practitioners are embedded.

Methods
The study was approved by Harvard Medical School IRB.

Study population. We examined inter-facility transfer patterns of the entire population of US Medicare 
beneficiaries over a two-year period. We used a 100% sample of the Medicare Provider Analysis and Review 
(MedPAR) files for calendar years 2006 and 2007. The data was anonymized and patient id’s were only used in 
order to match stays in different facilities in order to infer direct transfers (see subsection “Constructing the 
transfer network”). The MedPAR files contain demographic, diagnosis, procedure, and billing information on all 
inpatient and skilled nursing facility (SNF) stays divided into 144 variables. Of these variables, we only kept the 
patient ID, the ID of the hospital where the patient stayed, and admission and discharge dates. Our study cohort 
consisted of Medicare patients aged 65 or older with an initial facility stay at an acute medical or surgical facil-
ity with an active record in the American Hospital Association (AHA) 2005 database29. This database contains 
information about the facilities, summarized by 858 variables, of which we kept the Medicare provider ID (which 
allows us to cross-link the databases), name, address, coordinates (latitude and longitude), and the number of 
beds. We divided facilities into three classes: acute medical-surgical hospitals (“general hospitals”), rehabilitation 
facilities, and other facilities. Before applying these exclusion criteria, we identified 26.4 million stays of 12.5 mil-
lion patients in 6,278 different hospitals. After the exclusions, our final cohort consisted of 10.4 million patients 
with 21.0 million inpatient stays in 5,667 different hospitals. We characterized comorbidities using the Charlson 
index30.

Constructing the transfer network. We defined an inpatient transfer whenever a patient, who have 
unique id’s in our dataset, was discharged from one facility and admitted to another facility on the same calendar 
day. A minority of transfers as defined here may not correspond to actual formal transfers of patients due to the 
possibility of a same-day readmission; however, these are equivalent to patient transfers from an epidemiological 
point of view. (See Supplementary Material [SM] for a sensitivity analysis). We identified 936,101 transfer events 
from 741,732 patients taking place between 76,003 pairs of facilities in the calendar years 2006 and 2007.

We constructed then a network representation of the patient transfers across facilities. Facilities were rep-
resented as “nodes” and a transfer of a total of x patients on day d from facility i to facility j was represented 
as a directional connection, or “directed edge,” from node i to node j with weight x on day d. This longitudinal 
sequence of patient transfers formed a day-to-day network with “directed” edges with weights equal to the num-
ber of patients transferred on day d for 2 years. We constructed a static representation of the network that retained 
no temporal information of patient transfers by aggregating the data for the two-year period. In this aggregated 
network, the weight of the edge from node i to node j represents the mean daily number of patient transfers along 
that edge.

Network measures. We make use of three network centrality measures: (i) in-degree, the number of incom-
ing edges; (ii) out-degree, the number of outgoing edges; and (iii) eigenvector centrality, a measure of centrality 
based on the eigenvector associated with the largest eigenvalue of the network adjacency matrix. The first two 
measures are local in the sense that their values can be computed for any given node based on knowledge of the 
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node’s (nearest) network neighbors. The third measure is global, and it assigns higher centrality scores to nodes 
that are connected to other nodes with high centrality scores, thus taking into account the overall structure of the 
network. Variations of this measure include the Katz centrality and the PageRank centrality.

Clostridium difficile incidence on the transfer network. The transfer of contagious patients from one 
facility to another could result in the transmission of pathogens between them. In order to ascertain the trans-
mission of C. difficile across hospitals, one would need genetic data for the pathogen, which is not available in 
our setting. As an alternative and more scalable approach, we examined the incidence of C. difficile infection and 
its correlation with properties of the transfer network. C. difficile is an anaerobic, gram-positive, spore-forming 
bacteria that is spread by ingestion of C. difficile spores, which are very hardy and can persist on environmental 
surfaces for months without proper hygiene31. We ascertained incident cases of C. difficile infection by identifying 
any facility admissions with ICD-9 diagnostic code 008.45 in any field (upon discharge). The sensitivity and spec-
ificity of using ICD-9 codes to identify C. difficile infections have been reported by multiple groups to be adequate 
for identifying overall C. difficile burden for epidemiological purposes29, 32, 33.

