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Abstract: Autoencoders are commonly used in representation learning. They consist of an encoder
and a decoder, which provide a straightforward method to map n-dimensional data in input space to
a lower m-dimensional representation space and back. The decoder itself defines an m-dimensional
manifold in input space. Inspired by manifold learning, we showed that the decoder can be trained on
its own by learning the representations of the training samples along with the decoder weights using
gradient descent. A sum-of-squares loss then corresponds to optimizing the manifold to have the
smallest Euclidean distance to the training samples, and similarly for other loss functions. We derived
expressions for the number of samples needed to specify the encoder and decoder and showed that
the decoder generally requires much fewer training samples to be well-specified compared to the
encoder. We discuss the training of autoencoders in this perspective and relate it to previous work
in the field that uses noisy training examples and other types of regularization. On the natural
image data sets MNIST and CIFAR10, we demonstrated that the decoder is much better suited to
learn a low-dimensional representation, especially when trained on small data sets. Using simulated
gene regulatory data, we further showed that the decoder alone leads to better generalization and
meaningful representations. Our approach of training the decoder alone facilitates representation
learning even on small data sets and can lead to improved training of autoencoders. We hope that
the simple analyses presented will also contribute to an improved conceptual understanding of
representation learning.

Keywords: representation learning; manifold learning; neural networks; autoencoders

1. Introduction

The original article on backpropagation is called “Learning Internal Representations
by Error Propagation” [1], and indeed, learning in neural networks can be viewed as the
learning of intermediate representations in the different layers. The neural network thus
performs a transformation of the input through a series of these internal representations.
In representation learning (reviewed in [2,3]) the objective is to use these learned repre-
sentations for other applications as they can for instance map discrete high-dimensional
input samples like text to a Euclidian space of lower dimensionality and hopefully learn
(or preserve) relatedness by assigning similar representations to related examples. Feed-
forward autoencoders, whose objective is to reproduce the input on the output layer, are
often used for unsupervised (or “self-supervised”) representation learning, although one
can of course learn representations even when inputs and targets differ.

In the related field of manifold learning, the objective is likewise to find a representa-
tion of samples. It is assumed that the high-dimensional data lie on a lower-dimensional
manifold, and the aim is to construct a map of the (training) data on such a manifold.
Principal component analysis (PCA) is the simplest and most used method, in which the
linear subspace explaining most of the variation in the data is found. The main difference
between manifold learning and representation learning is that in the latter one obtains an
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encoder that maps from the input space to the representation space and a decoder that
maps from the representation space back to the input space. Additionally, the objective
function in manifold learning often takes neighbourhood relations into account, whereas
samples in standard neural network training are treated independently. The relationship
between representation learning and manifold learning has been extensively discussed in
works such as [2,4,5].

Autoencoders were originally introduced in [1], with image compression [6] and
speech recognition [7] as some of the first applications. In [8] it was shown that simple
auto-encoding feed-forward neural networks, with a single hidden layer and optimized
to reproduce real-valued input on the output, will converge to the principle components
subspace in the hidden layer. Since then, there has been significant progress with respect
to regularization and robustness of autoencoders, such as using noisy inputs to train
denoising autoencoders [4] and making the contractive autoencoders aiming at more
robust encoding [9]. The relation between autoencoders and manifold learning has been
discussed before, see e.g., [4,5].

Here, we took up a simple but not too well-known view on autoencoders and rep-
resentation learning from a manifold learning perspective. We showed that the decoder
maps from the representation space to a manifold in the input space. We then showed
how a decoder can be trained without an encoder by optimizing the representations of the
training data directly together with the weights of the decoder similar to manifold learning.
In training, we optimized towards a manifold that has the minimum distance between the
training points and their projections onto the manifold. Learning of a representation along
with an autoencoder has been introduced before as predictive sparse decompositions [10],
and others have even made the step of separating representation and the decoder from
the encoder [11]. We wished to take up this view on representation learning and show its
benefits in terms of simplicity, performance, and data-efficiency.

We derived expressions for the number of samples needed to specify an encoder and
a decoder and showed that in most situations, the decoder is much better specified than
the encoder. The theoretical predictions were confirmed on three different data sets. We
demonstrated how training of the decoder alone performs much better than a standard
autoencoder on small data set sizes, while performance on larger data sets is still better but
very close to the autoencoder. We further showed that the learned representation can be
useful for downstream tasks and that specific solutions can potentially be derived better
from the decoder than the autoencoder.

