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Abstract

Manuscript symbols can be stored, recognized and retrieved from an entropic digital mem-

ory that is associative and distributed but yet declarative; memory retrieval is a constructive

operation, memory cues to objects not contained in the memory are rejected directly without

search, and memory operations can be performed through parallel computations. Manu-

script symbols, both letters and numerals, are represented in Associative Memory Registers

that have an associated entropy. The memory recognition operation obeys an entropy

trade-off between precision and recall, and the entropy level impacts on the quality of the

objects recovered through the memory retrieval operation. The present proposal is con-

trasted in several dimensions with neural networks models of associative memory. We dis-

cuss the operational characteristics of the entropic associative memory for retrieving objects

with both complete and incomplete information, such as severe occlusions. The experi-

ments reported in this paper add evidence on the potential of this framework for developing

practical applications and computational models of natural memory.

1 Functional description

In this paper we present a set of experiments for registering, recognizing and recovering repre-

sentations of calligraphic letters, both capital and lower case, and numerals, using the Entropic

Associative Memory (EAM), with satisfactory results. Our motivation is to add evidence on

the viability of the EAM model and its associated theory for developing computational models

of natural memory and to show its feasibility for constructing practical applications. The for-

mal specification of the EAM system is introduced in our previous work [1]. Here we provide

an intuitive description to make the present paper self-contained. An EAM system contains a

set of Associative Memory Registers (AMRs) consisting of standard tables, where columns are

interpreted as the attributes or characteristics of the stored objects, the rows as their potential

discrete values, and marked cells at the intersections specify the values of the attributes. Indi-

vidual objects are represented as functions from attributes to values, and classes are repre-

sented through the superposition in the table of the functions representing the individuals in

the class. Hence, classes are relations from attributes to values. Here we refer to the attributes

in the columns and the values in the rows as the arguments and the values respectively.
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Each AMR of size n ×m has an associated auxiliary register defined as a table of the same

dimension that is used to place the memory cue for the memory register and recognition oper-

ations, designated here as λ and η, and also the objects extracted from the AMR by the memory

retrieval operation, designated as β. The λ-operation is defined as the logical inclusive disjunc-

tion between the value of each cell of the auxiliary register, and the value of the corresponding

cell of the AMR, for all cells, and writing up the result on the AMR. The operation can be inter-

preted diagrammatically as overlapping the content of the auxiliary register –the cue– on the

AMR proper –the memory. Fig 1 (a) shows the input of an object on an empty AMR and Fig 1

(b) illustrates the union of two functions producing a distributed representation which

includes the functions input explicitly —i.e., {(a1, v1), (a2, v2), (a3, v4), (a4, v7)} and {(a1, v3),

(a2, v2), (a3, v6), (a4, v7)}— and two additional functions which are produced as collateral

effects of the λ-operation —i.e., {(a1, v1), (a2, v2), (a3, v6), (a4, v7)} and {(a1, v3), (a2, v2), (a3, v4),

(a4, v7)}. The novel objects can be seen as the gain or generalization of the λ-operation. These

representations are distributed because the relation between the cells and the represented

objects are many-to-many; i.e., each marked cell can contribute to the representation of differ-

ent units of content –the represented objects– and each represented objects can share memory

cells with other represented objects [2].

The η-operation is defined as the logical material implication between the corresponding

cells of the auxiliary register and the AMR, the antecedent and the consequent, respectively.

This operation is interpreted as the inclusion of the cue in the AMR, and fails whenever the

auxiliary register has at least one cell on but its corresponding cell in the AMR is off. This is, if

the cue is included in the memory, the value of η is true and false otherwise, as shown in Fig 2

(a) and 2 (b), respectively.

The β-operation, in turn, extracts the representation of an object if the η-operation is suc-

cessful for the given cue. To this effect, a value for each attribute is selected randomly out of

the set of values that are on in the corresponding column using a triangular probability distri-

bution with the cue as mode. In the present experiment the lower vl and upper vu values are

chosen such that the range [vl, vu] is the group of values set on in the surroundings of the cue

—that is, either l = 1 or the value vl−1 is off in the column, and u = m or the value vu+1 is off in

the column. In the basic case, the object retrieved is the cue exactly, as shown in Fig 3 (a); how-

ever, the retrieved object may be a previously stored object that is associated to the cue, or a

novel object constructed on the basis of the cue, as illustrated in Fig 3 (b) and 3 (c),

respectively.

AMRs have an associated entropy, which is defined as the average indeterminacy of the dis-

tributed representation that it holds. Let μi be the number of values assigned to the argument

ai in the relation r held in an AMR; let νi = 1/μi and n the number of arguments in the relation’s

domain. In case there are columns that have no marks, i.e., the relation is partial, we define νi
= 1 for all ai that has no value assigned in r, as such a fact is fully determined. The computa-
tional entropy e(r) –or the entropy of a relation– is defined here as:

eðrÞ ¼ �
1

n

Xn

i¼1

log
2
ðniÞ:

The representation containing a single function is fully determined, hence its entropy is zero.

The number of functions or patterns stored in an AMR of size n ×m with entropy e is (2e)n

or 2en, out of the maximum AMR’s capacity of mn. For instance, the entropy of the abstraction

produced through the λ-operation in Fig 1 (b) is e = 1/2; the number of stored functions,

including the two input explicitly and the ones that are produced as side effects of the λ-opera-

tion, is 2(1/2)4 = 4, out of the maximum capacity of 74 = 2401. The novel functions represent
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potential reconstructions that depend on the interactions between stored objects. The space of

potential objects is huge and can play a role in imagination and creativity.

In summary, in the present experiments we use the original machinery of the EAM model

[1] as follows: Let rf and ra be two arbitrary relations from A to V held in an AMR and its asso-

ciated auxiliary register, respectively; and fa be a function with the same domain and codo-

main, held in the auxiliary register, representing the cue to a memory retrieval operation. The

operations are defined as follows:

• Memory Register: λ(rf, ra) = q, such that Q(ai, vj) = Rf(ai, vj) _ Ra(ai, vj) for all ai 2 A and vj 2
V –i.e., λ(rf, ra) = rf [ ra.

Fig 1. Memory register operation.

https://doi.org/10.1371/journal.pone.0272386.g001
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• Memory Recognition: η(ra, rf) is true if Ra(ai, vj)! Rf(ai, vj) for all ai 2 A and vj 2 V (i.e.,

material implication), and false otherwise.

