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The robustness of the visual system lies in its ability to perceive degraded images. This is achieved through

interacting bottom-up, recurrent, and top-down pathways that process the visual input in concordance with

stored prior information. The interaction mechanism by which they integrate visual input and prior information is

still enigmatic. We present a new approach using deep neural network (DNN) representation to reveal the effects

of such integration on degraded visual inputs. We transformed measured human brain activity resulting from

~

One powerful characteristic of the visual system is its ability to complement visual information for incomplete
visual images. It operates by projecting information from higher visual and semantic areas of the brain into the
lower and midlevel representations of the visual stimulus. We investigate the mechanism by which the human
brain represents blurred visual stimuli. By decoding fMRI activity into a feedforward-only deep neural network
reference space, we found that neural representations of blurred images are biased toward their corresponding
Kdeblurred images. This indicates a sharpening mechanism occurring in the visual cortex. j
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viewing blurred images to the hierarchical representation space derived from a feedforward DNN. Transformed
representations were found to veer toward the original nonblurred image and away from the blurred stimulus
image. This indicated deblurring or sharpening in the neural representation, and possibly in our perception. We
anticipate these results will help unravel the interplay mechanism between bottom-up, recurrent, and top-down
pathways, leading to more comprehensive models of vision.
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Introduction

Perception is the process by which humans and other
animals make sense of the environment around them. It
involves integrating different sensory cues with prior knowl-
edge to arrive at a meaningful interpretation of the surround-
ings. This integration is achieved by means of two neuronal
pathways: a bottom-up stimulus driven pathway, which pro-
cesses sensory information hierarchically, and an intrinsic
pathway, which performs both recurrent processing through
lateral pathways and projection of prior information down
the hierarchy (we call it top-down pathway for short;
Friston, 2005; Arnal and Giraud, 2012; Clark, 2013; Sum-
merfield and de Lange, 2014; Heeger, 2017). The interplay
mechanism between these two pathways is still an open
question.

Previous studies have given rise to two main hypotheses
to explain the top-down modulation process. The sharpen-
ing hypothesis states that top-down signals enhance the
neural representation in the lower visual areas, thus improv-
ing the quality of the degraded sensory signal (Lee and
Mumford, 2003; Hsieh et al., 2010; Kok et al., 2012; Gayet
et al., 2017). Conversely, the prediction error hypothesis
(which originates from computer science ideas; Shi and
Sun, 2008) states that top-down signals provide expected
signal information that would be redundant if represented
again in lower visual areas, and therefore gets subtracted
(Mumford, 1992; Rao and Ballard, 1999). This results in an
error signal that is repeatedly processed to update the
prediction signal until the error signal reaches zero, which
corresponds with achieving a perceptual result (Murray
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et al., 2002; den Ouden et al., 2009, 2012; Alink et al.,
2010; Meyer and Olson, 2011; Todorovic et al., 2011; Kok
et al., 2012; Gordon et al., 2017). Most recently, these two
hypotheses were reconciled by a third hypothesis where
prediction error is computed to be later used to sharpen the
neural representations (Kok et al., 2012). Models of vision
usually employ this mechanism to explain the interacting
neural information processing pathways (Lee and Mum-
ford, 2003; Friston, 2005; Heeger, 2017).

Most of the top-down modulation studies used expecta-
tion of a previously known visual stimulus to drive the oper-
ation of top-down pathways, and have hence focused on
lower visual areas. Expectation-of-stimulus tasks facilitate
comparison of a visualized stimulus and an expected stim-
ulus at the lower visual feature level. While such studies
have provided an empirical framework for the operation of
top-down modulation driven by expectation in the lower
visual areas, they have not revealed its overall operation in
regular recognition-targeting visual tasks.

In this study, we tackle this question by investigating
top-down pathway operation during a natural-image vi-
sual recognition task throughout different levels of visual
processing ranging from lower visual areas (V1-3) to higher
visual centers: lateral occipital complex (LOC), parahip-
pocampal place area (PPA), and fusiform face area (FFA).
We drive the operation of top-down modulation by applying
degradation to natural images by blurring them. When
visual images are degraded, the visual sensory signal is
less reliable, and the visual cortex therefore depends
more heavily on prior knowledge driving the top-down
pathway operation. To unmask the top-down effect, we
investigate how the neural representations of viewing
blurred images deviate from a pure feedforward represen-
tation leading to a sharpened representation along the
visual processing pathway.