This study was basic and straightforward mathematically, and it is our hope that
it will help readers build intuition about decoders, encoders, and autoencoders in this
manifold learning perspective.

2. Encoder-Free Representation Learning in Theory
2.1. The Linear Case

Assume the data are n-dimensional real vectors. In PCA, a linear subspace is obtained
in which the first basis vector points in the direction of highest variance, the second points
in the direction of highest variance of the subspace orthogonal to the first, and so on.
When PCA is used for manifold learning and dimensionality reduction, the first m < n
principal components are used, and the data points are projected onto this linear subspace
of dimension m, which we call the principal subspace.

If the basis vectors of the principal subspace are called ~wi, the projection of a point~x can
be written as ∑m

i=1 zi~wi, where~z is the m-dimensional representation of ~x and zi = ~x · ~wi.
The z vectors are analogues of the representations in representation learning or mani-
fold learning.
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If we assume that data have mean zero, the linear subspace is also the one which has
the smallest mean distance to the data. Therefore, the principal subspace can be found by
minimizing the mean distance between the data points and their projections,

∑
k
||~xk −

m

∑
i=1

zk
i ~wi||2, (1)

where k indexes the data points. (We do not give the detailed proof, but it is relatively
straight-forward to expand the square in (1) and using zk

i = ~xk · ~wk
i to show that minimizing

(1) corresponds to maximizing the variance ∑i,k(~xk · ~wi)
2 when requiring that the ~wis are

orthonormal.) This will not normally give an orthonormal basis, but vectors w will still
span the principal subspace. We can recognize this as a linear “neural network” with
weights w, corresponding to the decoder part of a linear autoencoder, mapping from a
representation z to a point x in input space. It is a classic result that a linear autoencoder
will learn the principal subspace [8].

Note that (1) does not have a unique solution. The weights and representations can
be scaled arbitrarily (wx = (w/s)(zs) for a constant s), and it is invariant to permutations
of the order of vectors and rotations within the subspace in general. One could apply
normalization or impose other constraints on the solution to limit the freedom.

2.2. Non-Linear Decoders

Assume now that we have a non-linear mapping that maps a representation z to a
point gw(z) in input space (we dropped the vector arrows for ease of notation). We assume
also that gw is a continuous function that depends on some parameters w and possibly
some form of regularization. We assumed m < n, gw defines a manifold in input space of
dimension m (or lower), onto which all points in the representation space are mapped.

Above, we saw how one can obtain the principal subspace by minimizing the distance
between the data points and their projections. We can do the same for a non-linear decoder.
The idea is then to find the manifold defined by gw that minimizes the mean distance (or
the loss) between the training points and their projections onto the manifold, L(x, gw(z)),
where L is the loss function and z and w are parameters. See Figure 1 for an illustration.
(Here “projection” means the point on the manifold that we map a point to, so it is not
used in a strict mathematical sense).

+

Decoder

Encoder

Representation space (2D) Input space (3D)

Figure 1. The decoder maps from the low-dimensional representation space to a manifold in input
space. Here the representation space is 2D, and the input space is 3D. The representation of a point
in input space is the point in representation space that maps to the nearest point on the manifold.
Here, it is illustrated in 3D, where the point in representation space to the left maps to the point on
the manifold that is closest to the point at the cross.

Usually, internal representations are learned implicitly by adapting the weights of the
neural network, but there is nothing stopping us from treating them as parameters and
learning them explicitly together with the weights (see e.g., [12]). A loss function L(x, x̂)
used to train an autoencoder, where x̂ is the autoencoder output, can be used with internal
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representations. The loss for input x would be L(x, gw(z)), where the representation z is
unknown and found together with the weights by minimizing the total loss. So, for each of
N training examples, (x1 . . . xN ), the representation is optimized during training, so the
total loss

∑
k

L(xk, gw(zk)) (2)

would be minimized with respect to both w and the vectors z1 . . . zN . This can be done
by any optimization technique, such as gradient descent. Gradients with respect to z are
simply the back-propagated errors that we are calculating anyways for weight optimization.
As in the linear case described above, there are scaling and symmetry invariances, so the
solution is not unique. It is therefore advisable to constrain the weights (for example, via a
small weight decay).

If the decoder is a single layer, there is only one optimal solution (apart from scaling
and symmetry operations), and the optimization problem is convex, i.e., it is very easy
to learn, and it would essentially recover the PCA if the layer is fully connected. With
a multi-layer decoder, one could learn the internal representations layer-by-layer using
convex optimization, but this is unlikely to lead to an overall optimal solution and was not
considered further here.

