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ABSTRACT 

Diabetoporosis, diabetic-related decreased bone quality and quantity, is one of the leading causes of osteoporotic 
fractures in subjects with type 2 diabetes (T2D). This is associated with lower trabecular and cortical bone quality, 
lower bone turnover rates, lower rates of bone healing, and abnormal posttranslational modifications of collagen. 
Decreased nitric oxide (NO) bioavailability has been reported within the bones of T2D patients and can be con-
sidered as one of the primary mechanisms by which diabetoporosis is manifested. NO donors increase trabecular 
and cortical bone quality, increase the rate of bone formation, accelerate the bone healing process, delay osteopo-
rosis, and decrease osteoporotic fractures in T2D patients, suggesting the potential therapeutic implication of NO-
based interventions. NO is produced in the osteoblast and osteoclast cells by three isoforms of NO synthase (NOS) 
enzymes. In this review, the roles of NO in bone remodeling in the normal and diabetic states are discussed. Also, 
the favorable effects of low physiological levels of NO produced by endothelial NOS (eNOS) versus detrimental 
effects of high pathological levels of NO produced by inducible NOS (iNOS) in diabetoporosis are summarized. 
Available data indicates decreased bone NO bioavailability in T2D and decreased expression of eNOS, and in-
creased expression and activity of iNOS. NO donors can be considered novel therapeutic agents in diabetoporosis.  
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INTRODUCTION 

The prevalence of type 2 diabetes (T2D) 
is increasing worldwide and is estimated to 
reach 693 million by 2045 (Guariguata et al., 
2014; Cho et al., 2018). Diabetoporosis that is 

diabetic-related changes in bone, character-
ized by decreased bone quality and quantity 
(Ferrari et al., 2018), is one of the leading 
causes of osteoporotic fractures in subjects 
with T2D (Wongdee and Charoenphandhu, 
2011). A higher risk of osteoporotic fractures 
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in T2D patients has been reported in several 
population-based studies (Forsén et al., 1999; 
de Liefde et al., 2005; Ahmed et al., 2006; 
Lipscombe et al., 2007). A meta-analysis of 
case-control and cohort studies from 1980 to 
2016 indicates that the risk of osteoporotic 
fractures is 50–80 % higher in an individual 
with T2D (Janghorbani et al., 2007; 
Vestergaard, 2007; Moayeri et al., 2017). In 
addition, it has been shown that osteoporotic 
fractures increase the 1-year mortality rate by 
15–20 % in the elderly (Johnell and Kanis, 
2004; Wang et al., 2013; González‐Zabaleta 
et al., 2016). These data emphasize the need 
for developing new prevention/treatment 
strategies against osteoporotic fractures in pa-
tients with T2D. 

Accumulating evidence indicates that de-
creased nitric oxide (NO) bioavailability can 
contribute to diabetoporosis. NO is produced 
in the osteoblast and osteoclast cells by the 
three isoforms of NO synthase (NOS) en-
zymes (Ralston et al., 1994; Armour and 
Ralston, 1998; Klein-Nulend et al., 1998; 
Mancini et al., 2000). In T2D, within the bone 
cells, the expression and activity of the endo-
thelial NOS (eNOS) are decreased 
(Kalyanaraman et al., 2018b), while that of 
the inducible isoform, iNOS, is increased 
(MacPherson et al., 1999; Bhatta et al., 2016). 
eNOS-derived NO increases osteoblastic 
bone formation (Tai et al., 2007; Jamal and 
Hamilton, 2012) and directly inhibits osteo-
clast-mediated bone resorption (Wimala-
wansa, 2000a, b). In contrast, iNOS-derived 
NO inhibits osteoblast-mediated bone for-
mation and a stimulatory effect on osteoclast-
mediated bone resorption (Damoulis and 
Hauschka, 1997; Hof and Ralston, 2001; 
van’t Hof et al., 2004). It has been reported 
that eNOS deficiency decreases the rate of 
bone formation (Aguirre et al., 2001; Armour 
et al., 2001; Wimalawansa, 2009), accelerates 
osteoporosis (Wimalawansa, 2010), delays 
the bone healing process, and increases the 
risk of bone fractures (Hof and Ralston, 2001; 
Jamal and Hamilton, 2012). Also, it has been 
reported that NO donors have protective ef-
fects against osteoporotic bone fractures in 

