
Genome analysis

ShallowHRD: detection of homologous recombination

deficiency from shallow whole genome sequencing

Alexandre Eeckhoutte 1,2,*, Alexandre Houy1,2, Elodie Manié1,2, Manon Reverdy1,2,
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Abstract

Summary: We introduce shallowHRD, a software tool to evaluate tumor homologous recombination deficiency
(HRD) based on whole genome sequencing (WGS) at low coverage (shallow WGS or sWGS; �1X coverage). The
tool, based on mining copy number alterations profile, implements a fast and straightforward procedure that shows
87.5% sensitivity and 90.5% specificity for HRD detection. shallowHRD could be instrumental in predicting response
to poly(ADP-ribose) polymerase inhibitors, to which HRD tumors are selectively sensitive. shallowHRD displays
efficiency comparable to most state-of-art approaches, is cost-effective, generates low-storable outputs and is also
suitable for fixed-formalin paraffin embedded tissues.
Availability and implementation: shallowHRD R script and documentation are available at https://github.com/aeeck
hou/shallowHRD.
Contact: alexandre.eeckhoutte@curie.fr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Aggressive subtypes of breast and ovarian cancers are frequently
associated with homologous recombination deficiency (HRD) mak-
ing these tumors sensitive to poly(ADP-ribose) polymerase inhibitors
(Coleman et al., 2019). HRD arises upon inactivation of BRCA1/2,
RAD51C or PALB2 and is characterized by specific tumor genome
instability (Nik-Zainal et al., 2016; Staaf et al., 2019). Even though
HRD genes are mostly known, exhaustive testing of their inactiva-
tion is difficult. This motivates developing surrogate genomic
markers of HRD. Recent developments based on high throughput
sequencing, HRDetect, Signature 3, SigMA, scarHRD, achieved ex-
cellent capacity to evaluate HRD (Davies et al., 2017; Gulhan et al.,
2019; Polak et al., 2017; Sztupinszki et al., 2018). However, these
methods are technically complex, time- and data-storage consuming,
often need a matched normal sample and can be costly.

We introduce shallowHRD, a software for HRD testing based
on the number of large-scale genomic alterations (LGA) obtained from

whole genome sequencing (WGS) at low coverage (shallow WGS or

sWGS; �1X). sWGS robustly detect copy number alterations (CNAs),
even in fixed-formalin paraffin embedded (FFPE) samples and liquid

biopsies (Van Roy et al., 2017) at low cost and with easy-storable out-
puts. The concept of LGAs follows single-nucleotide polymorphism
(SNP) array approaches, exploiting an increased number of large-scale

intra-chromosomal CNAs characteristic of HRD (Abkevich et al.,
2012; Birkbak et al., 2012; Popova et al., 2012).

2 Materials and methods

2.1 Data
In-house sWGS of breast and ovarian cancers (26 primary tumors,

39 patient-derived xenografts from frozen blocks and 4 primary
tumors FFPE) and down-sampled to �1X WGS (108 normal tissues,
79 primary tumors from the TCGA breast cancer) were processed
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by Control-FREEC (v11.5) (Boeva et al., 2012) (Supplementary
Material).

2.2 shallowHRD
The tool takes as input ‘sample_name.bam_ratio.txt’, which
includes CNA profile fx; gg1; N where x is normalized read counts
in a sliding window, g is genomic coordinate and the profile segmen-
tation with Si, Zi segment median and size (in megabases, Mb).

2.2.1 Workflow

i. CNA cut� off is detected and the profile segmentation is

optimized as follows: Segments are defined as ‘large’ if

Zi � ðQ1þQ3Þ=2, where Q1; Q3 are quartiles of Zi (Zi > 3

Mb) distribution. M is detected as the first local minimum of

Si � Sj

� �
density, where i, j are large segments (Supplementary

Fig. S1). CNA cut� off ¼ min max 0:025; Mð Þ; 0:45ð Þ.
Adjacent segments are merged if Si � Siþ1ð Þ < CNA cut� off;

starting from the largest segment.

ii. LGAs, defined as intra-chromosome arm CNA breaks with ad-

jacent segments Zi;Ziþ1 � 10 Mb, are counted after removing

segments <3 Mb.

iii. The sample is annotated as ‘non-HRD’ (LGA < 15), ‘border-

line’ (15 � LGA � 19) or ‘HRD’ (LGA > 19).

iv. Sample quality is defined by M and cMAD,

cMAD ¼ median x� Sxð Þð Þ, where Sx corresponds to the seg-

ment enclosing x, before optimization: ‘bad’ (cMAD > 0.5 j
cMAD > 0.14 and M > 0.45), ‘average’ (cMAD > 0.14 and M

< 0.45 j cMAD< 0.14 and M > 0.45) or ‘normal or highly con-

taminated’ (M < 0.025) (Supplementary Material and Fig. S2).

v. CCNE1 amplification is called if Sc � 4 � CNA cut� off, where

c is the segment enclosing the gene (4 was set arbitrarily).
shallowHRD output contains: (A) Tumor genome profile. (B)
Density plot for CNA cut� off. (C) CNA segmentation summary.
(D) Sample quality and HRD diagnostics (Supplementary Fig. S3).