Once the weights of the decoder and training set representations are determined
by training, how can we use it for new samples, e.g., in a test set? One possibility is
to do the same optimization by gradient descent with fixed weights to find the optimal
representation for the new sample. This was our approach when reporting results of
the decoder alone. A disadvantage of this approach is that there may be local minima
trapping the optimization, and thus it may not give a globally optimal representation. In
our experiments, we did not observe problems relating to this. An alternative is to train an
encoder, as we discuss later.

One disadvantage of optimizing the representations directly within the decoder train-
ing loop is that each sample only receives one gradient update per epoch, whereas the
weight updates are based on gradients from the whole data set. One could therefore
suspect a large number of epochs is needed for the representations, but this was not a major
issue in our experiments. If the training set is very large, one could train the decoder on a
sub-sample and afterwards train an autoencoder on the whole dataset (see below).

2.3. The Number of Samples Needed to Train the Decoder

In an idealized noise-free case, the decoder should fulfil x = gw(z) for all N training
examples. If g is a linear function, there exists an exact solution for w and z if the number
of weights Cd plus the number of parameters for the representation, Nm, is larger than the
number of constraints Nn: one equation per example (k) per output unit (i), xk

i = gw(zk).
We defined the load as the number of constraints per parameter,

αd =
Nn

Cd + Nm
=

n
m

(
1 +

Cd
Nm

)−1
. (3)

If the load is below 1, the system is under-determined, and if it is above 1, it is over-
determined (if the training vectors are linearly independent).

For non-linear decoders, such as multi-layer perceptrons, we expect the above to be
approximately true, although Cd should be replaced by an “effective” number of param-
eters, which we call the network complexity. Formally, we defined this complexity as
the number of training examples needed to train a unique model apart from scaling and
symmetry operations. There is currently no theory to calculate this complexity, and we
approximated it by the number of weights. The number of weights is an upper bound for
the effective number of parameters, and therefore, the load, as defined above, will generally
be underestimated, and we are thus less likely to apply too large a model to the given data.
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In most realistic situations, we would want the system to be over-determined, i.e.,
αd > 1, because otherwise the representations and the decoder would adapt to the noise
(alternatively, the system can be regularized). When the number of weights is less than Nm,
the load is essentially the input dimension divided by the representation dimension, the
compression rate n/m, which is normally much larger than 1 when the objective is to find
a low-dimensional representation of high-dimensional data. When n >> m, it is generally
quite easy to obtain high loads. (For m > n, the load is always below 1 and is only relevant
with sparsity constraints or other regularization.) Another way to interpret this is that you
would be wise to either construct your neural network decoder to have a relatively large
αd or use some form of regularization.

We have seen that one can learn a manifold in input space using a neural network
decoder, and it is therefore a form of manifold learning. The mathematical properties of the
manifold are determined entirely by the neural network decoder, and the learned manifold
may be further constrained by regularization. If the decoder is over-determined (α > 1),
the training data cannot normally be contained in the manifold exactly, and minimization
of the loss will find the manifold that is closest to the training data (closest in the sense of
having minimum loss).

2.4. The Encoder and Autoencoder

We see that in theory the encoder is not really needed for learning low-dimensional
representations. However, finding the representation of a new data point x requires a
minimization of L(x, gw(z)) in z with fixed weights in the decoder. Although this can easily
be done, it is often desired to have an encoder instead that maps directly from input space
to representation space. In an autoencoder, the encoder puts additional constraints on the
representations, meaning that it will not necessarily learn the same representations as the
decoder would recover on its own.

In the framework of manifold learning, the encoder can only make things worse,
because with the chosen parametrization of our manifold (the decoder) and the chosen
distance metric (the loss function), the representations found using only the decoder are
optimal—they minimize the loss and the distance to the manifold. In representation
learning, one could instead view the encoder as a possibility to impose constraints on the
representations as a sort of regularization. However, regardless of the encoder, reconstruc-
tions will lie on a manifold defined by the decoder.

