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Abstract

Signalling is a key feature of living cells which frequently involves the local clustering of specific proteins in the plasma
membrane. How such protein clustering is achieved within membrane microdomains (‘‘rafts’’) is an important, yet largely
unsolved problem in cell biology. The plasma membrane of yeast cells represents a good model to address this issue, since
it features protein domains that are sufficiently large and stable to be observed by fluorescence microscopy. Here, we
demonstrate the ability of single-molecule atomic force microscopy to resolve lateral clustering of the cell integrity sensor
Wsc1 in living Saccharomyces cerevisiae cells. We first localize individual wild-type sensors on the cell surface, revealing that
they form clusters of ,200 nm size. Analyses of three different mutants indicate that the cysteine-rich domain of Wsc1 has a
crucial, not yet anticipated function in sensor clustering and signalling. Clustering of Wsc1 is strongly enhanced in deionized
water or at elevated temperature, suggesting its relevance in proper stress response. Using in vivo GFP-localization, we also
find that non-clustering mutant sensors accumulate in the vacuole, indicating that clustering may prevent endocytosis and
sensor turnover. This study represents the first in vivo single-molecule demonstration for clustering of a transmembrane
protein in S. cerevisiae. Our findings indicate that in yeast, like in higher eukaryotes, signalling is coupled to the localized
enrichment of sensors and receptors within membrane patches.
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Introduction

The evolution of uni- and multicellular organisms has produced

a variety of cellular devices which enable cells to react to

environmental changes. In mammals, cell surface receptors are

frequently triggered by hormones and depend on the oligomer-

ization of the receptor molecules to generate an intracellular

signal, a strategy examplified by mammalian receptor tyrosine

kinases (see [1,2] for recent reviews). Notably, the lateral

organization of protein complexes within the plasma membrane

in specific microdomains enriched in sphingolipids and sterols

(‘‘lipid rafts’’) [3] is thought to be crucial in a variety of signalling

processes governing diverse biological reactions such as endocy-

tosis, cell adhesion, apoptosis or immune responses (reviewed in

[4]). Because the putative size of individual lipid rafts in higher

eukaryotes is estimated to be in the 20–100 nm range and to be

transient, their direct visualization in live cells remains very

challenging [5,6]. In contrast, in the yeast Saccharomyces cerevisiae,

the unicellular model eukaryote, stable microdomains have been

observed within the plasma membrane by the use of specific GFP-

labelled marker proteins [7]. These fluorescence studies have

shown that a so-called MCP (for ‘‘membrane compartment with

Pma1’’) compartment forms a network-like structure, defined by

its constituent proton ATPase Pma1, while the MCC (‘‘membrane

compartment with Can1’’) compartment forms 300 nm patches

and houses a number of proton symporters, as well as a

component of the eisosomes [8].

An essential feature of yeast and other fungi is their rigid cell

wall, which serves as a first barrier to extracellular stresses [9].

Consequently, a leak in cell wall integrity (CWI) - which can be

induced by surface stresses such as low osmolarity or compounds

interfering with cell wall polysaccharides - has to be detected and

repaired immediately. The proper cellular reaction is ensured by

signalling through the so-called CWI pathway [10]. Surface

stresses are first detected by a family of five plasma membrane

sensors in this pathway, namely Wsc1, Wsc2, Wsc3, Mid2 and

Mtl1 [11,12]. Upon activation, they trigger an intracellular

signalling chain, which involves a conserved mitogen activated

protein kinase (MAPK) cascade and the transcription factor Rlm1

(reviewed in [13]). A characteristic feature of the Wsc-family of

sensors is the presence of a periplasmatic cysteine-rich domain

(CRD; also referred to as ‘‘WSC domain’’) near the amino-

terminal end, followed by a highly mannosylated serine/threonine

rich region (STR), which confers nanospring properties to the

sensor [14]. A complete deletion of the CRD sequence, albeit not

investigated for its effect on the overall protein structure, renders

Wsc1 non-functional [15]. Although CRD homologous domains

have been detected in 86 proteins from viral, bacterial and
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eukaryotic origins, their exact function remains obscure [16].

Owing to its presence in the yeast Wsc-sensor family and in a

fungal exo-glucanase it has been speculated to mediate interactions

with carbohydrate moieties. Interestingly, a CRD domain is also

present near the amino-terminal end of the mammalian polycystin

protein (PKD1). PKD1 is a mechanosensor whose deficiency

causes a prominent hereditary disease in humans [17]. Here again,

the detailed function of the CRD sequence has not yet been

elucidated.