To demonstrate such sharpening, we measured and
analyzed brain activity from functional magnetic resonance
imaging (fMRI) brain data from different regions of the
lower and higher visual areas, to visualize the degradation
effect on different levels of neural processing. We used
deep neural network (DNN) feature space as a proxy for
hierarchical representation. We used a feature decoding
method devised by Horikawa and Kamitani (2017a) to
map brain activity into a DNN representation space. The
decoded features were analyzed for their similarity to the
feedforward-only DNN features of the stimulus images
and original nonblurred images. These similarities were
then compared to their counterpart noisy DNN features,
which account for decoding errors as a baseline for pure-
feedforward behavior, to find whether predicted features
deviate from the pure feedforward ones and how supple-
menting with prior knowledge about stimulus categories
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Figure 1. Study design. A, The stimulus sequence was divided into sequences of four stimuli each. Stimuli in the same sequence
contained different blur levels of the same image organized from the highest blur level (25%) to the lowest (0%). Each stimulus was
presented for 8 s. B, Overview of the feature decoding analysis protocol; fMRI activity was measured as the subjects viewed the
stimulus images presented, described in A. Trained decoders were used to predict DNN features from fMRI activity patterns. The
decoded features were then analyzed for their similarity with the true DNN features of both the original image (r,) and stimulus image
(rs)- The same procedure was also conducted for noise-matched DNN features that are composed of true DNN features with additional

Gaussian noise to match predicted features from fMRI.

would affect the sharpening behavior. We also compared
the case where the image content is successfully recog-
nized with the one where it is not. If image sharpening
were in operation, it would be expected that the top-down
effect would be boosted due to successful perception.

Materials and Methods

Subjects

Five healthy subjects (three males and two females,
aged between 22 and 33 years) with normal or corrected-
to-normal vision took part in the fMRI experiments. The
study protocol was approved by the Ethics Committee of
ATR. All the subjects provided written informed consent
for their participation in the experiments.

Visual stimuli

Both original and blurred image stimuli were shown.
The images were selected from the ImageNet online da-
tabase (Jia Deng et al., 2009), which is the database used
for training, testing, and validation of the pretrained DNN
model used in this study (see below). The database con-
tains images that are categorized by a semantic word
hierarchy organized in WordNet (Fellbaum, 2012). First,
images with a resolution lower than 500 pixels were ex-
cluded, then the remaining images were further filtered to
select only those that showed the main object at or close
to the midpoint of the image. The selected images were
then cropped to a square that is centered on the midpoint.
If no acceptable image remained after this filtration process,

May/June 2018, 5(3) e0443-17.2018

another image was obtained from the worldwide web through
an image search.

We created three different levels of blurring for the
blurred image stimuli. Blurring was conducted by running
a square-shaped averaging filter over the whole image.
The size of the filter relative to the image size dictated the
degradation level. The three degradation filters used had
a side length of 6%, 12%, and 25% of the side length of
the stimulus image. We then added the original stimulus
image represented by a level of 0% (Fig. 1A).

Experimental design

Experiments were divided into (1) the decoder training
runs where natural undegraded images were presented
and (2) the test image runs where the blurred images were
presented. Images included in the training and test data-
sets were mutually exclusive. In the decoder training runs,
we selected one stimulus image for each of the AlexNet
classification categories defined in the last layer, resulting
in a total of 1000 stimulus images. This training stimulus
set selection was conducted to avoid any bias to certain
categories in the decoder. This dataset was divided into
20 runs of 50 images each. The subject was instructed to
press a button when the image was a repeat of the image
shown one-back. In each run, 5 of the 50 images were
repeated in the following trial to form the one-back task.
Each image was shown once to the subject (except for the
one-back repetitions).

eNeuro.org
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The test image runs consisted of two conditions. In the
first condition, the subjects did not have any prior infor-
mation about the stimuli presented (no-prior condition). In
the second condition, the subjects were provided a se-
mantic prior in the form of category choices (category-
prior condition). The stimuli in the category-prior condition
consisted of images from one of five object categories
(airplane, bird, car, cat, or dog). The subject was informed
of these categories before the experiment, but not the
order in which they were to be presented.