In principle, the encoder could be of such high complexity that it could learn almost
exactly the “true” decoder representations. If it had high enough complexity, we know
that the “true” representations would be found, because they minimize the loss. However,
when the encoder complexity is very high, it is again likely that we will not have enough
data. Instead, once the representations are estimated (along with the decoder), the encoder
can principally be trained using the learned representations as targets. For an encoder, the
load is therefore

αe =
mN
Ce

(4)

when the representations of the training examples are fixed (Nm equations/constraints on
the weights). Interestingly, there is no simple relation between this load and the decoder
load. If the encoder and decoder have the same complexity Ce = Cd and m < n, we will
have from (3) and (4) that

αd =
n
m

(
1 + α−1

e

)−1
=

n
m

αe

1 + αe
. (5)

For small αe, αd is n/m times larger, and when αe is large, αd is essentially equal to n/m.
Often, the compression factor n/m is in the hundreds, and the decoder would thus be
“hundreds of times more well-specified” than the encoder; in many situations, one would
have plenty of examples to learn the decoder but not enough for the encoder.
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The above analysis is a little simplified. Since the assumption is that the training
data lie close to an m-dimensional manifold in input space, the data were not scattered
randomly, and it is likely that the encoder can be trained on a smaller number of samples in
this region of sample space. In other words, it may be possible to train the encoder with a
small load for points in or close to the manifold. However, for outliers, an encoder trained
with a small load is likely to give arbitrary results and thus the autoencoder reconstruction
will be far from the projection on the manifold. We thus expect that out-of-distribution
samples will be poorly reconstructed by an autoencoder compared to a decoder.

Several methods have been proposed that increase the robustness of autoencoders
regarding over-fitting. One such method is the denoising autoencoder [4] in which noise
is added to the input samples and in which the autoencoder is trained to reconstruct
the noiseless version. In the present perspective, this seems like an excellent approach,
because this will minimize the distance between noisy points and their projections. The
contractive autoencoder [9] imposes regularization on the encoder that favors similar inputs
to have similar representations. This is done by adding a regularizer term with the squared
derivatives of the encoder with respect to the x (the Frobenius norm of the Jacobian). Zero
gradients imply orthogonality with the manifold, and this approach therefore favors an
orthogonal projection of points onto the manifold.

Both denoising and contractive autoencoders have the desired effect of making the
encoder more robust, but they have the less desirable side-effect of also trying to minimize
variation within the manifold. Therefore, we would suggest a variant of the denoising
autoencoder in which the decoder is trained as above and the encoder is trained on noisy
examples with its “true” representation as the target, that is, the representation defined by
the decoder. This is essentially equivalent to training the autoencoder with fixed decoder and
using the noisy examples both as input and output. This approach will train the decoder to
give the correct projection of the out-of-distribution input onto the manifold learned by
the decoder on the training set. It should thus be possible to use much higher noise levels
than in denoising autoencoders, and in principle, one can train on completely random data,
once the decoder is fixed. Care must be taken, however, to ensure that the encoder still
encodes the training data well.

3. Hypothesis Testing on Real and Simulated Data

In this section, we aimed to answer the following questions: can a decoder on its own
generalize well on small data set sizes, whereas an autoencoder overfits as hypothesized?
Is the resulting representation meaningful/useful for downstream tasks? Does the decoder
work on larger data sets?

We demonstrated that a representation can be learned by a decoder alone using three
different data sets. The first two are popularly used image data sets MNIST [13] and
CIFAR10 [14], and the last one is a simulated data set as an example of regulatory data
with a known and desired representation.

All networks were implemented in Python using PyTorch [15], and Jupyter notebooks
are available with the code. Most runs were done on Google Colaboratory. Details about
model architectures for all experiments covered in the following sections can be found in
the Appendix A.

3.1. MNIST

In our first experiment, we used the standard MNIST data set [13] and trained on
random subsets of varying sizes from 500 to 15,000 examples using a decoder on its own
and a naive autoencoder. The encoder of the autoencoder consists of two convolutional
layers followed by a fully connected representation layer. The convolution layers both
have 2D kernels of size 4, stride 2, and 64 channels. The decoder is the reverse with
the representation layer fully connected to two layers of transpose convolutions. The
representation layer has size 20 with linear output. The output layer uses a sigmoid
transfer function, and the other layers use a rectified linear unit (ReLU) [16,17] activation.
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The loss function is the binary cross entropy and network weights were trained with the
Adam optimizer[18] using a learning rate of 0.001 and a weight decay of 1.e−5. When
training without the encoder, the representations were optimized with a stochastic gradient
descent [19] with a learning rate of 0.02 and a momentum of 0.9. All networks were trained
for 200 epochs. Networks were tested on the same random subset of 1000 examples from
the MNIST test set. For the decoder alone, representations of test data were found using
the same gradient descent as in training (but with fixed decoder weights, of course).
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Figure 2. Left: Training and test error for a decoder and an autoencoder trained on subsamples of
different sizes (x-axis) of the MNIST data. Details of the networks are given in the text. Right: The
load of the encoder and decoder vs. the training set size.