Fluorescence microscopy revealed that Wsc1-GFP proteins

reside in membrane patches within the plasma membrane, both in

S. cerevisiae and its close relative Kluyveromyces lactis [18,19].

However, the structure-function relationships of Wsc1 clustering

are currently unknown. In particular, two key questions still need

to be answered: i) what is the structural basis for clustering, i.e.

which sensor domain is mechanistically implicated in the process?

ii) is clustering of biological relevance, particularly in sensing and

signalling? Here, we used single-molecule atomic force microscopy

(AFM) [20,21] to reveal function-related clustering of Wsc1

sensors in living S. cerevisiae cells. We showed that clustering

requires the CRD domain and is stimulated under stress

conditions. Combining these single-molecule analyses with GFP-

localization studies, we also suggest that the function of Wsc1 is

coupled to its local enrichment within membrane patches, for

which we propose the term Wsc1 ‘‘sensosome’’.

Results

AFM demonstrates clustering of Wsc1 in live cells
We used AFM to probe the distribution of Wsc1 sensors on

living S. cerevisiae cells, with the aim to determine whether they are

evenly distributed or clustered (Fig. 1 & Fig. S1). Native sensors are

too short to reach the outermost cell surface, thus to be probed by

AFM. For our single-molecule analyses, we therefore employed an

elongated, fully functional, Wsc1-Mid2 hybrid sensor bearing an

His-tag (described in [14]). For this purpose, the respective

constructs were introduced on a CEN/ARS vector into a recipient

strain lacking the endogenous WSC1 allele (HOD48-1D). Cells

producing this modified sensor were trapped into porous polymer

membranes and observed using topographic imaging (Fig. 1a).

High-resolution images revealed a smooth and homogeneous

surface, consistent with earlier AFM analyses [22]. His-tagged

sensors were then detected by scanning the cell surface with an

AFM tip bearing Ni2+-nitriloacetate (NTA) groups. A substantial

fraction (7%) of the force curves recorded across the cell surface

displayed single adhesion force peaks, the remaining curves

exhibiting no adhesion (Fig. S1). The corresponding adhesion

force histogram displayed a single maximum with a mean

magnitude of 207654 pN (n = 4096). In the light of the literature

data [14,23], we attribute these forces to the rupture of single

NTA-His bonds, thus to the detection of single His-tagged sensors.

The specificity of these analyses was confirmed by showing a

dramatic reduction of adhesion events in the absence of Ni2+, or

on related yeast strains lacking the sensors [14].

We next recorded adhesion maps over 1 mm61 mm areas to

resolve the spatial arrangement of the sensors (Fig. 1b). Although

some sensor molecules were found to be isolated, many of them

were assembled into clusters featuring an area of 0.0460.01 mm2

(n = 22 different clusters from different maps) and an equivalent

diameter of 230 nm (calculated assuming a circular shape). This

represents the first in vivo single-molecule demonstration that a

transmembrane protein is clustered in S. cerevisiae. Interestingly, we

note that the size of Wsc1 clusters is in the range of the 300 nm

large patches reported for MCC proteins in S. cerevisiae, and clearly

larger than the putative size of rafts in higher eukaryotes (,20–

100 nm [24]). Thus, unlike membrane domains in mammalian

cells, yeast membrane domains such as the one carrying Wsc1 and

MCC domains [7], are sufficiently large, distant from each other,

and stable to be resolved both by optical and scanning probe

microscopy techniques.

Figure 1. Single-molecule mapping reveals clustering of Wsc1
in live cells. (a) AFM deflection image of a yeast cell trapped into a
porous polymer membrane, recorded in buffer solution (sodium acetate
+ sucrose 100 mM; pH 4.75) at 25uC. As shown in the left cartoon, the
cells express elongated, fully functional Wsc1-Mid2 hybrid sensor
bearing an His-tag. (b) Representative adhesion force maps obtained by
scanning 1 mm61 mm areas on different cells with a Ni++-NTA-tip in
buffer solution. The heterogeneous distribution of the bright pixels,
which represent the detection of single sensors, clearly documents the
formation of nanoscale clusters (highlighted by dotted red lines). We
define a cluster as a group of sensors containing at least 10 molecules
(bright pixels) either in direct contact with each other or separated by
no more than one dark pixel. All maps were obtained using a retraction
speed of 1,500 nm s21 corresponding to a loading rate of 9,000 pN s21,
and an interaction time of 500 ms. The data shown are representative
of results obtained on 12 different cells using 14 different tips.
doi:10.1371/journal.pone.0011104.g001

Nanoclustering of Sensors
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Stress conditions enhance sensor clustering
Is Wsc1 clustering stimulated under stressing conditions? To

address this question, we explored the influence of environmental

conditions that activate the CWI signalling pathway, i.e. elevated

temperature (heat shock) or deionized water (hypoosmotic shock).