3 Results

In-house sWGS and down-sampled WGS of normal samples
(TCGA) were employed to develop the sWGS methodology similar
to the large-scale state transitions (LST) in SNP-arrays (Popova
et al., 2012) (Section 2). LGAs inferred from sWGS corresponded
well to the LSTs with identical HRD calls for 8 primary tumors
tested (76–97% match in segments � 10 Mb) (Supplementary Fig.
S4). sWGS coverage >0.3X provide adequate quality, also for FFPE
(Supplementary Figs. S2 and 5).

Validation by down-sampled WGS (TCGA) showed LGA to be
coherent to SNP-arrays LST (r¼0.92; slope¼0.88; P<2.2e–16,
Pearson) with increased discrepancy in average quality samples

(n¼13), and HRD diagnostics discordant in three and borderline
in four cases (Fig. 1A; Supplementary Material, Supplementary
Figs. S6 and 7, Supplementary Table S1). CCNE1 amplification was
found in four non-HRD cases, in-line with previous observations of
almost mutual exclusivity with HRD (Goundiam et al., 2015).
Thus, sWGS LGAs is suitable to take over the SNP-array LSTs,
which is a clinically validated method for HRD detection.

Tumor content for sWGS limits to >0.3 as estimated from the
TCGA and in silico dilution series (Supplementary Material,
Supplementary Figs. S8 and 9).

Fifteen and 20 LGAs represent soft and stringent cut-offs with
sensitivity of 87.5% and 81.25% (16 cases HRD) and specificity of
90.5% and 95.2% (63 non-HRD cases), respectively, which is com-
patible with other state-of-the-art approaches (Fig. 1B).

To conclude, shallowHRD implements a fast and straightfor-
ward evaluation of tumor HRD in breast, ovarian and other cancers
such as pancreatic or prostatic, performing similar to most state-of-
the-art approaches, the technique is cheap and suitable for all type
of samples.
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E. Manié, T. Popova and M.-H. Stern are co-inventors of the LST method

(US20170260588, US20150140122 and exclusive Licence to Myriad

Genetics).

References

Abkevich,V. et al. (2012) Patterns of genomic loss of heterozygosity predict

homologous recombination repair defects in epithelial ovarian cancer. Br. J.

Cancer, 107, 1776–1782.

Birkbak,N.J. et al. (2012) Telomeric allelic imbalance indicates defective DNA

repair and sensitivity to DNA-damaging agents. Cancer Discov., 2,

366–375.

Boeva,V. et al. (2012) Control-FREEC: a tool for assessing copy number and

allelic content using next-generation sequencing data. Bioinformatics, 28,

423–425.

Coleman,R.L. et al. (2019) Veliparib with first-line chemotherapy and as

maintenance therapy in ovarian cancer. N. Engl. J. Med., 381, 2403–2415.

Davies,H. et al. (2017) HRDetect is a predictor of BRCA1 and BRCA2 defi-

ciency based on mutational signatures. Nat. Med., 23, 517–525.

Goundiam,O. et al. (2015) Histo-genomic stratification reveals the frequent

amplification/overexpression of CCNE1 and BRD4 genes in non-BRCAness

high grade ovarian carcinoma. Int. J. Cancer, 137, 1890–1900.

Gulhan,D.C. et al. (2019) Detecting the mutational signature of homologous

recombination deficiency in clinical samples. Nat. Genet., 51, 912–919.

Nik-Zainal,S. et al. (2016) Landscape of somatic mutations in 560 breast can-

cer whole-genome sequences. Nature, 534, 47–54.

Polak,P. et al. (2017) A mutational signature reveals alterations underlying de-

ficient homologous recombination repair in breast cancer. Nat. Genet., 49,

1476–1486.

Popova,T. et al. (2012) Ploidy and large-scale genomic instability consistently

identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer

Res., 72, 5454–5462.

Staaf,J. et al. (2019) Whole-genome sequencing of triple-negative breast can-

cers in a population-based clinical study. Nat. Med., 25, 1526–1533.

Sztupinszki,Z. et al. (2018) Migrating the SNP array-based homologous re-

combination deficiency measures to next generation sequencing data of

breast cancer. NPJ Breast Cancer, 4, 16.

Van Roy,N. et al. (2017) Shallow whole genome sequencing on circulating

cell-free DNA allows reliable noninvasive copy-number profiling in neuro-

blastoma patients. Clin. Cancer Res., 23, 6305–6314.

Fig. 1. shallowHRD validation in down-sampled WGS of the TCGA (A) and per-

formance (B). Proven/No HRD: cases with/without inactivation of BRCA1/2,

RAD51C or PALB2 (Supplementary Material); HRD (red) and non-HRD (blue)

cases in SNP-arrays; LGAs: large-scale genomic alterations; WES: whole exome

sequencing. aLow specificity could be due to non-complete annotation of HRD
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