postmenopausal women (Jamal et al., 2004; 
Rejnmark et al., 2006; Pouwels et al., 2010) 
and in ovariectomized and corticosteroid-
treated rats (Wimalawansa et al., 1996; 
Samuels et al., 2001). The role of NO on the 
function of the bone in the normal state has 
been previously reviewed (Kalyanaraman et 
al., 2016, 2018b). Here, we review the role of 
NO in diabetoporosis. 

 
NO IN THE BONE  

NO is produced in the cells of the bone by 
all three NOS isoforms, that is, eNOS, neural 
NOS (nNOS), and iNOS (Saura et al., 2010). 
eNOS and nNOS are constitutively expressed 
and thus continuously produce low levels of 
NO. iNOS, on the other hand, is activated by 
certain stimuli, including proinflammatory 
cytokines, and produces high and biologically 
toxic concentrations of NO (Saura et al., 
2010). Effects of NO on bone function depend 
on its concentration (Joshua et al., 2014), low 
physiological levels of NO have a stimulatory 
effect on normal bone formation (Ralston et 
al., 1995; Wimalawansa, 2007), development 
(Zaragoza et al., 2006; Saura et al., 2010), re-
modeling (Wimalawansa et al., 2000), and 
fracture healing. In contrast, a pathologically 
high level of NO has inhibitory effects on all 
of these processes.  

 
Expression and activity of eNOS in bones  

The eNOS gene is constitutively ex-
pressed in osteoblasts and osteocytes in both 
the fetus and adults (Helfrich et al., 1997; Fox 
and Chow, 1998). Furthermore, eNOS is also 
expressed in osteoclasts, bone marrow stro-
mal cells, and chondrocytes of the epiphyseal 
growth plate (Mancini et al., 2000; Wimala-
wansa, 2009). Studies in rodents with targeted 
deletion of the eNOS gene have shown that 
eNOS-derived NO mediates the stimulatory 
effects of sex-steroid (Armour and Ralston, 
1998; Wimalawansa, 2010), thyroid hor-
mones (Kalyanaraman et al., 2014), and me-
chanical loading on bone formation (Punjabi 
et al., 1992; Fox et al., 1996; Fox and Chow, 
1998). eNOS-deficient rodents show reduced 
prenatal and postnatal trabecular bone volume 
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and cortical thickness, bone length, and bone 
mineral density (Armour et al., 2001; Hefler 
et al., 2001). In addition, eNOS-deficient 
mice have lower osteoblast (Afzal et al., 
2004) and higher osteoclast activities (Kasten 
et al., 1994; Armour et al., 1999; Percival et 
al., 1999), thus presenting with a higher risk 
of osteoporotic fracture (Yan et al., 2010) and 
lower rates of the bone healing process 
(Collin-Osdoby et al., 1995) (Table 1). 

 
Expression and activity of iNOS in bones  

In neonatal female rats, the iNOS gene 
was shown to be constitutively expressed in 
osteoblasts (Hukkanen et al., 1999). How-
ever, under normal conditions, iNOS is not 
detectable in adults; pro-inflammatory cyto-
kines induce its expression and activity in os-
teoclasts and pre-osteoclast cells (Brandi et 
al., 1995; Zheng et al., 2006; Wimalawansa, 
2008). iNOS-deficient mice do not have any 
apparent bone abnormalities during their 
adult life, but they have lower prenatal bone 
growth and bone length (Watanuki et al., 
2002) (Table 1). High concentrations of NO 
that is produced by iNOS inhibit the activity 
and proliferation of osteoblasts (Damoulis 
and Hauschka, 1997; Hof and Ralston, 2001; 
van’t Hof et al., 2004) and increases osteo-
clast activity in pathophysiological conditions 
(Mundy, 1993; Chen et al., 2002, 2005; Hao 
et al., 2005; Ho et al., 2005; Wimalawansa, 
2008; Rajfer et al., 2019). 