The stimuli in both of the test conditions were presented in
sequences of maximum blurring to original image (25%,
12%, 6%, and 0% blurring). Each sequence consisted of
stimuli representing all four levels of blurring of the same
original image. We selected this order of presentation to
avoid the subjects having a memory-prior of the less
blurred stimuli when viewing the more blurred ones. For
each condition, the sequences for 80 images were ran-
domly distributed across two runs (40 images each). The
runs belonging to the same test experimental condition
were conducted in the same experimental session. The
training and test experiments were conducted over the
course of 5 month in total for all subjects.

All image presentation was performed using Psychtool-
box (Kleiner et al., 2007). Each image (12 X 12 degrees)
was presented in a flashing sequence for 8 s at 1 Hz (500
ms on time). Images were displayed in the center of the
display with a white central fixation point. The fixation point
changed from white to red 500 ms before each new stim-
ulus appeared. A 32-s pre-rest and 6-s post-rest period
were added at the beginning and end of each run respec-
tively. Subjects were required to fixate on the central
point. For test runs, subjects were required to provide
voice feedback of their best guess of the perceived con-
tent of the stimulus. They were also required to report the
certainty level of that guess by pressing one of two but-
tons, one indicating certainty and the other indicating
uncertainty. We checked if the vocal reports caused ex-
cessive motion by the subject that led to degradation in
the data quality but found that the motion correction
results were comparable to runs without vocal response
by the same subjects.

MRI acquisition

fMRI data were collected using a 3-Tesla Magnetom
Verio (Siemens Medical Systems) MRI scanner located in
Kokoro Research Center, Kyoto University. For image
presentation experiments, an interleaved T2:x-weighted
multiband accelerated EPI scan was performed to obtain
images covering the whole brain. The scanning parame-
ters were TR, 2000 ms; TE, 43 ms; flip angle, 80°; FOV,
192 X 192 mm; voxel size, 2 X 2 X 2 mm; slice gap, 0
mm; number of slices, 76; multiband factor, 4. For local-
izer experiments, an interleaved T2x-weighted gradient-
EPI scan was performed with the following parameters
TR, 3000 ms; TE, 30 ms; flip angle, 80°; FOV, 192 X 192
mm; voxel size, 3 X 3 X 3 mm); slice gap, 0 mm; number
of slices, 46. For retinotopy experiments, an interleaved
T2+-weighted gradient-EPI scan was also performed
where the scanning parameters were TR, 2000 ms; TE, 30
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ms; flip angle, 80°; FOV, 192 X 192 mm; voxel size, 3 X
3 X 3 mm; slice gap, 0 mm; number of slices, 30. T2-
weighted turbo spin echo (TSE) images with the same
slice positions as the EPI images were also acquired, to
act as high-resolution anatomic images. The parameters
for the anatomic sequences matching the image presenta-
tion acquisition were TR, 11,000 ms; TE, 59 ms; flip angle,
160°; FOV, 192 X 192 mm; voxel size, 0.75 X 0.75 X 2.0
mm; slice gap, 0 mm; number of slices, 76. For the localizer
experiment, the TSE parameters were TR, 7020 ms; TE,
69 ms; flip angle, 160°; FOV, 192 X 192 mm; voxel size,
0.75 X 0.75 X 3.0 mm; slice gap, 0 mm; number of slices,
48. For the retinotopy TSE acquisition the parameters
were TR, 6000 ms; TE, 58 ms; flip angle, 160°; FOV, 192 X 192
mm; voxel size, 0.75 X 0.75 X 3.0 mm. T1-weighted
magnetization-prepared rapid acquisition gradient-echo
(MP-RAGE) fine-structural images of the entire head were
also acquired. The scanning parameters for these were
TR, 2250 ms; TE, 3.06 ms; Tl, 900 ms; flip angle, 9°; FOV,
256 X 256 mm; voxel size, 1 X 1 X 1 mm number of
slices, 208.