We calculated the C. difficile incidence at each facility, defined as the number of patients that were admitted to 
the facility with that particular discharge diagnosis over the study period divided by the total number of patients 
admitted to the facility over the same period, and plotted the C. difficile incidence of the facility against the aver-
age incidence of C. difficile in facilities connected to that facility in the transfer network. We stratified the plot 
by facility type (general hospital, rehabilitation facility, other, see SM), and quantified the correlation using the 
Pearson linear correlation coefficient.

Any correlation in C. difficile incidence that we observe could be potentially driven by a common reservoir 
in the geographical vicinity of the hospitals rather than the spread of infections via hospital transfers. Ideally, 
we could assess genetic markers to assess whether the same strains of C. difficile flowed from one hospital to 
another via patient transfer. Because these data are not available, we instead assessed the contribution of patient 
transfers by hypothesizing that if transfers are a causal mechanism for C. difficile spread, then there should be 
a stronger association between C. difficile incidence in nearby hospitals connected by patient transfers than in 
nearby non-connected hospitals.

More formally, we used fractional logistic regression, or logistic regression using proportions as outcomes34, 
to predict the outcome of the incidence of C. difficile at a hospital i, ρi, using a model with two separate predictors: 
(1) the average incidence at connected (through the transfer network) hospitals within less than a certain distance 
D, ρ D( )i

Net , compared to (2) the average incidence at all hospitals less than that distance D, ρ D( )i
com . With this 

the model is specified as

ρ

ρ
α β ρ ρ

−
= + + γlog D D

1
( ) ( )i

i
i
Net

i
Com

(see SM for more details). If hospital transfers are an important mechanism for C. difficile transmission, then the 
regression coefficient for ρ D( )i

Net , β, should be greater than the coefficient for ρ D( )i
Net , γ, across all distances as 

a predictor of a given hospital’s C. difficile incidence. We standardized the quantities ρ D( )i
Net  and ρ D( )i

com  as 
z-scores (e.g. we subtracted the mean and divided by the standard deviation for each quantity) in order to account 
for different ranges in the different indicators (see SM for further inspections).

Sensor placement on the facility network. Given that patient transfers form an interconnected system 
of facilities, it might be possible to make use of the properties of the transfer network to set up a surveillance sys-
tem for infections, such as theoretically new antibiotic-resistant organism. For this application, although exhaus-
tive data could be available for all facilities all the time (real-time reporting), it may not be feasible for infections 
which show non-specific symptoms and for which testing methods require considerable cost. Therefore, this 
limitation calls for a parsimonious approach in which only a subset of facilities is monitored at any given time. We 
call these monitored facilities “network sensors” in the sense that they could be used to sense incipient epidemics 
in the entire network. We consider three different active strategies for sensor selection and one control strategy: 
(1) choose sensor facilities in proportion to their in-degree; (2) choose sensor facilities in proportion to their 
out-degree; (3) choose sensor facilities in proportion to their (undirected) eigenvector centrality; and (4) choose 
sensor facilities uniformly at random from the set of all facilities (the control strategy). The first two strategies 
rely on the most basic local centrality network measures and require only minimal information about network 
structure. The third one relies on a global network measure, and as such it might be more difficult to implement 
in practice. The control strategy serves as a baseline in the absence of any network data. We take a stochastic 
approach in the selection of the sensor nodes, i.e., sensors are chosen proportionally to their in-/out-degree or 
eigenvector centrality, in order to overcome the fluctuations present in network measures due to the temporal 
nature of the data. In the following simulations, we assume that a sensor facility is able to detect every infected 
patient who is in the facility itself or in any of the facilities to which the facility is connected via patient transfers. 
While this assumption is made primarily for methodological convenience and may not hold in practice, the 
relative performance of the three strategies for selecting sensors remains unaffected if this assumption is relaxed. 
The choice of in-degree and out-degree is made because these measures represent the most basic metrics for 
determining the centrality of a node in a directed network.