Expression and activity of nNOS in bones  
Some studies have failed to detect nNOS 

expression in the bone cells (Schmidt et al., 
1992; Helfrich et al., 1997); however, nNOS 
expression has been reported in bone lining 
cells and in osteocytes (Helfrich et al., 1997; 
Fox and Chow, 1998) during skeletal devel-
opment (Hukkanen et al., 1999) and fracture 
healing (Zhu et al., 2001). nNOS-deficient 
mice have higher trabecular and cortical bone 
mineral density and lower bone remodeling 
with lower numbers of osteoclasts and osteo-
blasts (Jung et al., 2003; van’t Hof et al., 
2004) (Table 1). 

 
DIABETOPOROSIS AT A GLANCE 

Despite having a normal or increased 
bone mineral density, T2D patients are at a 
higher risk of osteoporotic fractures (van 
Daele et al., 1995; Sosa et al., 1996; Bonds et 
al., 2006). This paradox suggests that the eti-
ology of osteoporotic fractures in T2D is dif-
ferent from that of the general population 
(Jindal et al., 2018). According to a meta-
analysis of association studies, the higher risk 
of osteoporotic fractures in T2D patients is as-
sociated with lower trabecular bone quality, 
that is incomplete, poorly connected, and 
widely spaced trabeculae (Ho-Pham and 
Nguyen, 2019), and also with lower cortical 
bone quality, encompassing lower width and 
higher porosity (Patsch et al., 2013). In addi-
tion, a lower bone turnover rate (Hygum et al.,  

 
Table 1: The bone phenotypes in NOS-deficient rats and mice (Diwan et al., 2000; Armour et al., 2001; 
Hefler et al., 2001; Watanuki et al., 2002; Jung et al., 2003; van’t Hof et al., 2004; Yan et al., 2010) 

 Bone formation 
rates (osteo-

blast  
activity) 

Bone resorption 
rate (osteoclast 

activity) 

Bone 
mineral 
density 

Longitudinal 
bone growth 

Fetal bone 
growth 

Bone 
re-

pair 

eNOS 
-/- 

↓ ↑ ↓ ↓ ↓ ↓ 

iNOS  
-/- 

↔ ↔ ↔ ↔ ↓ ↔ 

nNOS 
-/- 

↓ ↓ ↑ ↔ ↔ ↓ 

NO, nitric oxide; NOS, NO synthase; eNOS, endothelial NOS; iNOS, inducible NOS; nNOS, 
neural NOS 
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2017; Purnamasari et al., 2017; Napoli et al., 
2018), a higher degree of mineralization 
(Pritchard et al., 2013), a lower rate of bone 
healing (Norris and Parker, 2011), and abnor-
mal posttranslational modifications of colla-
gen (Picke et al., 2019) have been reported in 
diabetoporosis. 
The pathophysiological mechanisms of dia-
betoporosis are quite complex but can be di-
vided into direct and indirect effects (Palermo 
et al., 2017). In addition to the direct effects 
of hyperglycemia and insulin resistance on 
bone quality (Figure 1), the increased risk of 

osteoporotic fractures may also be explained 
by the presence of diabetic complications, de-
creased physical activity, obesity, lower vita-
min D levels, and a higher risk of falls (Oei et 
al., 2015). Bone vasculature impairment, in-
creased inflammation, oxidative stress 
(McFarlane et al., 2004; Hofbauer et al., 
2007; Kalyanaraman et al., 2018b), and bone 
marrow adiposity (Costantini and Conte, 
2019) are key factors that contribute to higher 
incidences of osteoporotic fractures and de-
layed fracture healing in T2D (Figure 1). 

