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Abstract: One of the major concerns for all in vivo experiments is intra- and inter-subject variability,
which can be a great source of inaccuracy. The aim of this study is, therefore, to estimate the ability of
parallel vs. cross-over design studies in order to describe the relative pharmacokinetic performance
of the studied drug formulations. We analyzed the data from a drug development program that
examined the performance of innovative abiraterone acetate formulations against the identical
reference product in three stages. In stages 1–3, groups A–F were dosed with the reference product
once in a parallel manner. Stage 4 was performed to evaluate the intra-individual variability (IIV) by
repeated administration of the reference product to the same animals. Although the geometric mean
(90% CI) values of abiraterone AUClast in groups A–F were similar to the IIV group (24.36 (23.79–41.00)
vs. 26.29 (20.56–47.00) mg/mL·min·g), the results generated in the isolated parallel groups provided
imprecise estimates of the true AUClast values ranging from 9.62 to 44.62 mg/mL·min·g due to chance.
Notably, in 4 out of 15 possible pair comparisons between the parallel groups, the confidence intervals
did not include 100%, which is the true ratio for all comparisons tested after identical formulation
administration to all groups. A cross-over design can significantly improve the methodology in
short-term comparative pre-clinical pharmacokinetic studies, and can provide more precise and
accurate results in comparison to more traditional pre-clinical study designs.

Keywords: abiraterone; variability; pharmacokinetics; cross-over design; rat; in vivo study

1. Introduction

Pre-clinical pharmacokinetic (PK) studies play a key role in several stages of pharma-
ceutical research, as they are currently an irreplaceable source of basic pharmacokinetic
data, and they also allow a relationship to be established between exposure and drug-
induced toxicity (toxicokinetics) before a new molecule is administered to humans [1,2].
Furthermore, animal studies are sometimes needed during the development of innovative
drug formulations in order to confirm the performance of the drug formulation, estimated
from in vitro and modelling studies [3].

Clinical pharmacokinetic trials currently have a rather sophisticated methodology,
which is guided by major regulatory agencies worldwide. The methodology of clinical
studies has been cultivated for a long time to deliver reliable, accurate and precise data,
while minimizing study subjects’ exposure to test compounds. Therefore, the methodology
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of a clinical pharmacokinetic study is inherently dependent on the hypothesis tested and
the aim of the study.

On the other hand, relatively little attention has been paid to the optimal ways of
performing the pre-clinical pharmacokinetic studies. When planning these studies, parallel
design is usually adopted [4,5]. The limited sampling strategy has also gained popularity in
recent years, as it enables pharmacokinetic data to be obtained in a simplified model [6,7].
However, these approaches are often chosen without further considerations and irrespective
of the aim of the study.

One of the major concerns for all in vivo experiments is intra- and inter-subject vari-
ability, which can be a great source of inaccuracy. Gender, age, weight, hormonal status
and eating habits are just a few examples of the factors which introduce variability into the
study data [8]. Actual status of the gastrointestinal system, (e.g., gastric and intestinal pH,
gastric emptying and intestinal transit, bacterial colonization or surface area [9–11]), renal
function, hepatic abundance and drug transporters further contribute to the actual fate
of a compound in the body [12]. Furthermore, genetic polymorphisms within the genes
which encode for drug-metabolizing enzymes or transporters may further substantially
affect drug absorption, distribution, or elimination.

As a result, it is almost impossible to ensure the same inner and outer conditions
for each subject enrolled in a study. Previous experiments with mice have shown that
animals act differently across laboratories despite strict standardization [13]. It has also
been demonstrated that mice phenotypes can fluctuate to the extent that the obtained
results may differ between batches [14].

We hypothesized that to obtain precise and accurate results during pre-clinical phar-
macokinetic studies aimed at comparing drug formulation PK performance, a parallel
study design may not be appropriate, and a cross-over design of the pharmacokinetic
experiment that limits the consequences of inter-subject variability should be chosen.

Therefore, our aim was to estimate the ability of parallel vs. cross-over design studies
to describe the relative pharmacokinetic performance of the studied drug formulations.