MRI data preprocessing

After rejection of the first 8 s of each acquisition to avoid
scanner instability effects, the fMRI scans were prepro-
cessed using SPM8 (http://www:.fil.ion.ucl.ac.uk/spm, RRID:
SCR_007037), including 3D motion correction, slice-
timing correction, and coregistration to the appropriate
high-resolution anatomic images. Both scans were then
also coregistered to the T1 anatomic image. The EPI data
were then interpolated to 2 X 2 X 2-mm voxels and
further processed using Brain Decoder Toolbox 2 (https://
github.com/KamitaniLab/BrainDecoderToolbox2, RRID:
SCR_013150). Volumes were shifted by 2 s (1 volume) to
compensate for hemodynamic delays, then the linear trend
was removed from each run and the data were normalized.
As each image was presented for 8 s, it was represented by
four fMRI volumes. These four volumes were then averaged
to provide a single image with increased signal-to-noise
ratio for each stimulus image. The averaged voxel values
for each stimulus block were used as an input feature
vector for the decoding analysis.

Region of interest construction

Regions of interest (ROIs) were created for several re-
gions in the visual cortex, including the lower visual areas
V1, V2, and V3, the intermediate area V4, and the higher
visual areas consisting of the LOC, PPA, and FFA.

First, anatomical 3D volumes and surfaces were recon-
structed from T1 images using the FreeSurfer reconstruction
and segmentation tool (https://surfer.nmr.mgh.harvard.
edu/, RRID: SCR_001847). To delineate areas V1-4, a
retinotopy experiment was conducted following a stan-
dard protocol (Engel et al., 1994; Sereno et al., 1995)
involving a rotating double wedge flickering checkerboard
pattern. The brain activity data for this experiment was
analyzed using the FreeSurfer Fsfast retinotopy analysis
tool  (https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast,
RRID: SCR_001847). The analysis results were visually
examined and ROls were delineated on a 3D inflated
image of the cortical surface. Voxels comprising areas
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V1-3 were selected to form the lower visual cortex (LVC)
ROI.

Functional localizer experiments were conducted for
the higher visual areas. Each subject undertook 8 runs of
12 stimulus blocks. For each block, intact and pixel-
scrambled images of face, object, and scene categories
were presented in the center of the screen (10 X 10
degrees). Each block contained 20 images from 1 of the
previous 6 categories. Each image was presented for 0.3
s followed by 0.45 s of blank gray background. This led to
each block having a duration of 15 s. Two blocks of intact
and scrambled images of the same category were always
displayed consecutively (the order of scrambled and in-
tact images was randomly chosen), followed by a 15-s
rest period with a uniform gray background. Pre-rest and
post-rest periods of 24 and 6 s, respectively, were added
to each run. The brain response to the localizer exper-
iment was analyzed using the FreeSurfer Fsfast event
related analysis tool. Voxels showing the highest activa-
tion response to intact images for each of the face, scene,
and object categories in comparison with their scrambled
counterparts were visualized on a 3D inflated image of the
cortical surface and delineated to form FFA, PPA, and
LOC regions, respectively. Voxels constituting the areas
FFA, PPA, and LOC were then selected to form the higher
visual cortex (HVC) ROI, and the aggregation of LVC, V4,
and HVC was used to form the visual cortex (VC) ROI.
Selected ROIs for both retinotopy and localizer experi-
ments were transformed back into the original coordi-
nates of the EPI images.

Deep neural network model

The neural representations were transformed into a
DNN feature proxy using the AlexNet DNN model (Kri-
zhevsky et al., 2017). The Caffe implementation of the
network packaged for the MatConvNet tool for Matlab
(Vedaldi and Lenc, 2015) was used for implementation.
This network was trained to classify 1000 different image
categories with images from the ImageNet database. The
model consisted of 8 layers, the first 5 of which were
convolutional layers, and the last 3 were fully connected
layers. The input to each layer is the output of the previous
one as follows:

y = ff;(.f1(X0)) »

where x is the input image, y is the resulting image clas-
sification vector, and the function f,, is the operation for
each layer:

folXa) = 1a(2n(X))

and

ZI’](XFI) = cn(Wn! Xﬂ) + bn ’

where r,, is a nonlinearity function of the n'" layer (rectified
linear operation for the first seven layers and softmax for
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the final layer), w,, is the n" layer weight matrix that are
pretrained in the model using the ImageNet dataset, ¢, is
the operation conducted at the n'" layer between its input
and weights (convolution in the case of convolutional layers
and matrix multiplication in the case of fully-connected lay-
ers), and b, is the n'" layer bias term. We extract features
from each layer n as the output of z,(x,) before the appli-
cation of the nonlinearity.