 
 

 

Figure 1: Main pathophysiological mechanisms involved in diabetoporosis. Type 2 diabetes (T2D) 
decreases trabecular and cortical bone quality by decreasing bone turnover and healing rates and in-
creasing bone mineralization and abnormal posttranslational modifications of collagen.  
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As shown in Figure 1, hyperglycemia and 
insulin resistance directly decrease osteoblast 
differentiation and activity by decreasing the 
expression of osteoblast-related markers, in-
cluding the Runt-related transcription factor 2 
(Runx-2), osteocalcin, bone morphogenetic 
protein-2 (BMP-2), osteopontin. Wnt signal-
ing pathway is also suppressed (Inaba et al., 
1995; Chiu et al., 2004; Mathieu et al., 2005; 
Hamann et al., 2011; Sarkar and Choudhury, 
2013; Lattanzio et al., 2014; Perez-Diaz et al., 
2015; Wei et al., 2015), osteoclast activation 
and differentiation are increased through in-
creases in the expression of osteoclast-related 
markers including the nuclear factor of acti-
vated T cells (NFAT), receptor activator of 
nuclear factor-kappa-Β ligand (RANKL), and 
tartrate-resistant acid phosphatase (TRAP) 
(McFarlane et al., 2004; Hofbauer et al., 
2007; Picke et al., 2016; Kalyanaraman et al., 
2018b). In addition, increasing serum concen-
trations of the Wnt inhibitors, sclerostin, and 
Dickkopf WNT signaling pathway inhibitor-
1 (DKK-1) by osteocytes can decrease bone 
turnover rate in T2D. Hyperglycemia and in-
sulin resistance also indirectly increase the 
expression of adipogenic markers such as pe-
roxisome proliferator-activated receptor γ 
(PPAR-γ) in bones and have inhibitory effects 
on the activity and differentiation of osteo-
blasts by increasing fat accumulation in the 
marrow cavity of long bones. In addition, hy-
perglycemia and insulin resistance indirectly 
affect bone quality by increasing advanced 
glycation end products (AGEs), oxidative 
stress, inflammation, and impaired bone vas-
culature. These changes might explain the 
higher risk of bone fractures and osteoporosis 
and the lower rate of bone healing in T2D. 

 
NO BIOAVAILABILITY IN DIABETIC 

BONES  

Decreased NO bioavailability has been re-
ported in bones of humans and animals with 
T2D and can be considered as one of the main 
mechanisms in diabetoporosis. As shown in 
Figure 2, lower eNOS expression (Kalyanara-
man et al., 2018b) or activity (Mordwinkin et 

al., 2012) resulting in diminished NO synthe-
sis and increased NO oxidation due to NO 
quenching by AGEs (Bucala et al., 1991; 
Alikhani et al., 2007) are the leading causes 
of decreased NO bioavailability in the dia-
betic bone. In addition, reduced availability of 
L-arginine, the substrate for the NOS en-
zymes, increases arginase activity (Bhatta et 
al., 2016); increased expression and activity 
of iNOS (MacPherson et al., 1999), impaired 
vasculature of the bones (Stabley et al., 2015), 
uncoupling of eNOS (Kalyanaraman et al., 
2018b), and damaged to the eNOS-caveolin-
1 complex (Aicher et al., 2003; Cao et al., 
2012) may be involved in decreased NO bio-
availability in the diabetic bones.  

eNOS uncoupling in the bones of T2D pa-
tients is at least in part due to increased pro-
duction of bone morphogenetic protein 4 
(BMP4) (Youn et al., 2015) that leads to an 
eNOS-mediated superoxide production 
(Thum et al., 2007). Lower activity of the 
eNOS/cGMP/PKG pathway due to the uncou-
pling of eNOS, inhibition of guanylate 
cyclase activity, and suppression of PKG 
transcription have all been reported in dia-
betic bones (Kalyanaraman et al., 2018b). In 
T2D, endothelial progenitor cells synthesize 
less NO because of the damaged eNOS-cave-
olin-1 complex (Aicher et al., 2003; Cao et al., 
2012) that is associated with increased serum 
levels of Dickkopf-1, which is an inhibitor of 
osteoblast differentiation (Lattanzio et al., 
2014). 