www.nature.com/scientificreports/

8Scientific RepoRts | 7: 2930  | DOI:10.1038/s41598-017-02245-7

Determining the optimal sensor set. We define the relative efficacy of the sensor EN set as

= −
−E D

ND
M D

M (1)N
N N

1

where N is the number of sensors in the sensor set (based on the strategies outlined above), D1 and DN are the 
average numbers of infected patients detected by sensor sets of size 1 and N, respectively, and M is the total 
number of C. difficile cases in all of the facilities combined. The choice of sensors in all the strategies is made 
randomly in proportion to the measure that defines the given strategy (except for the random strategy, where the 
choice is made purely at random), and the number of detected cases is defined as an average taken over different 
realizations of sensor sets of the same size. For D1, only one sensor is chosen in proportion to the chosen metric, 
such as eigenvector centrality, and the average is computed over 10000 such selections. While each additional 
sensor always improves the overall performance of the system, denoted by D, any sensor set exhibits diminishing 
marginal returns. The first term in the definition of the efficacy corresponds to the number of detected cases nor-
malized by the number of cases that would be detected if all sensors in a sensor set of size N were as efficacious as 
the sensor in the set consisting only of one sensor (ND1). The second term is a penalty term that corresponds to 
the fraction of undetected cases. High relative efficacy is therefore a combination of selecting a set of sensors that 
are as close as possible in efficaciousness to the first sensor and having these sensors miss as few cases as possible.

Since we know the number of C. difficile cases in each facility at any given time, we can simply count the 
number of cases in the sensor facilities and their network neighbors. We average the results by generating 10,000 
independent realizations of sensor sets for each of the four different strategies of choosing sensors (in-degree, 
out-degree, eigenvector centrality, random). The optimal sensor set for each strategy is the one with maximum 
efficacy. This measure informs us about the best way of allocating sensors when resources are severely limited. In 
addition, we consider sensor sets that cover as many cases as possible, which is the reason for comparing sensor 
sets at the 80% level of detected cases (the second term).

Statistical analysis. Univariate comparisons were assessed using χ2 tests. Bivariate associations were 
assessed with Pearson correlation coefficients and bivariate regression. For the statistical tests and simulations in 
these analyses, we used SAS, version 9.4 (Cary, NC), Fortran and Python, including the scipy.stats and statsmod-
els package in Python.

Plotting maps. The maps were created using the Basemap Matplotlib Toolkit 1.0.8 (http://matplotlib.org/
basemap/) for Python35.

Data Availability Statement. The data used in this study are available from the Centers for Medicare and 
Medicaid Services (CMS), but fees and restrictions may apply to their use.

References
 1. Zimlichman, E., Henderson, D. & Tamir, O. et al. Health care-associated infections: a meta-analysis of costs and financial impact on 

the US health care system. JAMA Intern. Med. 173, 2039–46, doi:10.1001/jamainternmed.2013.9763 (2013).
 2. Threat Report 2013 | Antimicrobial Resistance|CDC. Available at: http://www.cdc.gov/drugresistance/threat-report-2013/. Accessed 

March 18, 2016.
 3. Klevens, R. M., Edwards, J. R., Richards, C. L. et al. Estimating health care-associated infections and deaths in US hospitals, Public 

H e a l t h  R e p .  1 2 2 ,  1 6 0 – 6 ,  A v a i l a b l e  a t : h t t p : / / w w w. p u b m e d c e n t r a l . n i h . g o v / a r t i c l e r e n d e r .
fcgi?artid=1820440&tool=pmcentrez&rendertype=abstract. Accessed March 18, 2016 (2002).