One thousand features were extracted from each layer
(of 290,400, 186,624, 64,896, 64,896, 43,264, 4096, 4096,
and 1000 features from DNN layers 1-8, respectively),
with the features with the highest feature decoding accu-
racy according to the mean accuracy of the five subjects’
data in Horikawa and Kamitani (2017a) being selected. All
the feature units in the last layer were selected, as this
layer contained 1000 units in total. The features from each
layer were labeled as DNN1-DNNS8.

DNN feature decoding

Multiple linear regression decoders were constructed to
predict each feature extracted from the voxels of each ROI
from the layers of the DNN. The decoders were constructed
using sparse linear regression (SLR; Bishop, 2006). This
algorithm assumes that each feature can be predicted
using a sparse number of voxels and selects the most
significant voxels for predicting the features (for details,
see Horikawa and Kamitani, 2017a).

A decoder was constructed for each feature. Voxel selec-
tion was undertaken for each ROI to select the 500 voxels
with the highest correlations with each feature value. fMRI
data and features of the training image dataset were first
normalized to a zero mean with one standard deviation.
The mean and standard deviation values subtracted were
also recorded. The decoders were then trained on the
normalized fMRI data and DNN features. The recorded
mean and standard deviation from the training fMRI data
were then used to normalize the test data before decod-
ing the features. The resulting features were denormalized
only by multiplying by the standard deviation but not the
addition of the mean to avoid the effect of baseline cor-
relation in the subsequent data analysis. For the correla-
tion analysis, the feature vectors emanating from the DNN
were normalized by subtracting the mean of the training
dataset, to match the predicted features. These normal-
ized feature vectors are referred to as “true” feature vec-
tors in this study.

The feature pattern correlation was computed for each
stimulus image by aligning the predicted 1000 features
from each DNN layer and computing their Pearson corre-
lation coefficient with the corresponding true feature
vector.

Noise-matched features

The decoded features of blurred stimulus images can
be assumed to comprise the result of both bottom-up and
top-down processing in addition to fMRI noise, while
those of the true features from the DNN only contain the
result of the bottom-up processing. To isolate the effect of
the top-down processing, we defined baseline features
(noise-matched feature) by adding noise to the true fea-
tures. We could extract the matching noise level from the
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decoded features of the nonblurred stimulus images
assuming that they do not elicit a sharpening top-down
process and hence only contain the bottom-up and fMRI
noise components. Thus, we can add noise to the true
DNN features elicited from nonblurred stimulus images
until their behavior matches that of the decoded features
of the same images. To perform this operation, Gaussian
noise was added to the true features so that the correla-
tion between the noisy and the true features equated the
correlation between the decoded and the true features.
This matching noise level was calculated for each ROl/
DNN layer pair in each subject.

Feature gain

The similarity of the decoded features to the original
image features and that to the stimulus image features
were evaluated by correlation coefficients r, and r,, re-
spectively, and the difference was calculated as

Ardecode =r, — I,

which indicates the bias toward the original features. To set
a baseline, the same difference of the correlation coefficients
was calculated for the noise-matched features:

Ar, = -

i I .
noise Onoise Shoise

The feature gain was defined as the difference between
these:

feature gain = Argecone = Almoise -

A positive feature gain means that the decoded features
are more biased toward the original image features com-
pared to the noise-matched features.

Content specificity

To estimate the content specificity of the predicted fea-
tures from the VC, their correlation with the original image
features was compared to that with the other original image
features. The correlation of predicted features for each stim-
ulus was calculated for each of the noncorresponding
original images in the test dataset (n = 39), and the mean
correlation was then calculated. The mean over all the
stimulus images from the stimuli grouped by DNN layer
with all blur levels pooled was calculated (different-image
correlation) and compared with the mean of the correla-
tions with the corresponding original images (same-image
correlation). To compare this to the baseline correlation
between different images, the mean of the correlation
between each stimulus image vector and the feature vec-
tors of other original images was calculated (true feature
correlation).