• Memory Retrieval: β(fa, rf) = fv such that, if η(fa, rf) holds fv(ai) = rf(ai) for all ai, where such

object is selected using a triangular random distribution centered on the cue fa. If η(fa, rf)
does not hold, β(fa, rf) is undefined –i.e., fv(ai) is undefined– for all ai.

Fig 2. Memory recognition operation.

https://doi.org/10.1371/journal.pone.0272386.g002
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Fig 3. Memory retrieval operation.

https://doi.org/10.1371/journal.pone.0272386.g003
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2 Analysis and synthesis

Modality specific images are input and stored in modality specific buffers, such as standard

pixels buffers for storing pictures. In the present model such concrete representations are

translated into abstract amodal representations in the form of attribute-value structures or

functions, which are the objects registered, recognized and retrieved in AMRs. The concrete

and abstract representations of the same object stand in a one-to-one relation to each other; the

memory regions allocating these objects are mutually exclusive and constitute local representa-

tions [2]. However, when such individual objects are input into AMRs, their representations

are overlapped, their identity is left indeterminate and the relation between the memory units

–i.e., the cells in the table– and the corresponding functions or units of content ismany-to-
many, and such representations are distributed [2].

The use of the present associative memory system requires an analysis module for mapping

concrete into abstracts representations, for memory register and recognition, and a synthesis

module for performing the inverse mapping. The bidirectional mapping is performed through

an autoencoder [3, 4] including an encoder and a decoder [5]. These two components are

modular –independent– and implement the analysis and synthesis modules, respectively, as

illustrated in Fig 4.

The encoder in the experiments presented below in Section 3 is implemented with a

VGG5-like neural network with ten convolutional layers [6], and the decoder with a trans-

posed convolutional neural network with four layers. The classifier is a fully connected neural

network (FCNN) with two layers, mapping sets of features output by the encoder into their

corresponding c classes, and its purpose is to moderate the autencoder’s training process, so

that the abstract representations are satisfactory both for classification and decoding purposes.

The architectures for the neural networks were chosen so that they were simple but functional.

The input to the encoder consists of p features, that correspond to the information in the

input buffer, as illustrated in Fig 4. The encoder maps such concrete representation into n out-

puts, which constitutes the input to the AMRs directly –i.e., a function of n arguments with

their corresponding values. This set of features is also the input to the classifier, which associ-

ates one of c categories to its input, and the decoder, that computes an approximation of the

inverse function of the encoder, and renders p features, regenerating the concrete image. The

encoder, the decoder and the classifier are trained simultaneously in a supervised manner by

standard back-propagation, and the latter is removed once the autoencoder has been trained.

Autoencoders were originally proposed to reduce the dimensionality of the data [3, 4], and the

present use constitutes a novel application of such technology.

The n outputs of the encoder are floating point values which are converted into integers in

the range [1, m] by rounding the results of a linear transformation, producing the discrete

value of the corresponding argument. The resulting discrete function is input into the corre-

sponding AMR in the memory register operation or is used as the cue to the memory recogni-

tion or retrieval operation. There are c associative memories, one per class in the dataset. If the

cue is accepted the corresponding object is retrieved as well as its class; otherwise a conven-

tional rejection code is returned with the class unknown. If the cue is accepted by more than

one AMR the class with the smallest entropy is selected. This operation is performed by the

entropy-based filter.

3 A visual memory for hand written manuscript symbols

The associative memory system was tested in previous work [1] through the construction of

a visual memory for storing and retrieving distributed representations of hand written

digits from “0” to “9”. The system was built and tested using the MNIST data-set available at
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http://yann.lecun.com/exdb/mnist/. In the present work we add evidence of the potential of

the framework for the construction of practical applications. We use now the EMNIST [7]

database including manuscript capital and lower case letters, and also the ten digits, increasing

the number of classes in relation to MNIST from 10 to 62; however, capital and lower case let-

ters with very similar visual shapes are further merged, rendering 47 classes. Here we define

the alphabet EMNIST-47, as shown in Fig 5. As can be seen, there are eleven lower case letters

that can be clearly distinguished from their upper case counterparts –i.e., classes 36 to 46– and

have independent entries. For the experiment 1 described in Section 3.1 we used the EMNIST

Balanced segment including 2, 800 instances of each class.

In previous work we also showed that an Associative Memory Register can hold the repre-

sentation of more than one class and yet the system has a satisfactory performance. Here we

capitalize such functionality and also model a memory in which capital and lower case letters

of the same type that have very different visual shapes are held in the same memory register.

As a result, classes 36 to 46 of EMNIST-47 are dropped, and the total number of classes is

reduced to 36. This second alphabet is referred to as EMNIST-36, and it is shown in Fig 6.

Fig 4. Training the analysis and synthesis modules.

https://doi.org/10.1371/journal.pone.0272386.g004
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The corpus was partitioned for the experiments in both settings in three disjoint sets. The

partitions were rotated through a standard 10-fold cross-validation procedure. The partitions

names and the assigned amount of data are as follows:

• Training Corpus (TrainCorpus): For training the analysis and synthesis modules (57%).

• Remembered Corpus (RemCorpus): For filling in the Associative Memory Registers (33%).

• Test Corpus (TestCorpus): For testing (10%).

The data allocated to each partition reflects a trade-off between learning and test data, so

90% of the corpus is used for the former and 10% for the latter, according to standard machine

learning practices. The balance between training and remembered data considers that a large

enough amount of corpus is needed for training the deep neural networks modeling percep-

tion and action, but it is also required a large enough amount of data to test the AMRs with dif-

ferent remembering conditions and entropy levels. We also made preliminary experiments

with small variations to these amounts, and the present choice constitutes a satisfactory

compromise.

The functional neural network architectures and the optimal value for the number of inputs

to the AMRs –i.e., the parameter n– was determined using the training corpus through prelim-

inary experiments. The integer powers of 2 were explored and n was set to 64 for all the experi-

ments. Next the training corpus was used for training the neural networks –the encoder, the

decoder, and the classifier, assembled into a single neural network with one input and two out-

put channels– for all the tend folds. Then the encoder was used to process the remembered

Fig 5. EMNIST-47 alphabet.

https://doi.org/10.1371/journal.pone.0272386.g005
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and test corpora to produce the corresponding sets of abstract representations. These were in

turn input to the corresponding AMRs to perform the experiments.