Fig. 2 shows that both conditions increased the total sensor surface

density from 75622 sensors/mm2 (n = 16 maps of 1024 data

points recorded over 1 mm2) to 171616 sensors/mm2 (elevated

temperature, n = 8) and to 225628 sensors/mm2 (deionized water,

n = 12). In addition, clustering was strongly enhanced since we

observed much larger fractions of clustered sensors (Fig. 2c), as

well as a dramatic increase of the mean cluster size, from

0.0460.01 mm2 (n = 22) to 0.1560.04 mm2 (n = 13) and

0.1460.06 mm2 (n = 13), respectively, corresponding to an in-

crease of the equivalent diameter from 230 nm to 440 and

420 nm. Note that in deionized water, quantification of the

clusters is rendered more difficult since many sensors were

assembled in a complex, heterogeneous pattern rather than

forming well-defined clusters.

The CRD domain of Wsc1 is essential for proper sensor
function

The Wsc-family of CWI sensors in yeast is characterized by a

cysteine-rich domain (CRD) containing eight conserved cysteine

residues which is also found in proteins of other organisms (Fig. 3a),

and cannot be deleted without loss of function [15]. For our single-

molecule AFM analyses, we employed in vitro mutagenesis to

substitute the cysteine residues either individually or pairwise for

alanines. Thus, five different mutants were constructed (Wsc1C1A,

Wsc1C2,3A, Wsc1C4,5A, Wsc1C6,7A, Wsc1C8A) and first assessed for

their in vivo function in a strain also lacking the Mid2 sensor (a mid2

deletion significantly enhances the growth defects of a wsc1

defective strain, which facilitates its phenotypic characterization

[19]). For this purpose, the mutations were introduced individually

at the chromosomal WSC1 locus and the strains obtained were

tested in drop dilution assays for their growth under different stress

conditions. Note that except for the cysteine mutations Wsc1

remained unaltered in these experiments, i.e. it did not carry the

elongation needed for AFM detection employed above. As evident

from Fig. 3b, none of the mutants grew at elevated temperature

(37uC) or in the presence of Congo red or caffeine, where a mid2

deletion with a wild-type copy of WSC1 is not impaired.

Complementation studies in a single wsc1 deletion background

gave similar results. This finding indicates that the cysteines are

crucial for Wsc1 function. Since no phenotypic differences

between the five mutants were observed, we concentrated

hereafter mainly on the Wsc1C4,5A mutant, with some comple-

mentary studies on the Wsc1C6,7A and the Wsc1C8A mutants.

Wsc1 clustering is controlled by the CRD domain
To analyze the relationship between the structure of Wsc1 and its

clustering properties, we then investigated the role of the CRD

domain by mapping the distribution of Wsc1 in the Wsc1C4,5A,

Wsc1C6,7A and Wsc1C8A mutants expressed form a CEN/ARS

plasmid in a wsc1 deletion and equipped with the elongation and

His-tag as described above (Fig. 4). The three CRD mutants showed

Figure 2. Clustering of Wsc1 is stimulated under stressing
conditions. (a, b) Adhesion force maps (1 mm61 mm) recorded with a
Ni++-NTA-tip either in buffer solution at 37uC (a, heat shock) or in
deionized water at 25uC (b, hypoosmotic shock). Stressing conditions
strongly enhance Wsc1 clustering (clusters are highlighted by dotted
blue and green lines). For both conditions, the characteristic shape of
the force curves confirmed they reflected the detection of single His-
tagged sensors. For Fig. 2b, similar data were obtained when deionized
water was quickly exchanged by a buffered solution. Here again, we
define a cluster as a group of sensors containing at least 10 molecules
(bright pixels) either in direct contact with each other or separated by
no more than one dark pixel. For each condition, cells were treated for
15 min prior to AFM measurements. The data shown are representative
of results obtained on 6 different cells using 6 different tips. (c) Surface
density histograms showing the number of sensors per mm2 measured

(from left to right): for wild-type Wsc1 in buffer at 25uC (n = 16 maps
containing 1024 data points each), for wild-type Wsc1 in buffer at 37uC
(n = 8 maps) and in deionized water at 25uC (n = 12 maps), as well as for
Wsc1C4,5A (n = 7 maps), Wsc1C6,7A (n = 7 maps), and Wsc1C8A mutants
(n = 12 maps) in buffer at 25uC. Darker and lighter colors represent the
surface density of clustered and isolated sensors.
doi:10.1371/journal.pone.0011104.g002