 
Bone remodeling in diabetes 

Bone remodeling is a life-long process 
and is achieved within anatomical structures 
that are known as a basic multicellular unit 
(BMU). These provide a unique microenvi-
ronment to facilitate coupled bone resorption 
and formation (Andersen et al., 2009; Raggatt 
and Partridge, 2010). Bone remodeling has 
four consecutive steps including activation, 
resorption, reversal, and formation, which re-
quire a coordinated action of the bone cells, 
including osteocytes, osteoblasts, osteoclasts, 
and bone-lining cells (Feng and McDonald, 
2011). 
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Figure 2: Proposed mechanisms involved in decreased endothelial nitric oxide (eNOS)-derived NO 
bioavailability and activity in bones of type 2 diabetic subjects 
 
 
 

Step 1 (activation), the osteocytes sense 
signals for initiating remodeling; these in-
clude mechanical forces, changes in calcium 
homeostasis, or changes in hormone levels 
that translate into biological signals 
(Bonewald, 2007; Raggatt and Partridge, 
2010). In osteocytes, initiating bone remodel-
ing signals inhibit the expression of trans-
forming growth factor β (TGF-β, as an inhib-
itor of bone resorption) (Heino et al., 2002; 
Raggatt and Partridge, 2010), and with a de-
lay of about 5 days inhibit the expression of 
sclerostin (SOST, an inhibitor of bone for-
mation) (van Bezooijen et al., 2004; Li et al., 
2005; Robling et al., 2008; Gasser and 
Kneissel, 2017). In addition, the bone lining 
cells create a raised canopy above the remod-
eling surface, which merges with the bone 
vasculature for recruitment of osteoclast and 
osteoblast progenitor cells to the BMU (Arias 
et al., 2018).  

Step 2 (resorption), the decreased TGF-β 
in osteocytes recruits hematopoietic stem 
cells (HSC) from the bone marrow or the cir-
culation; these HCSs are then differentiated to 
osteoclasts in the presence of monocyte/mac-
rophage colony-stimulating factor (M-CSF) 
and the RANKL (Boyle et al., 2003). Low 

levels of TGF-β increase the RANKL/osteo-
protegerin (OPG) ratio and M-CSF expres-
sion in preosteoblasts (Karst et al., 2004). 
OPG negatively regulates RANKL binding to 
RANK that is essential for activation and dif-
ferentiation of osteoclasts (Karst et al., 2004). 
In this step, osteoclasts digest organic and in-
organic bone matrices by secreting acid phos-
phatase, cathepsin K, and collagenase, a pro-
cess known as bone resorption (Henriksen et 
al., 2011).  

Mononuclear macrophage-like cells in 
step 3 (reversal) engulf and remove deminer-
alized undigested collagen and generate tran-
sition signals that stop bone resorption and 
start bone formation (Raggatt and Partridge, 
2010).  

Step 4 (formation and mineralization), in 
response to a decrease in SOST within osteo-
cytes, mesenchymal stem cells (MSC) are re-
cruited and differentiated into osteoblasts that 
start the bone formation and mineralization 
process. When an equal quantity of resorbed 
bone has been replaced, the remodeling cycle 
is terminated (Franz‐Odendaal et al., 2006). 
Some osteoblasts in this step undergo apopto-
sis, others turn into lining cells, still, others 
remain trapped within the bone matrix and be-
come osteocytes (Figure 3). 
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Figure 3: Effects of type 2 diabetes on bone remodeling: role of nitric oxide. T2D decreases oste-
oblastic bone formation and has a stimulatory effect on osteoclast-mediated bone resorption. These 
effects are mediated in part by a decrease in eNOS-derived NO and an increase in iNOS-derived NO. 

 
 
In T2D and the bone remodeling process, 

there is a decrease in eNOS-derived NO and 
an increase in iNOS-derived NO; this leads to 
inhibition of steps 1 and 4, activation and 
bone formation, respectively; and at the same 
time, step 2, bone formation is stimulated. As 
shown in Figure 3, T2D decreases the produc-
tion of eNOS-derived NO in osteocytes and, 
therefore, decreases osteocytes' capabilities in 
detecting and initiating the bone remodeling 
signals (step 1) (Collin-Osdoby et al., 2000; 