Developing on our previous work, the entropic associative memory for manuscript symbols

was tested with four experiments as follows:

1. Experiment 1: Define an associative memory system including an AMR for holding the dis-

tributed representation of each one of the forty seven manuscript symbols of EMNIST-47.

Determine the recognition precision and recall of the individual AMRs, and of the overall

system, for AMRs of size n × 2m. The experiment was performed for 0< =m< = 9. Identify

the parameter m of the AMRs with satisfactory performance. Finally, determine the preci-

sion and recall of the memory recognition when the AMRs contain different amounts of

remembered instances and, consequently, different levels of entropy.

2. Experiment 2: Determine the value of m of AMRs holding the distributed representation of

capital and lower case letters of EMNIST-36. Determine the recognition precision and

recall of the individual AMRs and of the overall system, for 0< = m< = 9 as before. Deter-

mine the precision and recall of the memory recognition when the AMRs contain different

levels of entropy, as in experiment 1.

Fig 6. EMNIST-36 alphabet.

https://doi.org/10.1371/journal.pone.0272386.g006
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3. Experiment 3: Retrieve objects out of a cue for different levels of entropy and generate their

corresponding images –with the best AMRs found in experiment 1. Assess the similarity

between the cue and the recovered object at different levels of entropy.

4. Experiment 4: Retrieve letters and digits of significantly occluded objects with the same

AMR size used in Experiment 3. Assess the precision and recall of the memory retrieval

operation and the quality of the generated images.

The source code for replicating the experiments, including the detailed results and the spec-

ifications of the hardware used, are available in Github at https://github.com/eam-

experiments/EMNIST.

3.1 Experiment 1

Compute the characteristics of AMR of size 64 × 2m for 0�m� 9:

1. Register the totality of RemCorpus in their corresponding register through the Memory_R-
egister operation;

2. Test the recognition performance of all the instances of the test corpus through the Memor-
y_Recognize operation;

3. Compute the average precision, recall and entropy of individual memories.

4. For each instance of the test corpus recover a unique object by the Memory_Retrieve opera-

tion or reject the cue; compute the average precision and recall of the integrated system

when this choice has been made.

5. Select the parameter m with the best trade-off between precision and recall. Determine the

performance of the system with such memory size n × 2m, for different amounts of the

RemCorpus and entropy levels.

The average precision, recall, and entropy of the AMRs, across the ten-fold cross-validation

experiment is shown in Fig 7 (a). Precision and recall are computed per AMR in the standard

way as follows: Precision = TP/(TP + FP); Recall = TP/(TP + FN), where TP, FP and FN stand

for true positives, false positives and false negatives, respectively. As can be seen, precision is

very low for small values of m but grows with the number of rows, i.e., 2m, but recall is very

high for low values of m, as the information is confused when the number of rows is very low,

and most instances are accepted. However, when the value of m is increased, the grid is made

finer, true instances are missed, and the recall is lowered. The optimal value of m is a trade-off

between the precision and recall graphs. Fig 7 (a) shows that there is a good compromise at

m = 6 and m = 7, i.e., for 64 and 128 rows. The figure also shows the entropy at the bottom bar.

As can be seen its value is increased almost linearly with the AMRs size, starting from 0 for 1

row, and is maximal for 512 rows.

Fig 7 (b) shows the precision and the recall as a function of the number of rows of the sys-

tem as a whole. In this case if an instance is rejected by all AMRs, it counts as a false negative

for the memory system, and lowers the total recall. In case the instance is accepted by at least

one AMR, the one with the lowest entropy is chosen; if it is of the wrong class, it is a false nega-

tive for the right class and a false positive for the accepting class, and increases by one the

count of both the false positives and false negatives of the system as a whole. Fig 7 (b) shows

that precision and recall have a very similar pattern, as both grow from a very low to a higher

value according to the increase of the number of rows. However, when the grid is too fine, true

instances are reject and recall starts to decrease as before. Fig 7 (a) and 7 (b) are coherent, and

both show that there is a good compromise at 64 and 128 rows. Fig 7 (c) shows the average
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Fig 7. Results of Experiment 1 using EMNIST-47.

https://doi.org/10.1371/journal.pone.0272386.g007
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number of accepting AMRs for each instance per AMR size. As can be seen, this number goes

from 47 for AMRs with one row to 1 for AMRs with 32 or more rows. This effect is further

illustrated in Fig 7 (d).

The overall purpose of experiment 1 was to investigate the performance of AMRs with satis-

factory operational characteristics in relation to its entropy or information content. These are

the AMRs with sizes 64 × 64 and 64 × 128. Fig 7 (e) and 7 (g) show the respective average per-

formance of these AMRs when they are filled up with varying proportions of the RemCorpus –

1%, 2%, 4%, 8%, 16%, 32%, 64% and 100%– using the best AMRs size; and Fig 7 (f) and 7 (h)

show the performance of the system as whole for the corresponding register sizes, as before.

These latter figures show another aspect of the entropy trade-off. If the number of remem-

bered instances is very low, the entropy is also very low –in the limiting case, if there is only

one instance, the entropy is zero. In this condition there are very few objects stored in the

AMRs, and if the cue to the memory recognition operation is accepted, precision is very high;

however, even cues that are very similar to the stored objects will be rejected; hence recall is

very low. Precision decreases slightly with the increase of remembered information and the

consequent entropy increase, but recall grows quite rapidly, until a satisfactory compromise

between precision and recall is reached. However, if the entropy is increased even further the

precision starts to lower but the recall continues to grow. In this case the AMRs are saturated,

most instances are accepted and recall is very high but precision lowers significantly.

Fig 7 (e) shows that the best trade-off between precision and recall for AMRs of size 64 × 64

occurs when the percentage of the remembered corpus included in the memory is 64% where

the corresponding graphs intersect. The graphs vary slightly for AMRs of size 64 × 128 where

they do not intersect, and the best performance occurs when the totality of the remembered

corpus is used, as shown in Fig 7 (g). The performance of the system as a whole, shown respec-

tively in Fig 7 (f) and 7 (h), shows that the precision remains high when the totality of the

remembered corpus is used, but the recall is lower and the graphs do not intersect. To asses

the performance of the system it also has to be considered the cost of the memory resource

which is doubled for the largest register.