 4. Combating Antimicrobial Resistance: Policy Recommendations to Save Lives. Available at: http://cid.oxfordjournals.org/content/52/
suppl_5/S397.full. Accessed January 7, 2016.

 5. Mauldin, P. D., Salgado, C. D., Hansen, I. S., Durup, D. T. & Bosso, J. A. Attributable hospital cost and length of stay associated with 
health care-associated infections caused by antibiotic-resistant gram-negative bacteria. Antimicrob. Agents Chemother. 54, 109–15, 
doi:10.1128/AAC.01041-09 (2010).

 6. Filice, G. A., Nyman, J. A. & Lexau, C. et al. Excess costs and utilization associated with methicillin resistance for patients with 
Staphylococcus aureus infection. Infect. Control Hosp. Epidemiol. 31, 365–73, doi:10.1086/651094 (2010).

 7. Karkada, U. H., Adamic, L. A., Kahn, J. M. & Iwashyna, T. J. Limiting the spread of highly resistant hospital-acquired microorganisms 
via critical care transfers: a simulation study. Intensive Care Med. 37, 1633–40, doi:10.1007/s00134-011-2341-y (2011).

 8. Iwashyna, T. J., Christie, J. D., Kahn, J. M. & Asch, D. A. Uncharted paths: hospital networks in critical care. Chest 135, 827–33, 
doi:10.1378/chest.08-1052 (2009).

 9. Iwashyna, T. J., Christie, J. D., Moody, J., Kahn, J. M. & Asch, D. A. The structure of critical care transfer networks. Med. Care 47, 
787–93, doi:10.1097/MLR.0b013e318197b1f5 (2009).

 10. Unnikrishnan, K. P., Patnaik, D. & Iwashyna, T. J. Spatio-temporal Structure of US Critical Care Transfer Network. AMIA Summits 
Transl. Sci. Proc. 2011, 74–78 (2011).

 11. Lee, B. Y., McGlone, S. M. & Song, Y. et al. Social network analysis of patient sharing among hospitals in Orange County, California. 
Am. J. Public Health 101, 707–13, doi:10.2105/AJPH.2010.202754 (2011).

 12. Lee, B. Y., McGlone, S. M. & Wong, K. F. et al. Modeling the spread of methicillin-resistant Staphylococcus aureus (MRSA) outbreaks 
throughout the hospitals in Orange County, California. Infect. Control Hosp. Epidemiol. 32, 562–72, doi:10.1086/660014 (2011).

 13. Huang, S. S., Avery, T. R. & Song, Y. et al. Quantifying interhospital patient sharing as a mechanism for infectious disease spread. 
Infect. Control Hosp. Epidemiol. 31, 1160–9, doi:10.1086/656747 (2010).

 14. Simmering, J. E., Polgreen, L. A., Campbell, D. R., Cavanaugh, J. E. & Polgreen, P. M. Hospital Transfer Network Structure as a Risk 
Factor for Clostridium difficile Infection. Infect Control Hosp Epidemiol 36, 1031–7, doi:10.1017/ice.2015.130 (2015).

 15. Medicare beneficiaries as a percent of total population. Available at: http://kff.org/medicare/state-indicator/medicare-beneficiaries-
as-of-total-pop/. Accessed March 18, 2016.

 16. Overview of hospital stays in the United States. Available at: http://www.hcup-us.ahrq.gov/reports/statbriefs/sb144.jsp Accessed 
March 18 2016.