In Figure 2, we show the training and test error for a decoder and an autoencoder
trained on subsamples of the MNIST dataset. We could see that the training errors were
very similar for the two models, although smallest for the decoder, as would be expected,
because the autoencoder is further constrained by the encoder. For small data set sizes,
both models over-fit, but the autoencoder was significantly worse than the decoder alone,
which supports our hypothesis. From the other graph, we could observe that the decoder
load was above 1 for almost all data set sizes, and from a load around 9 (4000 examples),
the test error was stable. The load of the decoder was below 1 for all sizes except the last
(15,000) and we see that the test error is still decreasing.

This example shows that although the training errors are comparable, the full autoen-
coder over-fits the data to a larger extend than the decoder, especially for small sample
sizes. The decoder test error was almost constant from around 4000 samples.

In this experiment, we also trained an autoencoder with the trained decoder fixed.
This performed much worse than the decoder and the autoencoder (results available in the
supplementary notebook). Although unexpected at first, we interpreted it in the following
way: the full autoencoder can find a good solution that satisfies the constraints of both
the decoder and the encoder, reaching a compromise between them. When the decoder is
fixed, however, the encoder is forced to learn the representations dictated by the decoder.
For small data sets, the encoder can learn with a small training error but has a high test
error. For larger sets, when the load of the encoder approaches 1, both the training and test
error increase due to the constraints imposed by the decoder.

3.2. CIFAR10

After initial promising results from the simple task of learning a representation for
MNIST, we aimed to more systematically demonstrate the efficiency and validity of our
proposed approach using the more complex CIFAR10 data set [14]. Our aim was to compare
the performance of a simple decoder to an autoencoder with an identical decoder and a
symmetric encoder on natural image data. We trained both the single decoder and the
autoencoder and compared the reconstruction capabilities of these models for different
size training set sizes.

The architectures of our models are based on work from [20]. In order to find a good
decoder architecture, we ran a model search whose search space we restricted based on
prior knowledge derived from [20,21]. In [21], a thorough investigation of convolutional
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architectures based on residual bottleneck blocks introduced by [22] was conducted, result-
ing in guiding principles for a limited design space of convolutional networks for image
classification. The initial architecture taken from DCGAN [20] represents the generator. A
supplementary notebook DecoderTraining_CIFAR10_modelSearch.ipynb provides a report of
our model optimization and a description of how we arrived at using an altered version of
the DCGAN generator as our decoder.

The decoder consisted of five 2D transposed convolutional layers with kernel size 4,
stride 1, and an output layer with kernel size 1 and stride 1. The first and last transposed
convolutional layers had padding 0, while all others had padding 1. For constructing
channel sizes, we used a basis of 64, which we called the capacity. The representation (the
input of the decoder) was a 1D vector of length 256, which was four times the capacity.
This was reshaped as the decoder input to a tensor of 256× 1× 1. The channel sizes were
reduced to capacity × 2 (128) in the first layer, capacity (64) in the third, and 3 (output
channel size) in the last layer. Batch normalization was applied between all layers, as well
as ReLU activation. The last convolutional layer followed a sigmoid activation due to
the normalization of the data. The corresponding autoencoder consisted of the decoder
architecture and a mirrored encoder with convolutional layers instead of transposed
convolutional layers. We refer to this decoder and autoencoder as decoder_1×1 and
autoencoder_1×1 (or AE_1×1 in images due to limited space), respectively, to highlight
the decoder’s input pixel dimension.

In order to demonstrate that a decoder on its own outperforms a comparable au-
toencoder on small data sets, we trained decoder_1×1 and autoencoder_1×1 on three
class-balanced subsets as well as the full training set (train–test split provided by the data)
five times with different random seeds (see DecoderTraining_CIFAR10.ipynb). The resulting
numbers of train images per class were 50, 100, 500, and 5000. Other training parameters
included the Adam [18] optimization with weight decay 1e−5, the learning rate 1e−4, the
representation learning rate 1e−1 (representations were optimized with stochastic gradient
descent [19]), the mean squared error (MSE) loss, and the training time of 100 epochs. The
test error was reported on a tenth of the test set (class-balanced, same set for all runs).