3.2 Experiment 2

This experiment shows that an AMR can hold the distributed representation of objects of dif-

ferent classes adding evidence on previous work, such as the representations of different digits

–e.g., 0 and 1– with similar levels of precision and recall but a small increment of the entropy,

as was shown in our previous work. In this case, we use EMNIST-36 instead of EMNIST-47

such that eleven different shaped capital and lower case letters are collapsed in the same class.

The procedure is analogous to experiment 1. The results are shown in the corresponding

graphs in Fig 8. The performance of the two settings are analogous, with the only difference

that the entropy of the AMRs holding capital and lower case letters is slightly larger than the

entropy of the corresponding AMR holding only one class.

Experiments 1 and 2 show that the performance of the systems is mostly similar for AMRs of

sizes 64 × 64 and 64 × 128; they also show that the system’s performance is similar for the alpha-

bets EMNIST-47 and EMNIST-36. The latter is more economical –as it abstracts over lower

case and capital letters and uses only 36 AMRs– hence we use AMRs of size 64 × 64 with the

EMNIST-36 for investigating further the quality of the memory system in experiments 3 and 4.

3.3 Experiment 3

This experiment assesses the performance of the memory retrieval operation, using the config-

uration and entropy levels in Fig 8 (e) and 8 (f). This operation is constructive in opposition to
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Fig 8. Results of Experiment 2 using EMNIST-36.

https://doi.org/10.1371/journal.pone.0272386.g008
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photography memories, and all recovered objects are produced by the β-operation as

explained above in Section 1 and illustrated in Fig 3. We study three conditions for memory

retrieval, which are illustrated in the tables of Figs 9–11. There is a column for every type of

symbol of the EMNIST-36 alphabet. The different rows show the symbol that is recovered

from the memory using the same cue at the different amounts of corpus and levels of entropy.

White cells indicate that the memory cue was rejected at the corresponding entropy level. The

top row shows the cue to the memory retrieval operation. The second row shows the symbol

Fig 9. High quality cues. EMNIST-36 Symbols recovered with high quality cues as a function of the entropy.

https://doi.org/10.1371/journal.pone.0272386.g009

Fig 10. Moderate quality cues. EMNIST-36 Symbols recovered with moderate quality cues as a function of the entropy.

https://doi.org/10.1371/journal.pone.0272386.g010

Fig 11. Poor quality cues. EMNIST-36 Symbols recovered with very poor cues as a function of the entropy.

https://doi.org/10.1371/journal.pone.0272386.g011
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that is produced by the autoencoder feeding the output of the encoder directly into the

decoder, i.e., bypassing the memory. As the decoder ideally computes the inverse function that

is computed by the encoder, the symbols in this row should be exact copies of corresponding

cues in the top row. However, the decoder computes only an approximation and the symbols

are slightly different. The encoder and decoder produced always an object, which is the most

proximate to the cue, as neural networks never reject an object, despite that the quality of the

cue may be very poor; hence the rendered object may be of a wrong class. The 3rd to the 10th

row show the symbols recovered at the eight different levels of entropy of the RemCorpus. We

study three conditions of the memory retrieval operation, as follows:

1. The cue to the memory retrieval operation is accepted at the lowest possible level of

entropy. In this condition it is expected that the symbol will be recovered at all higher levels

of entropy too, which it is in fact the case as shown in Fig 9. The table shows that the recov-

ered object is quite similar to the cue at most entropy levels, although its quality diminishes

slightly at higher levels. This condition illustrates cues that are recovered with high preci-

sion, but there are very few objects stored in the memory and recall is very low. Intuitively,

the contribution of the cue to the construction of the retrieved object is very high, hence the

cues and the corresponding retrieved objects are very similar and have “good quality”.

2. The cue is accepted at a moderate level of entropy –at about 4% of the remembered corpus

or at an entropy level between 3 and 4– but is rejected at very low levels, as illustrated in

Fig 10. In this condition both the cue and the memory content contribute to the shape of

the retrieved object depending of the entropy level: the higher the entropy the less the

impact of the cue on the shape of constructed object and vice versa. However, as there are

more objects stored in the memory, the entropy and the recall are higher, and more cues

are likely to be recovered.

3. The cue is accepted at the highest entropy levels or rejected, as illustrated in Fig 11. In this

condition the cues are far from representative instances of the class. If accepted, the content

of the memory may contribute much more to the construction of the retrieved object than

the cue itself; the reconstruction may be very noisy; the quality of the recovered objects may

be poor or very poor; and the cue and the retrieved object may be quite different. Precision

is very low and the retrieved object may be of the wrong class.

3.4 Experiment 4

In this experiment, we investigated the memory retrieval operation using severely occluded

cues. In this condition, cues should be rejected at most entropy levels, as they are very different

of the corresponding stored objects. This is reflected in the recall of the η-operation, and conse-

quently of the β-operation, which is very low. However, there may be situations in which recov-

ering tentative objects may be useful if they can be further processed in relation to contextual

information, and the right object may still be recovered, as is common in visual interpretation.

Despite severe occlusions, the visible part of the cue has some amount of structure that is

reflected in its abstract representation, and recognition failure may be due to the rejection of a

small number of features, as shown in our previous work [1]. The definition of the η-operation

states that all 64 features of the abstract representation of the cue must be included in the AMR

of the corresponding class, which is a very strong condition. A means to increase the recall is to

relax the test and allow that memory retrieval is successful if a small number of features may fail.

We tested the memory retrieval operation when the bottom-half of the manuscript symbols

were occluded, and also when the symbols were occluded by horizontal bars covering more
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than half of the total area in which the symbol is placed. The results are shown in Figs 12 and

13, respectively. Figures (a) at the top in both occlusion conditions show the objects recovered

with no tolerance at all levels of entropy, and figures (b), (c) and (d) show the relaxation of 1, 2

and 3 out of the 64 total features, respectively. As expected, the recall is increased but the preci-

sion is lowered according to the amount of relaxation. As the recall is very low in all these con-

ditions only a small amount of symbols are recovered. In the none-relaxation condition most

cells are blanks at low entropy levels and there are columns with only blank cells. The relaxa-

tion of one feature shows that objects are recovered at lower levels of entropy, and that the

blanks are filled-up from bottom to top; this tendency is continued with the relaxation of two

and three features as shown in (c) and (d) in both figures, respectively.