Bakker et al., 2009). eNOS-derived NO in-
creases in response to mechanical forces, thy-
roid hormones, and estrogens (Fox et al., 
1996; Armour and Ralston, 1998; Kalyanara-
man et al., 2014). T2D by decreasing eNOS-
derived NO and increasing iNOS-derived NO 
increases bone resorption (step 2). eNOS-de-
rived NO in T2D inhibits the production of 
M-CSF and RANKL and stimulates the pro-
duction of OPG in both preosteoblasts and os-
teoblasts; these effects result in a decrease in 
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recruitment of HSC and their differentiation 
to osteoclast (Wongdee and Charoenphandhu, 
2011; Catalfamo et al., 2013). In addition, 
eNOS-derived NO decreases the activities of 
cathepsin K, a marker of high bone resorption 
and collagenase in osteoclast (Percival et al., 
1999; Gyurko et al., 2005; Alselami et al., 
2015). Therefore, T2D increases bone resorp-
tion by decreasing eNOS-derived NO 
(Pezhman et al., 2019). T2D stimulates the 
production of iNOS-derived NO, which in-
creases PPARγ production by HSC and, 
therefore, stimulates differentiation of HSC to 
osteoclasts; in addition, iNOS-derived NO in-
creases the activities of cathepsin K and col-
lagenase and osteoclast activity (Percival et 
al., 1999; Gyurko et al., 2005; Alselami et al., 
2015). These effects result in increased bone 
resorption.  

eNOS-derived NO directly activates and 
facilitates osteoblastic differentiation from 
MSC (Hikiji et al., 1997) through phosphory-
lation of JNK/MAPK in preosteoblasts (Yang 
et al., 2018). After transportation to the nu-
cleus, p-JNK induces the expression of osteo-
genic transcription factors such as Runx2, os-
terix  (OSX), and osteopontin (OPN) (Aguirre 
et al., 2001) and represses the expression of 
adipogenic transcription factors such as 
PPARγ and lipoprotein lipase (LPL), thus in-
creasing osteogenesis and decreasing adipo-
genesis (Rosen et al., 1999; Aguirre et al., 
2001; Zhao et al., 2016; Yang et al., 2018). In 
addition, eNOS-derived NO directly activates 
osteoblast activity by increasing the alkaline 
phosphatase (ALPase) (Inoue et al., 1995) and 
osteocalcin levels (Pun et al., 1989) as well as 
increasing intracellular concentrations of 
cGMP (Hagiwara et al., 1996).  

 

TREATMENT OF DIABETOPOROSIS 
BY NITRIC OXIDE 

Available treatments for osteoporosis are 
limited by cost, side effects, and efficacy, 
with limited impact on the cortical bone (Ta-
ble 2). Therefore, there is a need for easily ad-
ministered and inexpensive agents that in-
crease bone trabecular and cortical strength 

and decrease the risk of osteoporotic frac-
tures. NO donors have a high potential to be 
cost-effective novel therapeutic agents 
against osteoporosis and, in particular, against 
diabetoporosis. 

 
Possible strategies for the treatment of dia-
betoporosis by nitric oxide 

Organic nitrates are used for treating heart 
failure and hypertension; epidemiological 
studies have shown that their use can reduce 
the risk of osteoporotic fractures (Rejnmark et 
al., 2006; Pouwels et al., 2010). Based on 
these observations, the protective effects of 
organic nitrates against osteoporotic fractures 
were reported in ovariectomized and cortico-
steroid-treated rats (Wimalawansa et al., 
1996; Samuels et al., 2001; Wimalawansa, 
2007, 2009), mice (Wimalawansa et al., 1996; 
Hukkanen et al., 2003), and in ovariectomized 
(Wimalawansa, 2000a; Nabhan and Rabie, 
2008) and postmenopausal women (Wimala-
wansa et al., 1996). Organic nitrates stimulate 
osteoblast-mediated bone formation (Wima-
lawansa et al., 1996; Wimalawansa, 2000b) 
and inhibit osteoclast-mediated bone resorp-
tion (Fan et al., 2004), thus decreasing the risk 
of osteoporotic fractures. Organic nitrates are 
the only FDA-approved NO donors, but their 
potential benefits are rapidly lost on long-
term use due to the possible development of 
tolerance and endothelial dysfunction (Daiber 
and Münzel, 2015). Inorganic nitrites and ni-
trates are NO donors with strong NO-like ef-
fects in both animals and humans; it has been 
suggested that they can act as suitable alterna-
tives to organic nitrates (Münzel and Daiber, 
2018). These agents can protect against dia-
betoporosis directly by decreasing osteoclast 
activity and increasing osteoblast activity (see 
section “NO in the bone”), or indirectly, by 
improving the metabolic status (Ghasemi and 
Jeddi, 2017; Lundberg et al., 2018; Kapil et 
al., 2020) and decreasing body weight 
(Bahadoran et al., 2020). 
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Table 2: Mechanisms and side effects of current drugs used in treating of osteoporosis 