Behavioral data extraction
The subject vocal response was recorded manually from
the voice recordings. The written record was then revised
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with each subject to ensure accuracy. The record was writ-
ten as incorrect in the cases where the subject missed giving
a voice response. In the cases when the subject missed
giving a button response, the previous button response
from the same sequence was used, except when the stim-
ulus was the last (original image) or the first (most degraded
image) in the sequence, when the response was set to
certain and uncertain respectively. Correct responses were
the ones identical to the response of the last stimulus in each
sequence (original image).

Code accessibility

The code described in the manuscript is freely available
online at https://github.com/KamitaniLab/BlurimageSharp-
ening. The code is available as extended data (Extended
Data 1). It was created and run on Matlab R2016b (RRID:
SCR_001622) on a Linux Centos operating system on a
computer cluster for parallel computing. Data to repro-
duce our results are also available at http://brainliner.jp/
data/brainliner/Blur_Image_Sharpening.

Results

DNN feature decoding

We posed a question on how top-down modulation in
the visual cortex affects the neural representation of blurred
images. To address this question, we measured brain activ-
ity while presenting blurred images. The protocol involved
the presentation of stimuli in blurred-to-original image
sequences. Each sequence consisted of stimuli showing
different blur levels of the same image presented in the
order of the most blurred to the nonblurred original image
(Fig. 1A) so that the subject is progressively receiving
sharper information about the stimulus. Subjects vocally
reported the perceived object in each stimulus, while also
reporting their certainty of their perception. We conducted
two experiments using this protocol. In the first experi-
ment, each image (stimulus sequence) was chosen from a
random object category and the subject had no prior
information of the object category (no-prior condition). In
the second experiment, the stimulus sequences were
chosen from five predefined object categories (airplane,
bird, car, cat, and dog). The subjects were informed about
the object categories of the set, but not of each stimulus
(category-prior condition). Using these two conditions, we
can analyze the effect of adding prior information on the
top-down effect in different visual areas.

To examine the effect of top-down modulation, we
investigated the neural representation of blurred images
via the proxy of a hierarchical feedforward-only represen-
tational space (Horikawa and Kamitani, 2017a). To trans-
form brain data into the DNN feature space, we trained
multivoxel decoders to predict DNN features from brain
activity data using a separate training stimulus dataset
consisting of 1000 natural nonblurred images. To confirm
that this choice of stimuli in training dataset did not cause
the decoder to be biased to nonblurred images, we con-
ducted a content specificity analysis (below).

Using the trained decoders, the brain activity pattern
induced by each stimulus in the blurred-to-original se-
quences was decoded (transformed) into the DNN feature
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space. For each stimulus image, the Pearson correlation
coefficient between its decoded feature vector and the
true features of the same stimulus image (r,) at each layer
was computed. In addition, the correlation between the
decoded feature vector and the true features of the cor-
responding nonblurred original image (r,) was computed
(Fig. 1B). For nonblurred stimuli, ry and r, are identical.

Feature gain computation

The correlation with stimulus image features (r,) reflects
the degree to which image features resulting from feed-
forward processing are faithfully decoded from brain ac-
tivity, while the correlation with original images (r,) reflects
the degree to which the decoded features are “sharp-
ened” by top-down processing, to be similar to those of
the nonblurred images. Fig. 2A shows a scatter plot de-
picting a representative result for prediction of the DNN
layer 6 feature vector from the ROI comprised of all the
visual areas (visual cortex, VC) of subject 4. DNNG6 is a
higher middle layer of AlexNet where we can visualize the
top-down effect on midlevel representations of visual stim-
uli. It is also a fully connected layer that processes global
stimulus information rather than local information in the
case of convolutional layers. This would lead to better
separated clusters that could show the transition from the
most to the least blurred. Each point represents a stimulus
image pooling both category-prior and no-prior condi-
tions, and disregarding behavioral data while the mean
points are also shown (white points with black borders) to
demonstrate how decreasing blur level leads to decoded
features veering toward original image features. Fig. 2B
shows the mean of the results in Fig. 2A, grouping stimuli
by different blur levels. From the results of r; and r,, we
define Argecoqe as the difference between them. We notice
from the representative data that decoded features have
higher correlation with the original image features than
with the stimulus image features, except when the blur-
ring effect becomes too large, as in the 25% blur level.
This suggests that a sharpening effect occurring in the
visual cortex causes the neural representations of viewing
the blurred image to mimic those of a less blurred version
of it.