4 Experimental setting

The programming for all the experiments was carried out in Python 3.8 on the Anaconda dis-

tribution. The neural networks were implemented with TensorFlow GPU 2.4.1, and most of

the graphs were produced using Matplotlib. The experiments were run on an Alienware

Aurora R5 with an Intel Core i7-6700 Processor, 64 GBytes of RAM and an NVIDIA GeForce

GTX 1080 graphics card.

5 EAM versus neural networks models of associative memory

Figs 1 to 3 illustrate that EAM resembles natural memories [8, 9] in a number of putative prop-

erties, and diverges from the proposals developed within the neural networks paradigm [10–

16], that were consolidated with Hopfield’s model [17], and subsequent work [18–23]. The

basic difference is that we conceive a memory as a functional system using a declarative repre-

sentational format in which recollections are registered, recognized and recovered on the basis

of a cue, which corresponds to the intuitive notion of “remembering”, in opposition to neural

networks models that conceive memory as a dynamical system in which input patterns are

used to “train” a neural network in a “learning stage”; such that the stored patterns can be

recovered out of complete or incomplete input patterns in a “use” or “test stage”. Although all

neural networks models use numerical matrix representations, they can be divided intuitively

into those that focus on the memory as a dynamical system, as Hopfield’s [17] and Kosko’s

[18] original models; and those that focus on the algebraic properties of the matrices represent-

ing such networks, such as morphological models [19, 20, 24] and related work [25]; and those

inspired on natural neurons directly, such as dendritic associative memories [26]. There is also

work modeling human associative memory at the hardware level in situations of conditioning,

emotion and fatigue [27, 28]. The difference between the present proposal and the neural net-

works models shows up in several specific characteristics of the systems, as elaborated below.

5.1 Representational format

AMRs in the EAM model hold distributed representations that are produced out of the logical

inclusive disjunction of discrete finite functions representing individual objects in the table

format, and conform directly to the criterion stated by Hinton [2] for distributed representa-

tions, i.e., that units of memory stand in amany-to-many relation to the units of content, as

opposed to local representations where such relation is one-to-one. This is, it is possible to tell

explicitly which units of memory contribute to the representation of an individual object, and

which memory cells are shared by a number of units of content or represented objects. The

representations stored in the AMRs are manipulated directly by the memory register, memory

recognition and memory retrieval operations, and the representation is declarative. This con-

trasts with memories developed in the neural networks paradigm, in which the memories are
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Fig 12. Memory retrieval with occlusions of 50%. Results of using cues occluded 50% at the bottom for memory retrieval, with relaxations of none, 1, 2 and 3 features

out of 64.

https://doi.org/10.1371/journal.pone.0272386.g012
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Fig 13. Memory retrieval using cues occluded with horizontal bars. Results with relaxations of none, 1, 2 and 3 features out of 64.

https://doi.org/10.1371/journal.pone.0272386.g013
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numerical matrices of weights produced through standard matrix operations; and such repre-

sentations are better thought of as sub-symbolic or non-declarative.

5.2 Productivity

A salient property of distributed representations is that they “contain” not only the objects

used in the training process, but also additional similar objects that are produced as a side-

effect of the operations through which the representation is created [2]. This generalization

property is essential to neural networks devices, such as classifiers trained with standard back-

propagation, that are constructed with a training corpus that should be different from the test-

ing corpus, and can classify unseen inputs in the test stage. Associative memories within the

neural networks paradigm are trained through a forward process, such that each input pattern

should correspond ideally to a minimum of the energy function associated to the network, and

can be retrieved explicitly. Although there may by additional local minima, these are consid-

ered errors due to side-effects of the training, that should be avoided. The EAM model, on its

part, do produce a potential number of novel patterns due to the productivity of the λ-opera-

tion, which define the space of potential reconstructions; hence, has the generalization prop-

erty, but in a manner that is coherent with the retrieval of explicitly stored patterns.

5.3 Constructive recovery

Associative memories developed within the neural networks paradigm need to be provided

with the full set of patterns that are codified in the weight matrix, and the retrieve operation,

either on the basis or complete or incomplete inputs, produces the stored patterns exactly; for

this reason, such memories are reproductive or “photographic”, alike to standard RAM memo-

ries, and can be better considered pattern matching machines. This contrasts with EAM,

where the objects retrieved out of a complete or a partial cue through the β-operation are con-

structions always. A recovered object may be identical but also similar to the cue, and even an

“imaged object”, resembling better the intuitions reported by Bartlett in his seminal work, and

also the common intuition about remembering objects in natural memory.

5.4 Kinds of associations

Neural networks models of associative memory are classified as auto-associative and hetero-
associative. The former are systems in which the cue is the pattern to be recovered itself, either

in full or a segment of it, and possibly with noise. Hence, the images codified and stored in the

memory can be recovered with partial information, e.g., when the image is partially occluded

or noisy. Hopfield’s [17] original model is the paradigmatic case of auto-associative memories.

Hetero-associative memories store a relation between two patterns, e.g., the pair (a, b), that

represent associated or similar objects, possibly of different classes. In these models, b can be

recovered using the pattern a or a partial or noisy version of it and vice versa, and the memory

is said to be “bidirectional”. A paradigmatic case of this model is the so-call BAM model [18].

These models require that all the associations are included in the training set; hence, associa-

tions cannot be established dynamically on the basis of the content of the memory at an arbi-

trary state and a novel input. In contrast, the distinction between auto and hetero associative is

not basic in the EAM model. In the case study presented in Section 3 the auto-associative

property is illustrated with the recovery of calligraphic letters and numerals out of complete

and severely occluded cues; but, in addition, the bidirectional hetero-associative property is

illustrated with the recovery of a capital letter using a lower-case letter as the cue and vice

versa, which are stochastic processes. In EAM all patterns are input independently and the

associations are established dynamically; this is due to the representational format, the
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definition of the λ-operation, and the stochastic aspect of the β-operation; unlike hetero-asso-

ciative models, in which associations are established explicitly.

5.5 Memory rejection

The EAM model defines an explicit reject operation through the logical material implication

without search, implementing the true or strong negation. This property is not addressed

explicitly in neural networks models of associative memory. Such models are oriented to

recover the pattern that is most similar to the input. For instance, Hopfield’s and Kosko’s mod-

els use a recurrent search process that converges to the pattern in the memory that is the most

similar to the input pattern. However, if the input is partial the system may converge to the

wrong pattern, and the object recovered would be a false positive. It is also possible that the

process does not converge in a reasonable amount of time, and the process needs to be inter-

rupted. In this situation it is possible to return the current hypothesis of the search process,

which may be a false positive; an alternative may be to state that the pattern was not found,

implementing a form of negation as failure [24]. These problems are avoided in systems that

do not search and provide the answer through an analytical process that always terminate.