2. Materials and Methods
2.1. Materials

For anesthesia, isoflurane (IsoFlo 250 mL, Zoetis/Pfizer, Prague, Czech Republic),
ketamine (Narkamon 100 mg/mL inj sol, Bioveta, Ivanovice na Hané, Czech Republic), and
xylazine (Rometar 20 mg/mL inj sol, Bioveta, Ivanovice na Hané, Czech Republic) were
used. Amoxicillin with clavulanic acid (Synulox RTU inj 100 mL, Zoetis/Pfizer, Prague,
Czech Republic) was used as a perioperative antibiotic, ketoprofen (Ketodolor inj 100 mL,
LeVet Pharma b.v., Oudewater, The Netherlands) as an analgesic, and enoxaparin (Clexane
inj 4000 IU/0.4 mL, Sanofi-Aventis, Prague, Czech Republic) and heparin (Heparin Léčiva
inj 1 × 10 mL/50KU, Zentiva, Prague, Czech Republic) as anticoagulants. Surgical skin
glue was obtained from Henry Schein (Brno, Czech Republic). The reference formulation
of abiraterone acetate (Zytiga, Janssen-Cilag Spa, Latina, Italy) was provided by Zentiva,
k.s. (Prague, Czech Republic). Before dosing, the tablets were crushed and the powder was
placed into gelatin capsules containing 4.2 mg of abiraterone acetate.

2.2. Animals

Male Wistar rats were purchased from Velaz (Prague, Czech Republic). They were
kept under standard conditions with a 12 h light–dark cycle, 22 ± 2 ◦C temperature, and
50 ± 10% relative humidity. They had ad libitum access to water and a standard granulated
diet, with the exception of 4 h before and after dosing with abiraterone acetate. The rats
were treated in compliance with the Guiding Principles for the Use of Animals at Charles
University, First Faculty of Medicine, and all measures were taken to minimize animal
suffering. The experimental animal project was approved by the Ministry of Education,
Youth and Sports, Czech Republic (MSMT-9445/2018-8).
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2.3. Experimental Design and Procedures

We analyzed the data from a drug development program that examined the per-
formance of innovative abiraterone acetate formulations against the identical reference
product (Zytiga, Janssen-Cilag Spa, Latina, Italy) in 3 stages. Stage 4 was performed to
evaluate the intra-individual variability by repeated administration of the reference product
to the same animals. For more detailed information about each stage, see Table 1.

Table 1. Summary of formulations administered to rats and number of rats enrolled into each stage
and group. R–reference formulation, T1–T3—innovative formulations.

Stage Group Formulations Number of Rats

1
A R/T1 4
B R/T1 4

2
C R/T2 6
D R/T2 4

3
E R/T3 3
F R/T3 3

4 IIV R/R 6

Each stage was conducted in a randomized, single-dose, single-center, laboratory-
blinded, two-period, cross-over design comparing bioavailability between the test and
reference formulations. For the present analysis, animals that were dosed with the reference
product in stages 1–3 are considered as individual groups A–F (n = 24). These animals
were administered the reference product on one occasion only, which allows for a parallel
comparison of the reference product bioavailability between the groups A–F.

In stage 4, the identical reference product was administered to animals (n = 6) in both
periods in order to investigate the intra-individual variability of abiraterone acetate in a
single-dose, single-center, laboratory-blinded, two-period, cross-over design. The group of
animals dosed in Stage 4 is labelled as the intra-individual variability (IIV) group.

Prior to dosing, the rats underwent a surgery where A. carotis was cannulated with
catheters made of medical-grade polyurethane (1.9-3Fr, Instech Laboratories, Plymouth
Meeting, PA, USA). Before the surgery, the rats were anesthetized by isoflurane (2.5–5%)
following xylazine (5 mg/kg, i.m.) and ketamine (100 mg/kg, i.m.). Amoxicillin with
clavulanic acid (140/35 mg/kg, s.c.) was applied to prevent infection during the surgery
and ketoprofen (6 mg/kg, s.c.) was used to minimize post-surgery pain. Catheters were
flushed with physiological saline (200 µL), heparin (50 µL), and sealed with heparinized
glycerol every day after surgery to avoid clogging.

After three days, the rats were randomly placed into groups and a formulation con-
taining abiraterone acetate was administered via oral gavage together with 1 mL of water.
To reach a fasted state, access to food was restricted between 4 h before and 4 h after dosing.
After drug dosing via gavage, blood samples (100 µL) were collected for 7 h (pre-dose, 0.5,
1, 1.5, 2, 2.5, 3, 4, 5 and 7 h). Blood withdrawn was replaced by physiological saline (100 µL),
and catheters were flushed by heparinized saline (1250 IU/mL) and sealed by heparinized
glycerol. Centrifugation of blood samples was performed (4500× g, 4 ◦C, 10 min) and
obtained serum aliquots were stored at −80 ◦C until further analysis. A washout period of
at least forty-eight hours was kept between study periods, based on the previously reported
half-life in rats (so that there are at least five half-lives between the periods) [15]. Sufficient
length of the washout was confirmed by measuring plasma levels of abiraterone below
LLOQ before starting the second period.