One shortcoming of this measure (Argecoqe) IS that it
does not have an appropriate baseline for sharpening. A
value of Aryecoqe €qual to zero implies that decoded fea-
tures are equally similar to stimulus and original image
features, but it does not mean that there is no sharpening.
Thus, we defined a baseline for no sharpening according
to the behavior of feedforward-only processing. Decoded
features from feedforward-only processing were modeled
by stimulus image features plus Gaussian noise. The
noise level was determined to match the decoding errors
with the nonblurred images used as stimuli, in which no
sharpening was assumed to be involved. Noise was added
to the point where the decoded and noise-added features
had nearly identical correlations to the original image
features (Fig. 2B,C; 0% blur level in each). The same level
of noise (the mean across images in each subject and
DNN layer) was added to the stimulus features of the
blurred images. We then computed r, and r, for the
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noise-matched features, from which we could obtain the
noise-matched baseline Ar, . (Fig. 2C).

By comparing B and C in Fig. 2, it is possible to note an
opposite trend in how the features are correlated. As the
decoder was trained to predict image features, the natural
trend for Aryecoqe WOUId be negative, similar to Ar, gice- This
indicates a level of alteration in the neural representation
of the blurred images, to improve the match with the
original images.

By subtracting the noise baseline from Argecoge, WE
obtained the “feature gain” incurred by top-down pro-
cessing (Fig. 2D). The value of the feature gain indicates
how the top-down pathways affect the predicted features
in comparison with pure feedforward behavior. Fig. 2E
shows the results of the mean feature gain for different
subjects for each layer. We can observe positive signifi-
cant feature gains for most of the DNN layers and blur
levels (17 of 24 DNN layer/blur level combinations; t test
across subjects with Bonferroni correction, p < 0.002,
Bonferroni correction factor = 24). This suggests that top-
down processing modulates neural representations to bias
them toward the original images. We also noticed that the
fully connected layers DNN6-8 had more pronounced
positive feature gains than the convolutional layers. An-
other notable issue is that the 12% blur level shows better
feature gain relative to both 6% and 25% blur levels in
higher visual areas. One possible explanation is that at
6% blur level the local information starts to unravel, lead-
ing to sharpening at the shallower layers only.

One possible cause for this result is the training scheme
of the decoders that only used natural nonblurred images.
This could have biased the output features to those re-
sembling natural images. In this case, the features could
be correlated to any natural image features. We investi-
gated this possibility by measuring the content specificity
of the predicted features. We computed the correlation of
predicted features (excluding those with a 0% blur level)
with the corresponding original image feature (r,). This
was then compared with the mean correlation of the same
predicted features, but with the original features of differ-
ent images. This measure provided information on how
tightly the predicted features were associated with the
presented stimulus content, as opposed to natural im-
ages in general. Fig. 3 shows the result of such a content
specificity analysis. There are significant differences be-
tween correlations with the same image features and mean
correlations with different image features in all layers (¢ test
across subjects, p < 0.05, uncorrected), indicating a tight
association of the predicted features with the stimulus image
content, and ruling out a decoder bias explanation.