In Figure 3A,C we can see that the train sample size had a much lower effect on
the test reconstruction error in decoder_1×1 compared to autoencoder_1×1. While both
models’ errors converged for the full training set size, autoencoder_1×1’s test loss was
approximately three times higher than that of the decoder for the smallest train sample
size of 50 images per class. Figure Figure 3A shows that this difference in test loss was
not a result of insufficient training time. More precisely, this figure further supports
our hypothesis of the relationship between decoder and encoder load. As shown in the
supplementaries (DecoderTraining_CIFAR10.ipynb), the decoder load was above 1 for all
training subsets, while the encoder load achieved values above 1 only for the full train
sets. Since mere reconstruction loss alone is not a satisfactory evaluation of a model’s
performance, we also trained decoder_1×1 and autoencoder_1×1 for 400 epochs each
on the full train set and evaluated them on the full test set with random seed 0, saving
model parameters every 50 epochs. Figure 3E shows reconstructions of the first eight
test images (originals shown in Figure 3D) of both models after 50, 200, and 400 epochs.
While the decoder_1×1’s MSE loss for the test set was above that of autoencoder_1×1
until roughly epoch 200 and while the reconstructed images are blurry, they were much
more recognizable than those of autoencoder_1×1 at any of the selected epochs. These
results show that this convolutional decoder is superior to its equivalent autoencoder in
reconstructing images from a low-dimensional representation for small data sets and that
it can more than keep up with the autoencoder for larger data sets where the encoder load
is sufficient.
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Figure 3. Results on CIFAR10. (A) Learning curves of decoder_1×1 and autoencoder_1×1 for
different training sample sizes (indicated by color). The y axis reports test reconstruction losses as
mean squared errors. All models were trained for 100 epochs and initialized with random seed 0.
(B) Learning curves of decoder and autoencoder with different representation sizes. (C) Reconstruc-
tion error for decoder_1×1 and autoencoder_1×1 trained on class-balanced subsets of CIFAR10
plotted against the per-class sample size of the train set. Means and standard deviation error bars
were derived from 5-fold replication with different random seeds. Dotted lines with asterisk markers
refer to train loss, full lines, and round markers to the loss on the full test set. (D) The first 8 images
of the CIFAR10 test set. (E) Reconstructed test images of models with representation 256× 1× 1.
Numbers above the image grids indicate the training time in epochs. The first three grids show
reconstructions from decoder and representation, and the last three were those from the autoencoder.
(F) Same as E for models with larger bottlenecks (64× 4× 4).
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However, we are aware that designing and optimizing a decoder mapping from a
low-dimensional representation and then comparing its performance to its equivalent au-
toencoder could be biased in favour of the decoder. We thus conducted a second experiment
for which we optimized an autoencoder architecture and training parameters completely
disregarding the decoder performance in the optimization step. The model development
is included in supplementary notebook DecoderTraining_CIFAR10_modelSearch.ipynb. The
architecture of the best performing autoencoder was similar to the previous architecture
of autoencoder_1×1, but the last encoder and first decoder convolutional layers were
removed, resulting in a representation of dimension channel × 4× 4. We refer to these
architectures as autoencoder_4×4 and decoder_4×4. The other change to the previous
architecture was the number of channels in the convolutional layers. With a capacity of 16,
the decoder (and symmetrically the encoder) took the representation vector of length 1024
as input of dimension 64× 4× 4. Each layer’s output channels were of size 64, 32, 16, and
3, respectively.

We trained autoencoder_4×4 and decoder_4×4 on the full train set for 400 epochs
with (coincidentally) the same hyperparameters as for training 1×1 models. The test
learning curves for both models are shown in Figure 3B along with those of the 1×1 models
for comparison. The 4×4 learning curves show a similar but elongated behavior to those
of the 1×1 models. Test losses for decoder_4×4 and autoencoder_4×4 converged to much
lower levels and converged to similar losses at the end of the 400 epoch training period.
This indicates an accelerated learning of autoencoder_4×4. We again reconstructed images
after 50, 200, and 400 epochs, which are depicted in Figure 3F. These show an extensive
improvement in the autoencoder reconstruction capabilities from autoencoder_1×1 to
autoencoder_4×4. Images appeared quite sharp but showed inferior color reconstruction
compared to images from decoder_4×4.

Even though the convergences for decoders trained on the full data set for 400 epochs
compared to the autoencoders were slower, Figure 3D,E shows that the decoders achieved
qualitatively better reconstructions, especially for lower-dimensional representations.
When comparing a decoder with learned representation and an autoencoder with equiva-
lent architecture, this clearly demonstrates that the decoder alone with learned representa-
tion poses a better solution than the autoencoder.