 17. Gerding, D. N. & Johnson, S. Harrison’s Principles of Internal Medicine. In: Fauci, A. S., Braunwald, E. & Kasper, D. L. et al. eds 17th 
Edition. New York: McGraw-Hill (2008).

http://dx.doi.org/10.1001/jamainternmed.2013.9763
http://dx.doi.org/10.1128/AAC.01041-09
http://dx.doi.org/10.1086/651094
http://dx.doi.org/10.1007/s00134-011-2341-y
http://dx.doi.org/10.1378/chest.08-1052
http://dx.doi.org/10.1097/MLR.0b013e318197b1f5
http://dx.doi.org/10.2105/AJPH.2010.202754
http://dx.doi.org/10.1086/660014
http://dx.doi.org/10.1086/656747
http://dx.doi.org/10.1017/ice.2015.130


www.nature.com/scientificreports/

9Scientific RepoRts | 7: 2930  | DOI:10.1038/s41598-017-02245-7

 18. Nearly half a million Americans suffered from Clostridium difficile infections in a single year | CDC. Available at: http://www.cdc.
gov/media/releases/2015/p0225-clostridium-difficile.html. Accessed November 18, 2016.

 19. Barnett, M., Landon, B., O’Malley, A. J., Keating, N. L. & Christakis, N. A. Mapping Physician Networks with Self-Reported and 
Administrative Data. Health Services Research 46, 1592–1609, doi:10.1111/j.1475-6773.2011.01262.x (2011).

 20. Landon, B. E., Keating, N. L. & Barnett, M. L. et al. Variation in Patient-Sharing Networks of Physicians Across the United States. 
JAMA: Journal of the American Medical Association 308, 265–273, doi:10.1001/jama.2012.7615 (2012).

 21. Ohst, J., Liljeros, F., Stenhem, M. & Holme, P. The network positions of methicillin resistant Staphylococcus aureus affected units in 
a regional healthcare system. EPJ Data Science 3, 29, doi:10.1140/epjds/s13688-014-0029-6 (2014).

 22. Eyre, D. W., Cule, M. L. & Wilson, D. J. et al. Diverse Sources of C. difficile Infection Identified on Whole-Genome Sequencing. N. 
Engl. J. Med. 369, 1195–1205, doi:10.1056/NEJMoa1216064 (2013).

 23. Christakis, N. A. & Fowler, J. H. Social Network Sensors for Early Detection of Contagious Outbreaks. PLoS ONE 5, e12948, 
doi:10.1371/journal.pone.0012948 (2010).

 24. Leskovec, J. et al. Cost-effective outbreak detection in networks. pp. 420–429. Proceedings of the 13th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining (New York: Association for Computing Machinery), 
doi:10.1145/1281192.1281239 (2007).

 25. Murphy, C. R., Quan, V. & Kim, D. et al. Nursing home characteristics associated with methicillin-resistant Staphylococcus aureus 
(MRSA) Burden and Transmission. BMC Infect Dis. 12, 269, doi:10.1186/1471-2334-12-269 (2012).

 26. Liu, Y.-Y. & Barabási, A.-L. Control principles of complex systems. Rev. Mod. Phys 88, 035006, doi:10.1103/RevModPhys.88.035006 
(2016).

 27. Buss, J. F. & Goldsmith, J. Nondeterminism within P. SIAM J. Comput. 22, 560–572, doi:10.1137/0222038 (1993).
 28. Borgatti, S. P. The Key Player Problem. In Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers, R. 

Breiger, K. Carley, & P. Pattison, (Eds) National Academy of Sciences Press. Pp. 241–252 (2003).
 29. Scheurer, D. B., Hicks, L. S., Cook, E. F. & Schnipper, J. L. Accuracy of ICD-9 coding for Clostridium difficile infections: a 

retrospective cohort. Epidemiol. Infect. 135, 1010–3, doi:10.1017/S0950268806007655 (2007).
 30. Zhang, J., Iwashyna, T. J. & Christakis, N. A. The Performance of Different Lookback Periods and Sources of Information for 

Charlson Comorbidity Adjustment in Medicare Claims. Medical Care 37, 1128–1139, doi:10.1097/00005650-199911000-00005 
(1999).