Nanoclustering of Sensors
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adhesion frequencies and adhesion values similar to those of the wild-

type (Fig. S1). In addition, detailed analysis of the force curves

revealed very similar spring behaviours for both wild-type and

mutants, demonstrating that the sensor mechanical properties are not

determined by the CRD domain (Fig. S2). This substantiates our

earlier studies showing that glycosylation of the sensor at the Ser/

Thr-rich region (STR) adds to the stiffness of the extracellular region

and is required for its spring properties [14]. However, adhesion

maps demonstrated major differences in lateral sensor organization,

when CRD mutants were compared with the wild-type (Fig. 4): all

mutant sensors appeared to be evenly distributed, rather than

clustered (see also Fig. 2c for quantification). Note that for these

determinations, the total number of sensors detected for a certain

area did not significantly differ from that observed on the wild-type.

Figure 3. The conserved CRD domain of Wsc1 is essential for proper sensor function. (a) Alignment of the deduced amino acid sequences
of selected proteins carrying a CRD domain. The eight conserved cysteine residues are numbered consecutively and highlighted in red. Other
conserved amino acid residues identical in all proteins are highlighted in blue. Numbers before and after each sequence refer to the position of the
first and last amino acid relative to the N-terminal end (assuming that the starting methionine is not processed). For alignment, the CloneManager
Suite programm version 9 was used at standard settings. Wsc-sensor sequences are from Sc = Saccharomyces cerevisiae and Kl = Kluyveromyces
lactis. ThCRD2 = homologous sequence from b-1-3 exoglucanase of the fungus Trichoderma harzianum. HsPKD1 = homologous sequence from the
human polycystin. For sequence references consult [16,18]. (b) Serial dilution drop assays. Yeast strains with the indicated alleles were grown
overnight into late logarithmic phase, adjusted to OD600 = 0.1, and 3 ml each of ten-fold serial dilutions were dropped onto rich medium (YEPD)
under stress conditions as indicated. 1 M sorbitol was added for the non-stressed control. Congo red was applied at a concentration of 0.1 mg/ml,
caffeine at 7.5 mM. Plates were incubated for 3 days at 25uC, except for the indicated heat stress at 37uC. Scanned images in each column were taken
from the same plate, adjusted for brightness and contrast with the CorelDraw photoshop programm. None of the cysteine mutants displayed
significant growth under stress conditions as compared to the control strain in the second lane.
doi:10.1371/journal.pone.0011104.g003

Nanoclustering of Sensors
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The above finding demonstrates the important role of the CRD

domain in sensor clustering.

Fluorescence microscopy shows vacuolar accumulation
of non-clustering sensors

As a complementary approach to our single-molecule experiments,

we next used fluorescence microscopy with Wsc1-GFP proteins to

visualize the distribution of the sensors in the plasma membrane of

growing yeast cells (Fig. 5). As observed previously, Wsc1-GFP fusions

show a dynamic distribution, with the signal concentrating at the

emerging bud, then appearing within the cell and to some extent in

the vacuole, before concentrating again at the bud-neck during

cytokinesis [19]. This behaviour is also observed in the Wsc1C4,5A-

GFP fusion. However, the latter is less frequently detected in plasma

membrane spots, as compared to the wild-type Wsc1-GFP signal

(Fig. 5b). Moreover, in general much higher signal intensities are

observed in the vacuoles of the mutant strain as compared to the wild-

type (Fig. 5a). It should be noted, that vacuolar signal intensities vary

considerably between individual cells both in wild-type and mutant

GFP fusions, explaining why cells with similar numbers of sensors on

the surface could be chosen for the AFM measurements described

above. A quantification of 45 budding cells from each culture yielded

a mean signal intensity within the vacuoles of 79631 arbitrary units

for the wild-type Wsc1-GFP and 114657 for Wsc1C4,5A-GFP.

Discussion

Our current view of biological membranes emphasizes their

high level of lateral compartmentation. In higher eukaryotes,

lateral microdomains or lipid rafts enriched in sphingolipids and

sterols have been speculated to favour segregation of specific

membrane proteins like receptors or GPI-anchored proteins [3].