Such is the case of morphological hetero-associative memories [19, 20, 22] and related work

[25] which are also bidirectional. However, the full set of associations must be given in advance

to train the network, and such systems do not contemplate that an input may not be included

in the memory; hence, whenever this is the case, provide the most similar object, which is a

false positive by necessity. More generally, the assumption that the input must converge to a

known object presupposes that all of the patterns in the domain of interest are included in the

training set, or that the information about the world is complete, so to approximate to the

most similar object is valid. This conforms to the so-called Closed-World Assumption (CWA)

in its most general form.

The EAM model, on its part, do have an explicit reject capability and implements the true

or strong negation, and assumes incomplete information. This is an essential property of a nat-

ural memory, because its purpose is precisely to learn or acquire novel information. Natural

memory is also oriented to the interaction with the environment, which makes untenable the

adoption of the CWA, and also that the memory should be trained in full whenever a new bit

of information is acquired.

5.6 Parallelism

The three memory operations of EAM can be computed through parallel computations

between corresponding cells of the AMR and its associated auxiliary register in two or three

computing steps, i.e., the operation proper and updating the AMR and its auxiliary register, if

the appropriate hardware is provided. Furthermore, a cue may be used to select a large number

of AMRs through a BUS simultaneously. Parallel computing in neural networks models, on its

part, is achieved through the parallelization of matrix operations, as any standard matrix paral-

lel computing, with the corresponding demands of RAM and time.

5.7 Energy function

Neural networks models of associative memory have an associated energy function which

determines the search path from the high to the low-energy nodes, that correspond to incom-

plete cues memories and stored patterns, respectively. The definition of such function is essen-

tial for models in the dynamical system’s paradigm. The EAM model, on its part, does not

require of such notion, because it is not construed as a dynamical system.

PLOS ONE Entropic associative memory for manuscript symbols

PLOS ONE | https://doi.org/10.1371/journal.pone.0272386 August 4, 2022 20 / 27

https://doi.org/10.1371/journal.pone.0272386


5.8 Entropy

The EAM model defines the computational entropy, which is a measure of the indeterminacy

of the representation contained in an AMR. Operational AMRs obey an entropy trade-off such

that there is an interval of entropy values, where the entropy is not too low nor too high, where

the η and β-operations have a good compromise between precision and recall in relation to a

cue, as is shown in the case study in Section 3. The neural networks models hold fully deter-

mined patterns, do not involve a notion of indeterminacy, and do not use an operational

notion of entropy.

5.9 Capacity

The storage capacity of Hopfield’s memories is about 0.15 patterns in relation to the number

of nodes. This has been extended significantly with approaches that use a more general energy

function [19–21, 23, 24, 29] and the promise of these systems is that they have a very large stor-

ing capacity using moderate physical memory resources. This is also the case in the present

proposal. For instance, the AMRs of size 64 × 64 –i.e., 4096 bits– can hold up to 6464 patterns.

This capacity is modulated by the amount of information stored in AMRs, which should be

not too low and not to high, obeying the entropy trade-off, that determines their operational

capacity. The number of functions contained in an AMR with an entropy e and n arguments,

including the ones registered explicitly and the ones that are due to the side-effects of the λ-

operation, is 2en, as specified in Section 1. For instance, Fig 8 (e) shows that e = 4.5 for an AMR

of size 64 × 64 filled up with 772 functions, i.e., an average of 22.62 cells set on per column.

The number of functions is obtained considering that the AMR includes 64% of the RemCor-
pus, which is the 33% of the full EMNIST-36 corpus, although the corpus is not balanced and

772 is the average number of functions in the 36 AMRs. Hence, the AMR includes 22.6264

functions representing actual and potential calligraphic symbols, with satisfactory precision

and recall. As can be seen the number of functions input explicitly is very small in relation to

the number of potential objects stored in the AMR, proving a very large space for the construc-

tion of novel objects and “imagination”.

5.10 Quantitative comparisons

The present discussion shows that there are several qualitative dimensions that should be con-

sidered for comparing the present proposal with associative memories developed within the

neural networks paradigm. One preliminary consideration is that artificial neural networks

are often used to model functions that differ from memory, such as perception and action.

However, these are often labeled as “memories”, for instance in neuroscience studies [30].

However, for something to be a memory at the functional level [31] the objects registered

should be stored in a format that allows that such objects can be retrieved or remembered

later. In the present approach we use neural networks to implement perception and action, but

these are different from the memory itself, both structurally and functionally. Of course, the

performance of the memory system depends on the performance of the networks implement-

ing the analysis and synthesis modules, but comparisons to asses the present proposal must be

with systems that implement associative memories at the functional level. In particular com-

paring the functional with the algorithmic or implementation level in Mars’s sense [31] is a

category mistake. Hence, neural networks as well as other kinds of machine learning mecha-

nisms implementing classifiers, filters, controllers, etc., should not be considered memories.

An example is the use of celullar automata to classify the digits of the MNIST corpus [32]: this

system can tell the class of a numeral but cannot use its full or incomplete image as a cue to

retrieving the digit. Conversely, a memory system can be used as a classifier, as Krotov and
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Hopfield’s dense associative memories [29] for classifying the MNIST corpus too, but in such

model, the memory system is used at an algorithmic level to support classification at the func-

tional level, reversing somehow Marr’s hierarchy of system levels.

Comparisons also face the problem that most proposals are tested with a corpus suited for

their particular goals; so corpora designed for a particular model or application cannot be used

directly in other settings. In particular we considered associative memories that use MNIST or

EMNIST, such as the spiking Neural Networks developed by Hu et al. [26]. However, the

experiments are limited to a very small set of cases, and cannot be compared directly with

ours. We also reviewed the survey of systems using MNIST and EMNIST for handwritten

character recognition [33], but associative memories are not even mentioned, and we were

unable to find a single associative memory using the EMNIST corpus for direct comparisons.