2.4. Analytical Methods

For the determination of abiraterone, plasma samples were processed as follows. In
25 µL of plasma, proteins were precipitated by the addition of 100 µL of acetonitrile (con-
taining 32 ng/mL abiraterone-d4 as an internal standard). The mixture was vortexed and
centrifuged at 9800× g for 10 min. The supernatant was injected into the UHPLC-MS/MS
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system. Nexera X3 UHPLC coupled with Triple Quad 8045 MS (Shimadzu, Kyoto, Japan)
was used with Kinetex EVO C18 column, 100 × 2.1 mm, 1.7 µm particles (Phenomenex,
Torrance, CA, USA), thermostated at 40 ◦C. The mobile phase (A: 0.1% formic acid in
deionized water, B: acetonitrile) was pumped in at a flow rate of 0.35 mL/min, and the
following gradient program was applied (min/% B) 0/30, 1.5/90, 3.0/90, 3.5/30, 6.0/30.
The autosampler temperature was maintained at 10 ◦C and the sample injection volume
was 2 µL. Effluent from the column was directed to the MS ion source between 2.6 and
3.8 min only. For the rest of the time, the effluent was directed to the waste. The MS
was operated with positive electrospray ionization, with ion source settings as follows: a
nebulizing gas flow of 3 L/min, a heating gas flow of 10 L/min, an interface temperature
of 300 ◦C, a desolvation line temperature of 250 ◦C, a heat block temperature of 400 ◦C,
and a drying gas flow of 10 L/min. A multiple reaction monitoring (MRM) mode was
used for abiraterone quantification. An MRM transition of 350.3 > 156.1 (Q1 pre-bias—17 V,
Q3 pre-bias—27 V, collision energy—57 V) was monitored for abiraterone and transition
354.3 > 160.1 (Q1 pre-bias—17 V, Q3 pre-bias—30 V and collision energy—57 V) was moni-
tored for abiraterone-d4. The method was validated concerning linearity, detection limit,
accuracy, precision, recovery, selectivity, and matrix effects. A seven-point calibration
curve was constructed using the analyte-to-internal standard peak area ratio. Weighted
least-squares linear regression (1/x2 weighting factor) was used. The developed method
was linear in the range of 0.5–600 mg/mL (R2 > 0.9996). The detection limit was 0.03 ng/mL
(determined as a concentration providing a signal corresponding to 3.3 times blank matrix
baseline noise), which was sufficient for the determination of abiraterone in plasma samples.
The accuracy expressed as the relative error in % was within ±7.1%. Inter-day and intra-day
precision expressed as relative standard deviations in % were between 2.4 and 5.2%. The
selectivity of the method was assessed by analysis of six different plasma samples in the
scan MS mode. No interfering compounds appeared within the retention time window of
abiraterone. It should be noted that the method uses tandem MS in the MRM mode, which
further increases the selectivity. Recovery of the method was checked by a comparison
between the abiraterone concentration found in a plasma sample spiked with the standard
before precipitation of proteins and the concentration found in a plasma sample spiked
after precipitation of proteins, at three concentration levels (1, 50 and 250 ng/mL). The
matrix effect was evaluated with six different plasma samples spiked with abiraterone
standard after precipitation of proteins at two concentration levels (1 and 100 ng/mL).
Abiraterone concentrations found in the plasma samples were between 80 and 108% of the
concentration found in the spiked 80% acetonitrile. Calibration was performed every day
and quality control samples were injected after every seven samples.