3.3. Simulated Data

Our last test used simple simulated, almost linear, data. They were inspired by a
simplified model of a biological regulatory network that we studied in another project.
The regulatory network is built of proteins Z that interact with genes X and govern
their expression. These proteins are called transcription factors and present one of the
main actors in gene regulation. They are sequence-specific DNA-binding proteins, which
modulate expression by binding close to specific genes. We assumed for simplicity that the
regulation is direct and that transcription factors operate independently. We thus assumed
that the expression data are governed by the transcription factor levels, Z. Since Z are
sequence-specific, they do not interact with all genes, and with those they do interact, they
do not do so equally. We therefore viewed the regulatory network as a weighted bipartite
graph, directed from Z to X. All this can be expressed in

xi = ReLU(
n

∑
j=0

ai,jwi,jzj + εi), (6)

where ai,j is a sparse connectivity matrix and wi,j the strength (and sign) of regulation. To
generate the expression vectors x of length n, regulator level vectors z of length m (m < n)
were initialized from random samples of a gamma distribution. The weighted bipartite
graph was expressed by the product of an adjacency matrix A (random binary values
assigned based on a defined fraction of connections) and a weight matrix W (randomly
sampled from a uniform distribution). Noise was added from a normal distribution
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with mean 0 and sd 0.2. X was ensured to be R(>=0) through the rectified linear unit
(ReLU) [16,17].

We approximated the linear relationship between the regulatory representation Z and
expression R≥0 input space X via a single-layer decoder. Since part of the objective was to
learn the input space and representation as an assignable bipartite graph, it was necessary
to apply constraints enabling the hidden units in the representation to be identified as
specific regulatory factors, and we therefore assumed a sparsely connected network defined
by the adjacency matrix A.

Given this assignability of the representation, we were able to restrict the space of
possible valid representations towards one close to the regulatory space used to generate
the data. Hence, we enabled ourselves to judge whether a meaningful representation was
learned that represents a unique feature of the data. As a measure, we used the Pearson
correlation coefficient (PCC) between true regulatory vectors and learned representations.
We investigated data reconstruction and representation correlation for different decoder
loads on three models. These were the decoder, the encoder trained on the pre-trained
decoder, and an autoencoder (AE) consisting of the architectures of the single models.

Figure 4. Performance metrics of decoder, encoder, and autoencoder for different decoder loads.
Points and error bars present average losses and standard deviations over 5 replicates, respectively.
Colors indicate the model type. Metrics were derived from the test data. Left: mean squared error
(MSE) loss of the simulated data for different decoder loads. Right: Pearson correlation coefficients
(PCCs) of true regulation dimension and model representation dimension for different decoder loads.

The decoder and the encoder both consisted of a single linear layer (sparse in case
of the decoder as described above) with ReLU and leaky ReLU (slope 0.1) as activation
functions, respectively. The autoencoder was comprised of a combined encoder and
decoder. Different loads were achieved by varying the number of training samples N for
a constant input space of dimension n = 1000 and hidden dimension m = 100. Used
values for N can be found in supplementary notebook DecoderTraining_SimulatedData.ipynb
section 2, experiment 1. The data in this experiment were simulated with zero noise and
a connectivity of 0.1 (90% of values in A are zero). Training parameters included a mini-
batch size of 32, a weight decay of 1.e−5, and a set of learning rates, which were obtained
from a small-scale grid search experiment included in DecoderTraining_SimulatedData.ipynb
section 1. Learning Rate Optimization. Decoder and representation received learning rates of
0.001 and 0.01 (with momentum 0.9), respectively. The encoder and autoencoder received
a learning rate of 0.0001. Weights were optimized with the Adam optimizer [18] and
representations with the stochastic gradient descent [19]. All metrics were reported on the
test set of sample size 100. For each new training set, a new test set was created. Models
were trained and evaluated on the same data sets. The encoder refers to an autoencoder
using the pre-trained decoder whose weights were frozen, and autoencoder refers to an
identical autoencoder but without pre-training the decoder. The decoder and the encoder
were trained for 500 epochs each, and the autoencoder was trained for 1000 epochs.
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Figure 4 shows the test reconstruction loss and the representation correlation of the
decoder, the encoder (trained on pre-trained decoder), and the autoencoder (AE) for dif-
ferent decoder loads αd. We observed that the load αd must be >1 for the decoder to be
consistently well-determined and thus for achieving an exact solution for the represen-
tations (a correlation of 1) and good input reconstruction. The encoder with a fixed and
pre-trained decoder in this experiment took a slightly higher αd of at least 3.3 in order to
achieve correlations ≥ 0.99. This may be explained by the higher necessary load of the
encoder, which was mostly mitigated here by pre-training the decoder. One reason for
a successful training of an encoder on a pre-trained decoder here, unlike in the MNIST
experiment, could be that the encoder in this experiment was more complex than the
decoder. The naive (not pre-trained) autoencoder in this experiment was unable to find the
exact solution for z, as can be seen by the generally lower and more variable representation
correlations. Additionally, it took a load of roughly 9 for the autoencoder to achieve similar
reconstruction losses as the decoder and the encoder, which here was equivalent to training
sample sizes above 10,000. These observations support the hypothesis that the encoder
is the limiting factor in learning a precise mapping from the representation z to the input
space x and that the decoder on its own can learn a meaningful representation.