The most similar study that we found was Krotov and Hopfied’s dense associative memo-

ries [29] for classifying the MNIST corpus. We adapted such approach using the code available

at https://github.com/DimaKrotov/Dense_Associative_Memory to make a quantitative com-

parison with EAM, but testing with the EMNIST-36 corpus instead. Dense associative memo-

ries extend Hopfield’s original model using a new energy function with a much larger number

of local minima and a much larger storing capacity. For their experiments the corpus was par-

titioned in the training and testing corpora, which are mutually exclusive, as is done in stan-

dard classifiers. The training corpus was used to train the memory and the test corpus to asses

the classification performance. For our experiment we used the 112,800 and 18,800 instances

images of the training and test corpora of EMNIST-36, respectively; the corresponding sets of

MNIST consists of 60,000 and 10,000 instances, respectively. We computed the precision of

the training and test corpora using their methodology, rendering 0.7957 and 0.7813, respec-

tively. These results can be contrasted with our experiment 3.2 in Fig 8 (f) using the totality of

remembered corpus, where precision is 0.8868 and recall is 0.8361, which improves over the

figures obtained using Krotov and Hopfield’s code. However, it should also be considered that

the classification rate for this task using standard classifiers may be much higher; in particular

our classifier in Fig 4 renders an accuracy of 0.9, and suggests that an associative memory sys-

tem is not the best tool for performing classification.

This comparison should also be placed in the larger perspective of the nature and assump-

tions of the two kind of memory systems. Hopfiels’ model is the paradigmatic model of auto-

associative memories, and the memory is reproductive. Consequently, in the classification

exercise, all of the cues in the test corpus fall into the most proximate local minima but never

select the right object, which is not in the training set, hence in the memory, and should count

as false positives. Conversely, as Hopefiel’s memory always selects the most proximate object,

there are no rejections. EAM, in contrast, assumes that cues are never contained in the mem-

ory exactly, unless the entropy is very low, the precision very high, and the recall very low,

which is an exceptional situation, and even then the retrieved object is a construction that may

differ slightly from the cue. This highlights that Hopfield’s memory is a pattern matching

machine at the computational or functional level in Marr’s sense [31] that is used pragmati-

cally as a memory, while EAM aims to model natural memory at such system level, in a man-

ner coherent with the algorithmic and implementational levels.

Comparison with other associative memories within the neural networks paradigm, such as

Associative Long-Short Term Memories [34], could be made –although neither their corpus

nor their code are available– but in any case, considerations similar to the ones made above for

dense associative memories, would have to be taken into account. Most generally, EAM uses a

declarative format holding a distributed representation that is manipulated symbolically, and

differs from the conception of associative memory as a dynamical system with an energy func-

tion, and a direct comparison between these two approaches constitutes a category mistake.
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6 Summary and discussion

The present memory system is associative because the AMRs are accessed through their con-

tents, which are codified as discrete functions represented in a tabular format. The concrete

representations of manuscript symbols are placed on modality specific input and output buff-

ers, and these are translated to their abstract representations, which are input to the AMRs

through the encoder. The output of the AMR is an abstract representation of the same kind

that is fed into the decoder to generate the corresponding concrete representation.

EAM holds distributed representations because the individual instances of the stored

objects are represented as functions that are overlapped within the corresponding AMR.

Hence the cells of the register’s table can contribute to the representation of more than one

object –all the objects whose representation share the same value for the same argument– and

the representation of an object –a function– shares memory cells with the representations of

other objects, and the relation between memory units and their contents is many-to-many in

opposition of local representations in which such relation is one-to-one [2].

The memory register operation is conceptualized as an abstraction between the representa-

tion of the object to be stored and the content of the memory, and is implemented with the

standard inclusive logical disjunction between the arguments and values of the object to be

stored and its corresponding arguments and values in the memory, which can be construed as

the micro-features of the representations.

The memory recognition operation is conceptualized as the inclusion relation of the object

to be recognized in relation to the content of the memory, and is implemented through the

logical material implication between the corresponding micro-features of the object to be rec-

ognized and the content of the memory. Failure in the recognition test implements a strong

negation directly, without search.

The memory retrieval operation is conceptualized as a constructive operation that renders

a novel object always. The retrieval operation is conditioned by the recognition test, and the

rendered object is built by selecting randomly the values associated to all the arguments of the

function representing the retrieved object, using a distribution centered on the memory cue.

The objects of computing in the three memory operations are the micro-features constitut-

ing the representations. The computations can be performed in parallel in a natural way taking

very few computing steps, if the appropriate hardware is made available.

The memory operations conform to the main properties of human memory that emerged

from the paradigmatic studies carried on by Bartlett [8]; and differ fundamentally from the

corresponding operations in memories developed within the neural networks paradigm, as

was intensively discussed in Section 5.

AMRs hold relations that have a certain amount of indeterminacy. A function is a fully

determined relation and its entropy is zero. The entropy is related to the number of objects

stored in the memory; when there are few, the entropy is very low, and successful retrieval

operations are very precise but recall is very low; conversely, when the number of stored

objects is high, so is the entropy, and recall may be very high, but precision decreases signifi-

cantly. The entropy depends on the interactions between such functions, i.e., the number of

arguments that share the same value for a number of functions: the greater the interactions the

lower of the entropy. More generally, the operational capacity of AMRs conforms to an

entropy trade-off, to the effect that the objects recovered through the memory retrieval opera-

tion in relation to the memory cue are “photographic reproductions”, “appropriate reconstruc-

tions”, “imaged objects” and noise, according to the increase of the entropy, from very low to

very high, respectively. The trade-off between precision and recall is satisfactory for moderate

entropy values.
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The purpose of experiments 1 and 2 was to identify the size of operational AMRs for the

application domain. Our previous work with digits showed that AMRs with 64 features –the

cardinality of the domain of the stored functions– offer a good compromise between perfor-

mance and memory size and, consequently, cost [1]. Further experiments showed that this

choice is appropriate for the present case study too. Figs 7 and 8 show the performance of the

memory for different sizes or discrete levels of the functions’ codomains. This choice is also

essential for the system performance and its cost. The tests were performed with ten values of

the parameter m, where the number of rows of the AMRs is 2m. Figs 7 and 8 from (a) to (d) in

experiments 1 and 2 show that there is a good compromise between precision and recall at

m = 6 and m = 7 with entropy from 4.6 to 5.4 in both experiments.