2.5. Data Analysis and Statistics

Phoenix WinNonlin® 8.3 (Certara, Princeton, NJ, USA) was used to analyze statistics
and pharmacokinetics. For AUClast, natural logarithmic transformation was used for all
statistical inference. For AUClast, non-compartmental analysis using linear trapezoidal
rule with linear interpolation was employed. For parallel comparisons of groups A–F, the
two-one-sided t-tests rely on the assumption that the observations for the groups come
from distributions that have equal variances. This assumption is taken since an identical
reference formulation was administered to all groups. For the cross-over comparison
in the paired design in stage 4, the ANOVA model with the fixed effects subject and
period was used. The residual variance from the model was used to construct a 90%
confidence interval (CI). For all pharmacokinetic calculations, actual sampling times and
ln-transformed concentration data normalized by animal weight were used. All figures
and histograms were constructed using GraphPad Prism 9.3.1 (GraphPad Software, San
Diego, CA, USA).
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2.6. Simulation Methods

All simulations were performed in R [16], version 4.0.2, by using the Mersenne Twister
algorithm for random number generation. In brief, individual test-to-reference ratios
were simulated on the basis of log-normal distribution, where the simulated geometric
means ratio (GMR) was 1 and the coefficient of variation was 0.73 and 0.96 for cross-over
and parallel design, respectively. These variations were observed in our program for
the reference formulation Zytiga. In the case of parallel design, homoscedasticity and
balanced treatment groups were respected. The total sample size corresponded to 24 for
both designs. For each design, 10,000 simulations were conducted, and the proportion of
ratios falling within the standard bioequivalence acceptance range 0.8 to 1.25 was expressed
in percentage.

3. Results

In stages 1–3, groups A–F were dosed with the reference product once in a parallel
manner. The geometric mean AUClast values of the groups A–F ranged from 9.62 to
44.62 mg/mL·min·g. In stage 4, the group labelled IIV was administered with the same
reference product in two periods, described as IIV1 and IIV2. The geometric means of
AUClast values are presented for all the groups in Figure 1. The geometric mean (90% CI)
AUClast value of groups A–F was 24.36 (23.79–41.00) mg/mL·min·g, and the geometric
mean (90% CI) AUClast value of IIV groups was 26.29 (20.56–47.00) mg/mL·min·g.

Figure 1. Geometric mean AUClast (90% CI) of individual parallel groups A–F within the program
with abiraterone acetate reference product in fasted state. To the right of the division line, AUClast

values of group IIV are presented for periods 1 and 2 separately.

All possible parallel comparisons between groups A–F were calculated, as well as the
comparison of period 2 against period 1 for the IIV study. AUClast ratios and 90% CI are
presented in Figure 2.

Figure 2. Results of bioequivalence evaluations, and AUClast ratios with 90% CI between groups A–F
in parallel design. To the right of the division line is the group IIV AUClast ratio to compare periods
from cross-over design. Log scale was used on y axis.

Simulations of the probability that the resulting ratio would fall into the range
of 80–125% (standard bioequivalence acceptance range), based on the observed inter-
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individual variability from groups A–F or IIV in parallel or cross-over design and a sample
size of 24 animals, are summarized in Table 2. Histograms showing the distribution of the
resulting ratios in cross-over and parallel designs are presented in Figure 3.

Table 2. Parameters used in simulations with calculated probability that the resulting ratio would
fall into the range of 80–125%. CV: intra-subject for cross-over, total for parallel.

Cross-Over Parallel

Simulations 10,000 10,000
Sample size 24 24

CV 73% 96%
Ratios 80–125% 76% 49%

Figure 3. Histograms showing distribution of the resulting ratios in cross-over and parallel designs.

4. Discussion

When any pre-clinical study is being planned or performed, the 3R principles must
be followed. These principles include a reduction in animal use, a replacement of other
methods whenever feasible, and minimized pain felt by the animals to the greatest possible
extent [17]. In parallel with the 3R principles, more attention has been paid in recent
years to the design of pre-clinical pharmacokinetic studies [18,19]. Some attempts to
standardize the procedures used in these studies are emerging to improve the quality of
the obtained data [3,20]. Our work was conducted to elaborate on the impact of inter- and
intra-subject variability within comparative pre-clinical studies, which is an important
factor that may substantially affect the obtained results. Abiraterone has been selected as a
model compound belonging to BCS class IV, which is a class with reported high inter- as
well as intra-animal pharmacokinetic variability [9].

Our analysis indicates that, although the geometric mean (90% CI) values of abi-
raterone AUClast in the parallel groups A–F were similar to the IIV group (24.36 (23.79–41.00)
vs. 26.29 (20.56–47.00) mg/mL·min·g) after the administration of the identical reference
formulation, the results generated in the isolated parallel groups provided likely imprecise
estimates of the true AUClast values ranging from 9.62 to 44.62 mg/mL·min·g only due to
chance. The differences between individual groups were extensive, with a maximum value
of geometric means more than 4 times higher than the minimum value. Notably, in 4 out of
15 possible pair comparisons between the parallel groups, the confidence intervals did not
include 100%, which is the true ratio for all comparisons tested after identical formulation
administration to all groups. That means that in 27% of the studies, identical formulations
would be claimed to provide different absorption characteristics compared to the reference
formulation. This observation represents a practical example of false positive results that
may be generated in studies in parallel design with a limited number of animals enrolled,
where it is not feasible to keep all factors standardized and balanced.