Membrane domains may have important roles in a variety of

cellular functions including signalling, cell adhesion and mem-

brane trafficking [4]. A prominent example are signalling

processes, which in very diverse biological systems, from

chemotaxis in E. coli [25] to the immune response in human T

lymphocytes [26], frequently rely on - or are at least enhanced by -

the local clustering of signalling components in or near micro-

domains of the plasma membrane. Because of the small size (,20–

100 nm) and the highly dynamic nature of membrane domains in

higher eukaryotes, their direct visualization in live cells remains

very challenging, and consequently, their existence remains

somewhat controversial [5,27,28]. In contrast, protein domains

in yeast membranes have been shown to be sufficiently large and

stable to be resolved by fluorescence microscopy [7]. Yet, the

distribution, assembly and dynamics of single proteins within the

domains have not been resolved owing to the lack of suitable

probing techniques. Our experiments demonstrate that the

combination of single-molecule AFM with genetic manipulation

is a powerful platform for imaging protein clusters in living yeast

cells in relation with function.

Single-molecule mapping revealed that most wild-type Wsc1

sensors concentrated within nanodomains of ,200 nm diameter,

which we tentatively call ‘‘sensosomes’’. A pertinent question is

whether the clustering we observed on the cell surface reflects

similar clustering within the plasma membrane? We believe this is

most likely the case, since we previously showed that the

underlying mannosylated STR sequence adopts a rigid, nano-

spring structure [14], i.e. the flexibility between the CRD domain

Figure 4. Clustering of Wsc1 is achieved through the CRD domain. Adhesion force maps (1 mm61 mm) recorded on the surface of mutants
Wsc1C4,5A (a) Wsc1C6,7A (b) and Wsc1C8A (c), with a Ni++-NTA-tip in buffer solution at 25uC. While Wsc1 mutants showed a surface density similar to
that of the wild-type, they were evenly distributed thus no longer clustered (see also Fig. 2c). The data shown are representative of results obtained
on 17 different cells using 13 different tips.
doi:10.1371/journal.pone.0011104.g004

Nanoclustering of Sensors
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and the transmembrane domain (TMD) of the sensor should be

very limited and provides a physical constraint to the lateral

movement within the membrane. Since the nanospring mechanics

of the sensor is not altered by the mutations of cysteine residues

introduced in the CRD sequence (Fig. S2), this argument holds

true for both wild-type and the mutant Wsc1 sensors studied here.

We showed that both the total amount of wild-type Wsc1

sensors and their frequency of clustering increased upon

environmental stress, i.e. application of either heat or low

osmolarity. Our finding is fully consistent with the notion that

stress conditions activate the cell wall integrity pathway [29], and

thus indicate that clustering is a stress-responsive process that is

intimately connected to signalling. This behaviour is reminiscent

of the tuning of signalling in bacterial chemotaxis, where clustering

is known to dramatically increase the altitude of signal generation

[25,30]. We suggest that clustering is a means developed by yeast

to concentrate Wsc1 sensors, and therefore the interacting

downstream components, within a limited area to promote

recruitment of the latter and thus enhance the cellular response.

This mechanism is consistent with that of bacterial chemorecep-

tors, which form clusters of variable sizes (2506120 nm) that

rearrange upon stimulation [31].

Since the incubation times under stress conditions employed

here were only 15 min, the pronounced increase in Wsc1 density

at the cell surface is hardly due to new protein synthesis. Rather,

we suggest that the high intracellular dynamics of the sensor, as

Figure 5. Fluorescence microscopy shows vacuolar accumulation of non-clustering sensors. (a) Elongated versions of Wsc1 and its
mutant derivative Wsc1C4,5A fused to GFP were expressed from a centromeric vector under the control of their native promoters in a wsc1 deletion
strain. A representative number of cells in different growth stages was examined by differential interference contrast (DIC) microscopy (upper row)
and fluorescence microscopy (lower row). Wsc1-GFP signals are shown in green. The vacuolar membrane was stained with FM4-64 and is shown in
red. Scale bar: 10 mm. (b) Larger image of cells in a late stage of cell division, expressing GFP fusions of either the wild-type Wsc1 or the Wsc1C4,5A

construct. Imaging conditions are as above, with the additional display of the separated signals from GFP and FM4-64 in the lower row. Scale bar:
5 mm.
doi:10.1371/journal.pone.0011104.g005

Nanoclustering of Sensors
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examplified by the rapid movement of Wsc1-GFP signals in time-

lapse fluorescence microscopy [19], enables a fast increase of the

plasma membrane-embedded fraction upon stress stimulation

from internal stores. In addition, endocytosis of the plasma-

membrane fraction of Wsc1 could be slowed-down in the clustered

state, as deduced from the vast accumulation of Wsc1-GFP within

the vacuoles of the CRD mutants. Note that an alternative

explanation would be a specific endocytosis of inactive sensors

independent from clustering, which cannot be ruled out by our

data. Both processes therefore lead to a high local density of

sensors within the plasma membrane under stress conditions,

consequently enhancing the signal. In summary, these observa-

tions lead us to believe that Wsc1 clustering and signalling capacity

are intimately correlated processes.