Drugs Mechanisms Side effects 
Teriparatide and abaloparatide 
(Neer et al., 2001; Pettway et al., 
2008; Tella and Gallagher, 2014; 
Takakura et al., 2017; Tella et al., 
2017; Karras et al., 2018) 

↑ Parathyroid hormone  
levels 

Hyperglycemia 

 ↑ Osteoblast to deposit  
osteoid 

↓ Insulin sensitivity  

 ↑BMD ↑ Cortical porosity 
 ↑ Antioxidant properties  
 ↑ Chondrogenesis  
Androgens (Chau and Edelman, 
2002; Ward and Rauch, 2018) 

↑ BMD  ↑ Risk of prostate cancer  

NPS 2143 (Nemeth et al., 2001; 
John et al., 2011; Nemeth and 
Goodman, 2016) 

↓ Calcium-sensing receptor 
activity 

No anabolic effect  

 ↑ Pool of parathyroid  
hormone   

↑ Bone formation and  
resorption  

Romosozumab (Lim and Bolster, 
2017; Fabre et al., 2020) 

↓ Sclerostin levels  Cardiovascular events includ-
ing heart attack, myocardial in-
farction  

 ↑ Osteoblast activity  
 ↑ BMD  
Osteocalcin (Kanazawa, 2017) ↑ Osteoblast proliferation  - 

Calcitonin (Gattereau et al., 1980; 
Austin and Heath, 1981; Chau and 
Edelman, 2002; Khosla and 
Hofbauer, 2017) 

↓ Bone resorption ↑ Tendency to cause cancer 

  Hyperglycemia  
  No major increase in BMD 
Estrogen (Russo and Russo, 2006; 
Mauvais-Jarvis et al., 2013; Chen 
et al., 2014) 

↓ Osteoclast differentiation Cancer  

 ↓ Sclerostin ↑ Risk of developing diabetes 
Tamoxifen (Morita et al., 2016) ↑ Estrogen activity - 
 ↓ Osteoclasts differentiation  
Bisphosphonates (Khosla et al., 
2007; Russell, 2011; Burr et al., 
2015) 

↓ Osteoclast activity  ↑ bone brittle 

  ↑ Osteonecrosis 
Denosumab (Tsourdi et al., 2017; 
Zhang et al., 2020) 

↑ RANKL  ↑ Skin eczema 

 ↓ Osteoclasts activity  Hypocalcemia 
  ↑ Vertebral fractures 
Cathepsin K inhibitors (Mohsin et 
al., 2019; Dai et al., 2020) 

↓ The ability of osteoclasts 
to degrade bone matrix 

↑ Skin rashes 

  ↑ Cardio-cerebrovascular 
events 

Calcium (Ilich and Kerstetter, 2000; 
Li et al., 2018) 

↑Bone health ↑ Risk for cardiovascular  
diseases 

  ↑ Kidney stone  
  ↑ Risk of hip fractures 
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CONCLUSION AND  
FUTURE PERSPECTIVE 

Decreased bone NO bioavailability in 
T2D is one of the primary mechanisms under-
lying diabetoporosis. This reduced NO bioa-
vailability is due to decreased expression of 
eNOS, availability of L-arginine, and activity 
of cGMP/PKG, as well as increased eNOS 
uncoupling, expression, and activity of iNOS 
and arginase. NO donors can potentially be 
used as safe and cost-effective novel thera-
peutic agents in diabetoporosis. This issue, 
however, remains to be verified in a well-de-
signed clinical trial.  
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