It has been described that, despite maximum efforts to standardize the conditions
of animal experiments, there is still high variability between various batches in parallel
design [13]. Within our work, the same conditions were maintained for all rats throughout
their housing and experiments, and identical methodology, analysis, and other processes
have been applied.
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However, there was still high variability in response between the parallel groups,
which can be explained by differences between the subjects and their behaviors: individual
genetic background, susceptibility to stress, eating habits that may differ even when all rats
are fed the same way, physical activity, and the number of physiological conditions. Many
of these factors cannot be measured or controlled during the experiments.

Stage 4 of our program was designed as a cross-over study to investigate intra-subject
variability. In this study, all animals received the same formulation in both periods, and the
extent of absorption (AUClast) from period 2 was compared to period 1 in a paired design.
There was no huge difference between the periods, showing that the intra-subject variability
was rather low. The coefficient of variability (CV) decreased from 96% in the parallel setting
to 73% in the cross-over design. A decrease in variability of this magnitude is a significant
factor for the sample size calculation of any planned experiment. For example, to test the
significance of a 1.5-fold difference between groups with 80% (β = 0.2) power and α = 0.05,
a minimal sample size of 116 and 66 probands was estimated when the CV is 96% and
73%, respectively. The use of a cross-over design would, therefore in such a case, allow the
number of animals to be reduced by almost one half.

Additionally, for both parallel and cross-over design, simulations of probability to
obtain accurate results confirming equivalence were created. For both designs, the same
sample size (n = 24) was tested, with the CV obtained from our current work presented. The
results show that 76% of runs generated ratios within 80–125% in cross-over design. In the
case of parallel design with the same total number of animals, the number of ratios within
the 80–125% range falls to 49%. In other words, for comparative studies of this size, there
is almost 80% probability of achieving the correct conclusion of similar PK performance
between both administrations of identical formulation, while only 50% of studies will
generate the same true conclusion in the parallel group design.

Our observation corresponds to the known consequences of variability in human com-
parative pharmacokinetic studies. For human comparative studies, cross-over design has
been recommended as the gold-standard methodology by both the Food and Drug Admin-
istration (FDA) and the European Medicines Agency (EMA) for several decades [21–23].

The cross-over design brings an indisputable advantage, as a smaller sample size is
sufficient to provide reliable results because each subject serves also as its own control. In
such a design, a large component of variability that is related to inter-individual differences
is eliminated. The choice of such a design in comparative pre-clinical study also fits in
with attempts to minimize the number of experimental animals (e.g., the Animal Welfare
Act originally from 1966 [17] or Directive 2010/63/EU of the European Parliament and of
the Council from 2010 [24]). On the other hand, there is a disadvantage to the cross-over
methodology in small animals such as rats, i.e., the need for mature surgical techniques and
advanced peri-operative care of the animals in order to minimize blood loss and maintain
the animals in good overall status throughout the study.

Contrary to our findings, Daublain et al. reported the rather surprising observation
that intra-animal exposures were found to be more variable than inter-animal exposures in
their analysis of PK studies with more than 16,000 research compounds [9]. However, this
observation is likely to be a consequence of the long duration of the PK studies included in
the analysis by Daublain et al., such as toxicokinetic studies, which also introduce the factor
of rapid ontogenesis in rats likely to override a single-time-point variability. Therefore, our
findings only apply to short-term animal experiments, where the ontogenetic changes of
animals do not substantially affect the study animals.

5. Conclusions

To conclude, the traditional approach to comparative pre-clinical pharmacokinetic
studies brings neither the required accuracy nor precision, if the 3R principles are followed
and the number of animals is kept acceptably small. Adopting a cross-over design is one
solution to ensure a high quality of data while reducing the number of animals needed for
the study. There are a few technical disadvantages of this more complicated study design,
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especially the need for more advanced care of the animals and the necessity to minimize
the blood sample volumes. Despite this, a cross-over design can significantly improve
the methodology in short-term comparative pre-clinical pharmacokinetic studies, and can
provide more precise and accurate results in comparison to more traditional pre-clinical
study designs.
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