How is clustering of the sensors achieved? Our data clearly

show that the CRD plays a crucial role in clustering, since

mutation of the cysteines within this domain abolished both their

clustering and their function in vivo. This substantiates previous

observations, where the entire CRD region was deleted and shown

to be crucial for sensor function [15]. The authors also observed

that overproduction of Wsc1 inhibits cell growth, which could be

explained in the light of our results from a constitutive activation of

the CWI pathway by the increased sensor density. Overproduction

of a CRD-less Wsc1 suppressed the phenotypes of a wsc1 deletion,

which may be attributed to an enhancement of the low sensor

activity in the mutant by increasing its density. It should be noted

that a substantial amount of wild-type Wsc1 sensor was shown to

reside in detergent-resistant membrane fractions, i.e. in ‘‘lipid

rafts’’ [15].

Because we have shown the key role of the CRD domain in

mediating clustering, we believe that this domain may have

broader functions than previously anticipated. Even though an X-

ray structure is not available for any of the 86 CRD domains

reported so far throughout all biological systems, a role of the

domain in binding to carbohydrates has been suggested from its

presence in a fungal exoglucanase [16]. Binding of Wsc1 to cell

wall glucans through its CRD domain makes it ideally suited to

function as a mechanosensor (Fig. 6): to detect stress acting on

either the cell wall or the plasma membrane [10,19], the sensor

needs to be anchored in both structures, i.e. in the plasma

membrane by the TMD sequence and in the cell wall by the CRD

domain. Stress-induced deformation of the cell wall or membrane

would then put a mechanical constraint (force) on the entire

sensor. This in turn will likely lead to a conformational change in

its cytoplasmic domain, which triggers the interaction with the

downstream signalling components and thus induces the CWI

response.

Carbohydrate binding however does not explain how the CRD

domain mediates clustering of Wsc1. Moreover, a similar role of

the CRD domain in carbohydrate-binding in the human

mechanosensor polycystin seems rather redundant, since it also

carries a number of PKD domains, which already fulfill this

function [32]. As we have shown here that the cysteine mutants do

not cluster anymore, we suggest an additional function for the

CRD domain, that is to mediate protein-protein interactions. This

would also provide an attractive model of how the large variety of

environmental stresses reported to activate the CWI pathway [33]

is sensed by Wsc1, as illustrated in Fig. 6. We propose that

stretching of either the cell wall or the plasma membrane will alter

the conformation of the CRD domain, thereby exposing interfaces

promoting intermolecular protein-protein interactions and trig-

gering the association of further sensor molecules within the

plasma membrane. In analogy to bacterial two-component sensor

kinases [30] and receptor tyrosine kinases in higher eukaryotes

Figure 6. Biological significance of CRD-mediated Wsc1
clustering. (a) Non-stressing conditions. The CRD domains of Wsc1
sensors interact with cell wall glucans. Two representative glucan chains
of the cell wall (CW, shaded in grey) are depicted as interconnected
orange dots. Binding of the CRD domain should be transient to allow
for lateral movement of sensors in the cell wall and plasma membrane.
The CRD domain is followed by a Ser/Thr-rich (STR) region, with blue
lines indicating mannosylation. The single transmembrane domain
(TMD) of Wsc1 is shown as a red cylinder spanning the plasma
membrane (PM). The cytoplasmic tail is curled and not competent for
signalling to the thus inactive downstream components Rom2 and
Rho1 (light blue and yellow, respectively). (b) As a first response to cell
wall stress, the glucan chains are stretched, exerting a force on the
Wsc1-STR nanospring [14] through their coupling to CRD. The induced
conformational change in the cytoplasmic domain of the sensor,
designated by the straight red bar, allows it to interact with and
activate Rom2 (dark blue), which in turn promotes activation (exchange
of GDP for GTP) of Rho1 (bright yellow), and signalling to the
downstream components of the CWI pathway. Concomitantly, the CRD
domain adapts an interaction-competent surface structure. (c) Inter-
molecular interactions of the CRD domains promote sensor clustering,
with a concomitant increase of the downstream-signalling components
at the internal side of the plasma membrane. This local accumulation
enhances the stress signal and the cellular response. We propose to call
this signalling complex a sensosome.
doi:10.1371/journal.pone.0011104.g006

Nanoclustering of Sensors
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[34], this could alter the phosphorylation state of the Wsc1

cytoplasmic domain and thus its interaction with the following

signalling component Rom2 [35].