4. Conclusions

In this study, we introduced a new manifold learning perspective on autoencoders.
We argued that it is useful to view the decoder as defining a low-dimensional manifold
in input space. Training of a decoder alone amounts to optimizing the weights of the
decoder and the representations of the training data so as to minimize the average distance
between the training samples and their projections onto the manifold, which are the
decoder reconstructions.

We showed that it is possible (and probably common) to have an over-determined
decoder and an under-determined encoder. Our tests confirmed that a decoder trained
alone generally performs better on the test data than an autoencoder trained from scratch.
However, in one test, we saw that an autoencoder trained with a fixed optimized decoder
performs almost as well as the decoder alone. We further demonstrated that this approach
can lead to meaningful representations that may be useful for downstream tasks. Albeit
only covering the task of reconstruction in this demonstration, we believe that this approach
can easily be extended to other tasks in need of a useful representation. One such example
is time series forecasting, based on building blocks such as LSTMs and transformers.

The similarity between representation learning, autoencoders, and manifold learning
has often been pointed out. In most work on autoencoders, the focus has been on the
encoder, and various types of regularization have been proposed to limit over-fitting of
data, such as [5,9]. In our view, a better understanding can be obtained when first focusing
on the decoder, which constrains the autoencoder, because it is generally much better
specified by the training data than the encoder.

In this work, we focused on the reconstruction error as a measure of performance.
Often, learned representations are used for classification or other tasks. We will extend
these ideas to such other tasks in the future to see if the good performance of decoder
training extends to these.

The results and observations presented in this study are additionally of high relevance
for generative models. We are currently working on the advancement of the ideas in this
context.
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Appendix A. Architectural Details

Convolutional layers are described by kernel size, stride, and padding in brackets
behind the layer type. If an activation function is applied right after a layer, it is included
in the layer column.

Table A1. MNIST model architecture.

Layer Output Size Model

Input (1,28,28) Encoder
Conv2D (4,2,1)—ReLU (64,14,14) Encoder
Conv2D (4,2,1)—ReLU (128,7,7) Encoder

Linear—ReLU 20 Encoder
ConvTranspose2D (4,2,1)—ReLU (128,7,7) Decoder
ConvTranspose2D (4,2,1)—ReLU (64,14,14) Decoder

Linear—Sigmoid 20 Decoder

Table A2. CIFAR10 model architecture. BN refers to batch normalization.

Layer Output Size Model

Input (3,32,32) Encoder
Conv2D (1,1,0)—BN—ReLU (64,32,32) Encoder
Conv2D (4,2,1)— BN—ReLU (64,16,16) Encoder
Conv2D (4,2,1)—BN—ReLU (128,8,8) Encoder
Conv2D (4,2,1)—BN—ReLU (128,4,4) Encoder (4 × 4 AE latent)

Conv2D (4,2,0)—ReLU (256,1,1) Encoder (1 × 1 AE latent)
ConvTranspose2D (4,2,0)—BN—ReLU (128,4,4) Decoder (1 × 1 1st layer)
ConvTranspose2D (4,2,1)—BN—ReLU (128,8,8) Decoder (4 × 4 1st layer)
ConvTranspose2D (4,2,1)—BN—ReLU (64,16,16) Decoder
ConvTranspose2D (4,2,1)—BN—ReLU (64,32,32) Decoder

ConvTranspose2D (1,1,0)—Sigmoid (3,32,32) Decoder

Table A3. Model architecture for simulated data.

Layer Output Size Model

Input 1000 Encoder
Linear—LeakyReLU (slope = 0.01) 100 Encoder

SparseLinear—ReLU 1000 Decoder
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