As mentioned above, the DNN model used in this study
implements hierarchical processing that is synonymous
with that happening in the visual cortex. Previous studies
have shown homology between the features of the DNNs
and the representations in the visual cortex (Cadieu et al.,
2014; Khaligh-Razavi and Kriegeskorte, 2014; Yamins
et al., 2014; Guglu and van Gerven, 2015; Horikawa and
Kamitani, 2017a). To this point, we have shown the results
of features predicted from the collection of all denoted
visual areas (VC). We further investigated the separate
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Figure 2. Correlation of decoded features with original and stimulus image features. A, Scatter plot showing feature correlation of DNN6
features decoded from the whole visual cortex (VC) of subject 4, with stimulus image features (r,; x-axis) and original image features (r,;
y-axis). Each point represents a stimulus image for all blurring levels except 0%, while the white points with black borders show the mean
of all points of the same blur level. Diagonal dotted line represents the line of equal correlation (Aryecoqe = 0)- B, Representative result from
DNNG6 features decoded from the whole VC of subject 4. Lines represent the mean correlation at different blur levels while pooling different
experimental conditions and behavioral response data. The difference between r, and r; is labeled as Ary...4.- C, Representative result
showing mean noise-matched feature correlation with the original and stimulus image features for different blur levels. Noise-matching was
performed to match the correlation of the DNNG6 predicted features of the 0% blur stimuli decoded from VC of subject 4 (thus obtaining
equal values with the decoded features at the 0% level). The difference between r, and r, yields the noise baseline (Ar,,,;s.)- D, Feature gain
is defined as the difference between Arygoqe @and Ar, - Ar could be defined as the displacement along the r,, axis of the point on the plot
from the line of equal correlation. So by subtracting the vector representing noise-matched feature correlations from decoded feature
correlation, we can calculate feature gain. E, Mean feature gain is indicated for each DNN layer for features decoded from VC at different
stimulus blur levels (excluding the 0% level). Error bars indicate 95% confidence interval (Cl) across five subjects.
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Figure 3. Content specificity of decoded features with blurred
images. Same image correlation indicates correlation of predicted
features (blur levels pooled, excluding 0%) with corresponding
original image features. Different images correlation indicates the
mean of correlations of the same predicted features with original
image features of different images. The mean correlation is
shown for different DNN layers. Error bars indicate 95% CI
across five subjects.

DNN1

visual areas of the lower, intermediate, and higher visual
areas, to examine the homology between the feature gain
and the visual cortex hierarchy (Fig. 4). We showed that
the feature gain also shows similar homologies to the
visual hierarchy, in that we could observe that shallower
DNN layers showed larger feature gain from the lower visual
areas (V1-3), while deeper DNN layers showed larger fea-
ture gain from the higher visual areas (LOC, FFA, and
PPA). The results are significantly positive for most of the
layers and ROls, especially in the higher visual areas and
fully connected layers (t test, p < 0.05, uncorrected).
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Figure 4. Feature gain across visual areas. Feature gain for
features predicted from different visual areas. Mean feature gain
is indicated for each DNN layer (blur levels pooled, 0% ex-
cluded). Error bars indicate 95% CI across five subjects.
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However, DNN1 did not show significantly positive feature
gains. These results imply that feature gain also follows
the same visual homology in the visual cortex areas, and
that the top-down effect is more pronounced in higher
visual areas.

Effects of prior knowledge and recognition

In the previous analyses, the data from different exper-
imental conditions were pooled together. We then further
investigated the difference between the category-prior
and no-prior conditions. We compared the feature gain
means grouped according to the experimental condition
(category-prior vs. no-prior) while pooling all the behav-
ioral responses (Fig. 5). We performed two-way ANOVA
on the feature gain data using the ROI and the experimen-
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Figure 5. Effect of category prior. Feature gain for features predicted from different visual areas grouped by experimental condition
(category-prior vs. no-prior). Mean feature gain is indicated for each DNN layer (blur levels pooled, 0% excluded). Error bars indicate

95% ClI across five subjects.

tal conditions as the independent variables. The addition
of a prior caused significant enhancement to the feature
gain in layers DNN4, 7, and 8 (p < 0.006, Bonferroni correc-
tion factor = 8). The difference was most pronounced in
DNN8 (p = 0.0000026). This result indicates that addition
of prior information enhances top-down modulation,
thereby causing an increase in feature gain. This implies
augmented sharpening of neural representations.

This result, however, pooled both correctly and incor-
rectly reported results. When considering behavioral data,
there are considerable differences between category-prior
and no-prior conditions. The category-prior condition was
characterized by a higher number of correct responses

May/June 2018, 5(3) e0443-17.2018

(235 of 300 total instances for 5 subjects) compared with
the no-prior condition (92 of 300 total instances for 5
subjects). However, in the category-prior condition, the
task was to choose 1 of 5 categories. This could lead to
false positives: if a subject responded in a random man-
ner, 20% of the responses would likely be correct. In
some cases when the stimulus was highly degraded, the
best guess response by the subjects could be random. To
attempt to curb this problem, we could use the certainty
level as an indicator of correctness, especially for the
category prior. We found from the behavioral results that
nearly all the trials labeled as certain were also correctly
recognized (category-prior: 138 of 139 certain trials were
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Figure 6. Effect of behavioral performance. Feature gain for features predicted from different visual areas grouped by experimental
condition (category-prior vs. no-prior) a