In conclusion, our experiments demonstrate that single-

molecule AFM provides new insights into the dynamic clustering

of transmembrane sensors in S. cerevisiae. Our main findings are

that i) the formation of Wsc1 nanoclusters is achieved via the CRD

domain, ii) clustering is enhanced under stress conditions that

activate the CWI signalling pathway, and iii) clustering and

signalling capacity of Wsc1 are intimately correlated processes.

This leads us to conclude that in yeast, like in higher eukaryotes,

sensor function is coupled to a localized enrichment of sensors or

receptors in membrane patches. We therefore expect our newly

observed Wsc1 nanoclusters, i.e. the ‘‘sensosome’’, to promote the

concomitant accumulation of downstream signalling components

of the CWI signalling pathway at the inner leavelet of the plasma

membrane.

Methods

Media, growth conditions, strains and genetic
manipulations

Strains HD56-5A (MATa ura3-52 leu2-3,112 his3-11,15) and

HSK1.1 (MATa wsc1::SpHIS5 mid2::loxP ura3-52 leu2-3,112 his3-

11,15) have already been described [36]. Strain HOD48-1D

(MATa wsc1::KlURA3 ura3-52 leu2-3,112 his3-11,15) was obtained

in the same genetic background, using the homozygous diploid

DHD5 [37] as a recipient for transformation with a KlURA3

deletion cassette generated by PCR with the oligonucleotides A10

and A11 (Table S1) from the template vector pUG72 [38]. The

heterozygous deletion obtained was sporulated and subjected to

tetrad analysis to yield the segregant HOD48-1D.

All sequences of the plasmids described in the subsequent

paragraphs are available from J.J.H. upon request. Cysteine

mutants were obtained by in vitro mutagenesis with the

‘‘QuickChange Site-Directed-Mutagenesis’’ kit from Stratagene

(La Jolla, California) and the oligonucleotides 07.6-07.15 listed in

Table S1. As a template for mutagenesis we used pSK1, a

pUK1921 [39] derivative carrying the entire WSC1 gene with its

flanking sequences on a PstI fragment. Each mutant allele was

then subcloned into the PstI site of the vector pUG6 [40], to place

a selectable kanMX4 marker downstream of WSC1. 39 non-coding

sequences of WSC1 were then obtained by PCR with the

oligonucleotides 05.149/05.150 and introduced into the single

SacI site downstream of the kanMX4 marker in each construct.

From those, the WSC1 alleles including the selection marker were

excised with SalI/BssSI and used to substitute the wsc1::SpHIS5

deletion in strain HSK1.1 by in vivo recombination. Thus, strains

carrying the alleles WSC1C1A, WSC1C2,3A, WSC1C4,5A, WSC1C6,7A,

and WSC1C8A, each at their native chromosomal locus, were

obtained and designated HSK20-HSK24, respectively.

The construction of a hybrid vector encoding an elongated

Wsc1-Mid2 sensor with a 8xHis tag for surface detection by AFM

(pBH01) has been described in detail in [36]. Briefly, a KlURA3

cassette introduced into the 59 coding region of WSC1 carried on a

CEN/ARS plasmid with a YCplac111 [41] backbone was

substituted by in vivo recombination for a PCR-generated fragment

from MID2, with the His-tag sequence supplied by the 59

oligonucleotide. For introduction of the mutated alleles, pBH01

was digested with BamHI/BstAPI and the backbone was ligated to

a fragment carrying most of the coding sequence and the

terminator of the WSC1 cysteine mutants obtained from the

pUG6 derivatives described above, to yield pJJH1169

(WSC1C4,5A), pSK401 (WSC1C6,7A) and pSK402 (WSC1C8A).

To obtain GFP fusions of the elongated constructs, pBH01 and

pJJH1169 were each transformed into strain DHD5 in combina-

tion with a PCR fragment generated with the oligonucleotide pair

03.50/03.51 and the template vector pFA6a-GFP-kanMX4 [42].

After in vivo recombination and selection for G418, the plasmids

were isolated from yeast transformants and amplified in E. coli

[36]. They were called pJJH1191 (pBH01-GFP) and pJJH1192

(pJJH1169-GFP), respectively. For examination by fluorescence

microscopy they were introduced into yeast strain HOD48-1D

selecting for leucine prototrophy. Procedures and equipment for

fluorescence microscopy have been explained in detail in [18].