 31. American Hospital Association. Available at: http://www.aha.org/. Accessed March 18, 2016.
 32. Schmiedeskamp, M., Harpe, S., Polk, R., Oinonen, M. & Pakyz, A. Use of International Classification of Diseases, Ninth Revision, 

Clinical Modification codes and medication use data to identify nosocomial Clostridium difficile infection. Infect. Control Hosp. 
Epidemiol. 30, 1070–6, doi:10.1086/606164 (2009).

 33. Dubberke, E. R., Butler, A. M. & Yokoe, D. S. et al. Multicenter study of surveillance for hospital-onset Clostridium difficile infection 
by the use of ICD-9-CM diagnosis codes. Infect. Control Hosp. Epidemiol. 31, 262–8, doi:10.1086/650447 (2010).

 34. Papke, L. E. & Jeffrey, M. Wooldridge, Econometric methods for fractional response variables with an application to 401(k) plan 
participation rates. Journal of Applied Econometrics 11, 619–632, doi:10.1002/(ISSN)1099-1255 (1996).

 35. Hunter, J. D. Matplotlib: A 2D graphics environment. Computing in Science & Engineering 9, 90–95, doi:10.1109/MCSE.2007.55 
(2007).

Acknowledgements
We thank Laurie Meneades for the expert assistance required to build the dataset. N.A.C. is supported by grant 
from the NIH (P-01 AG031093), V.M.E. by grant MODASS FIS2011-24785 (Spain and EU FEDER) and M.L.B. 
by HRSA grant (T32-HP10251). J.P.O. is supported by grants P-01 AG031093 and U54GM088558-06. J.F.-G. is 
supported by NIH grant U54GM088558-06. Funding sources had no involvement in the collection, analysis and 
interpretation of the data. J.F.-G. and J.P.O. are joint first authors of this article.

Author Contributions
J.F.-G., J.P.O., N.A.C., designed the study; J.F.-G., J.P.O. and V.M.E. analyzed the data; J.F.-G., J.P.O., M.L.B., V.M.E. 
and N.A.C. interpreted the results and wrote the manuscript. J.F.-G. had full access to all of the data in the study 
and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-02245-7
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1111/j.1475-6773.2011.01262.x
http://dx.doi.org/10.1001/jama.2012.7615
http://dx.doi.org/10.1140/epjds/s13688-014-0029-6
http://dx.doi.org/10.1056/NEJMoa1216064
http://dx.doi.org/10.1371/journal.pone.0012948
http://dx.doi.org/10.1145/1281192.1281239
http://dx.doi.org/10.1186/1471-2334-12-269
http://dx.doi.org/10.1103/RevModPhys.88.035006
http://dx.doi.org/10.1137/0222038
http://dx.doi.org/10.1017/S0950268806007655
http://dx.doi.org/10.1097/00005650-199911000-00005
http://dx.doi.org/10.1086/606164
http://dx.doi.org/10.1086/650447
http://dx.doi.org/10.1002/(ISSN)1099-1255
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1038/s41598-017-02245-7
http://creativecommons.org/licenses/by/4.0/

	Influence of a patient transfer network of US inpatient facilities on the incidence of nosocomial infections
	Results
	Study population. 
	Properties of the transfer network. 
	Spread of C. difficile infections. 
	Monitoring the system for hypothetical epidemics. 

	Discussion
	Methods
	Study population. 
	Constructing the transfer network. 
	Network measures. 
	Clostridium difficile incidence on the transfer network. 
	Sensor placement on the facility network. 
	Determining the optimal sensor set. 
	Statistical analysis. 
	Plotting maps. 
	Data Availability Statement. 

	Acknowledgements
	Figure 1 Facility transfer network.
	Figure 2 C.
	Figure 3 Efficacy and spatial locations of optimal sensors.
	Table 1 Network characteristics by type of hospital.
	Table 2 Configuration of optimal sensor sets.