Then, we used the test corpus to measure the performance of the system when the opera-

tional registers have different amounts of information. Figs 7 and 8, (e) and (f), show the per-

formance of the AMRs with size 64 × 64 for the corpora EMNIST−47 and EMNIST−36,

respectively; and (g) and (h) the corresponding performance of the AMRs of size 64 × 128. As

can be seen, a satisfactory performance is achieved with a significant amount of memorized

information.

The construction of practical applications requires improving the performance of the sys-

tem as a whole and reduce the memory size for an arbitrary dataset. In order to address such

question, we plan we plan to reinforce the cells of the AMRs whenever they are used in the

memory register operation, such that columns become probability distributions shaped by the

empirical data, with their associate Shannon’s entropy. Such learning mechanism should

improve the performance and reduce the size of operational AMRs. We leave such investiga-

tion for further work.

AMRs can hold the representation of more than one class, with the only penalty of an

increase of the entropy, as shown in our previous work [1]. Here we capitalize such property

to represent capital and lower case letters in the same AMRs, reducing the number of registers

from 47 to 36. As can be seen in the figures, the reduction in the number of classes compen-

sated the entropy increase of the abstracted classes, and the performance of the system using

the EMNIST-47 and the EMNIST-36 is practically the same. Also, the precision and recall are

very similar when the AMRs are filled up with a substantial amount of corpus, but considering

that the memory cost is twice as much for registers of larger size i.e., 64 × 128, we selected the

EMNIST-36 corpus and alphabet, with AMRs of size 64 × 64 for the memory retrieval

experiments.

Although the focus of the experiments presented in this paper is the auto-associative aspect

of EAM, the corpus and the experiments do show hetero-associations between capital and

their corresponding lower-case letter symbols. However, EAM cannot be compared directly

with systems in which the associations are stated explicitly beforehand, such as BAM and mor-

phological models, because in the present proposal all inputs are independent, and the associa-

tions are established dynamical as side-effects of the λ-operation, the diagrammatic

representation of functions and relations, and the stochastic aspect of the β-operation. For the

moment, the hetero-associative aspect of EAM is left for further work.

Experiment 3 confirmed our previous memory retrieval experiments using memory cues

that are recovered at very low entropy, moderate entropy but not at lower entropy, and recov-

ered only at high entropy or not recovered at all, as shown in Figs 9–11, respectively, that con-

firms the entropy trade-all: the reproductions of cues recovered at very low entropy have high

quality, but there are very few objects in the memory; cues recovered at moderate entropy can

be reconstructed flexibly and with a reasonable quality; and cues that are only recovered at

high entropy or not recovered at all correspond to objects of bad quality or that are not

included in the memory at all.
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However, when the output of the encoder is fed into the decoder directly, an object is ren-

dered always, independently of its quality. If the cue is poor or very poor, the shape rendered

by the decoder is due to the prototype patterns codified implicitly in the networks implement-

ing the analysis and synthesis modules.

Experiment 4 addresses recovering objects with incomplete information. In this case, with

severely occluded objects. This task has been an important motivation for auto-associative

memories. In most realistic situations, where objects are seen from different orientations and

distances, and there is usually noise, such as occlusions, poor lighting conditions, or impaired

vision, the cue is incomplete, and it has to be approximated to the object recovered in the

memory. If the cue is too poor the retrieved object may be the wrong one, and the agent would

have no means to realize such a failure, unless the object is subjected to further contextual

interpretation. Furthermore, if the cue is not included in the memory it should be rejected

directly, as in EAM, in opposition to models that adopt the Closed-World Assumption, and

produced the most similar object, which in this case is a false positive.

Incomplete information of the cue is reflected in the values of a small number of features of

the function representing the object, which are the cause of the rejection by the recognition

test [1]. Hence, our strategy to recover objects with incomplete cues consists simply of relaxing

the recognition test. Figs 12 and 13 show the performance of the retrieval operation with very

severely occluded objects in two settings –covering the bottom-half of the figure and placing

the figure behind wide bars. These conditions are very hard to interpret even for people, and

constitute a very strong test for memory systems in general.

The results show another aspect of the entropy trade-off. Most objects severely occluded are

likely to be rejected at low entropy levels, as shown in the tables (a) in Figs 12 and 13. However,

a small relaxation of 1, 2 and 3 features increases the recall proportionally, and objects may be

recovered at lower levels of entropy, as shown in Figs 12 and 13, (b), (c) and (d), reducing the

gap of blanks at low entropy levels. As before, the price to pay for the increase of the recall is a

decrease of the precision, and the objects recovered may be of the wrong class. Nevertheless,

having some candidate interpretations that can be processed further in relation to a context is

better than having none.

The Entropic Associative Memory has a variety of potential applications in which a large

amount of data needs to be accessed by content. For instance, the present study and experi-

ments can be applied to the construction of handwriting optical character recognition, which

is useful for scanning manuscript texts. The memory system can be applied to computer vision

and speech processing, and some preliminary experiments are already on their way. More gen-

erally, an effective associative memory should be a central functional module of the cognitive

architecture of computational agents that need to interact in real time with the world.

The present research introduces a novel application to autoencoders developed within the

deep-neural networks paradigm. Such systems were introduced to reduce the number of

dimensions of large features spaces, but not to produce abstract representations of concrete

objects and vice versa, as is performed by the analysis and synthesis modules of the EAM archi-

tecture, respectively. The construction of this architecture requires making such modules inde-

pendent, so the output of the encoder and the input to the decoder, which are the objects of

the memory operations, are independent.

Finally, the present experiments show that the entropic associative memory has a satisfac-

tory performance for storing, recognizing and retrieving manuscript letters and digits; and can

potentially be used in practical applications. The present theory and experiments also show a

novel conception of memory that differs in several respects from the neural networks para-

digm. In particular, it uses a more transparent notion of distributed representation; makes an

explicit use of the entropy; and shows that memory conforms to the entropy trade-off. The
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memory operations use the logical disjunction, the material implication, and the strong nega-

tion directly, which operate on the micro-features of representations, and can be computed in

parallel in a very reduced number of steps if the appropriate hardware is provided. This sug-

gests the conjecture that such logical functions have their roots on the basic operations of asso-

ciative memory. The random element suggests that imagination, creativity and free will have

their roots, at least in part, in associative memory too. The memory is constructive as opposed

to reproductive, and resembles better the properties of natural memory within constructivist

approaches to knowledge and learning.

Author Contributions

Conceptualization: Luis A. Pineda.
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