For AFM studies, transformants were cultured in leucine-free

synthetic media as follows. Two or three colonies from the solid

medium plate used as inoculum were transferred into culture

medium. Cells were agitated overnight at 30uC, grown up to the

late logarithmic phase, and harvested by centrifugation. They

were washed three times with sodium acetate buffer in buffered

solutions (sodium acetate, pH 4.75), and resuspended in 10 mL

buffer to a concentration of ,106 cells per mL.

Atomic force microscopy
Gold-coated cantilevers were cleaned for 15 min by UV and

ozone treatment, rinsed with ethanol, dried with a gentle nitrogen

flow, immersed overnight in ethanol containing 0.01 mM of NTA-

terminated alkanethiols (ProChimia, Poland), and then rinsed with

ethanol. Unless stated otherwise, cantilevers were immersed in a

40 mM aqueous solution of NiSO4 (pH 7.2) for 1 h and rinsed

with buffer before use. AFM measurements were performed in

buffered solutions (sodium acetate +0.1 M sucrose, pH 4.75),

using a Nanoscope IV Multimode AFM (Veeco Metrology Group,

Santa Barbara, CA) and oxide sharpened microfabricated Si3N4

cantilevers (Olympus Ltd., Tokyo, Japan). Cells were immobilized

by mechanical trapping into porous polycarbonate membranes

(Millipore) [14]. The spring constants of the cantilevers were

measured using the thermal noise method (Picoforce, Veeco

Metrology Group), yielding values ranging from 0.02 to 0.028 N/

m. Unless otherwise specified, all force measurements were

performed using a constant approach and retraction speed of

1,500 nm/s, and with an interaction time of 500 ms. Adhesion

maps were obtained by recording 32632 force curves on

1 mm61 mm areas of the cells, calculating the adhesion force

values and displaying them as grey pixels.

Supporting Information

Figure S1 Detection of single Wsc1 sensors. Adhesion force

histogram (n = 4096) and representative force curves recorded with

a Ni++-NTA-tip in buffer solution (sodium acetate + sucrose

100 mM + NiSO4 40 mM; pH 4.75) on the surface of the wild-

type Wsc1 (a) and mutants Wsc1C4,5A (b), Wsc1C6,7A (c) and

Wsc1C8A (d). All curves were obtained at 25uC using a retraction

speed of 1,500 nm s-1 and an interaction time of 500 ms. The

207654 pN mean adhesion forces document the detection of

single His-tagged sensors.

Found at: doi:10.1371/journal.pone.0011104.s001 (0.09 MB

DOC)

Figure S2 Wild-type Wsc1 and CRD mutants show similar

linear nanospring behaviors. Representative force-extension

curves obtained upon stretching single wild-type Wsc1 (a), and

mutants Wsc1C4,5A (b), Wsc1C6,7A (c) and Wsc1C8A (d). All

curves display a linear region where force is directly proportional

to extension, thus characteristic of a Hookean spring. Using the

slope of the linear portion of the raw deflection vs. piezo

displacement curves [14], we found that the spring constant ks
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of Wsc1 wild-types and mutants are all in the range of 4.3–4.6 pN

nm-1.

Found at: doi:10.1371/journal.pone.0011104.s002 (0.08 MB

DOC)

Table S1 Oligonucleotides used in this work.

Found at: doi:10.1371/journal.pone.0011104.s003 (0.04 MB

DOC)

Acknowledgments

We would like to thank Bernadette Turgot-Sander for excellent technical

assistance and Rosaura Rodicio for critical reading of the manuscript and

valuable suggestions.

Author Contributions

Conceived and designed the experiments: JH VD YD. Performed the

experiments: JH VD SW AJ. Analyzed the data: JH VD SW AJ YD.

Contributed reagents/materials/analysis tools: VD. Wrote the paper: JH

VD YD.

References

1. Linggi B, Carpenter G (2006) ErbB receptors: new insights on mechanisms and

biology. Trends Cell Biol 16: 649–656.
2. Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev

Immunol 27: 591–619.
3. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:

569–572.
4. Michel V, Bakovic M (2007) Lipid rafts in health and disease. Biol Cell 99:

129–140.

5. Jacobson K, Dietrich C (1999) Looking at lipid rafts? Trends Cell Biol 9: 87–91.
6. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle.

Science 327: 46–50.
7. Grossmann G, Opekarova M, Malinsky J, Weig-Meckl I, Tanner W (2007)

Membrane potential governs lateral segregation of plasma membrane proteins

and lipids in yeast. EMBO J 26: 1–8.
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