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Abstract: In this work, momentum-space decoherence using minimum and nonminimum-uncertainty-
product (stretched) Gaussian wave packets in the framework of Caldeira–Leggett formalism and
under the presence of a linear potential is studied. As a dimensionless measure of decoherence,
purity, a quantity appearing in the definition of the linear entropy, is studied taking into account
the role of the stretching parameter. Special emphasis is on the open dynamics of the well-known
cat states and bosons and fermions compared to distinguishable particles. For the cat state, while
the stretching parameter speeds up the decoherence, the external linear potential strength does not
affect the decoherence time; only the interference pattern is shifted. Furthermore, the interference
pattern is not observed for minimum-uncertainty-product-Gaussian wave packets in the momentum
space. Concerning bosons and fermions, the question we have addressed is how the symmetry of
the wave functions of indistinguishable particles is manifested in the decoherence process, which
is understood here as the loss of being indistinguishable due to the gradual emergence of classical
statistics with time. We have observed that the initial bunching and anti-bunching character of
bosons and fermions, respectively, in the momentum space are not preserved as a function of the
environmental parameters, temperature, and damping constant. However, fermionic distributions
are slightly broader than the distinguishable ones and these similar to the bosonic distributions. This
general behavior could be interpreted as a residual reminder of the symmetry of the wave functions
in the momentum space for this open dynamics.

Keywords: decoherence; Caldeira–Leggett formalism; momentum space; stretched Gaussian wave
packet; cat state; bosons; fermions

1. Introduction

Decoherence is a crucial process in order to better understand the emergence of classi-
cal behavior in the quantum dynamics of physical systems [1–4]. This process arises when
the physical system of interest interacts with an apparatus to carry out a measurement or
when it is immersed in a given environment. The theory of open quantum systems is the
natural framework to carry out these kinds of studies and has been widely developed from
quite different approaches and published in several books [5–12]. Within the theoretical
methods working with wave functions instead of reduced density matrix, one can find
some approaches within the so-called Caldirola–Kanai and Scrödinger–Langevin frame-
works [13–16]. Both approaches are not following the system-plus-environment model but
effective time dependent Hamiltonians and nonlinear Schrödinger equations, respectively.
Recently, interference and diffraction of identical spinless particles in one slit problems [17]
have been analyzed.

In this work, we are going to focus on the so-called Caldeira–Leggett (CL) formal-
ism [11,18]. This formalism is based on the reduced density matrix once one carries out the
integration over the environmental degrees of freedom. As is well-known, the diagonal
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matrix elements give probabilities and off-diagonal matrix elements are called coherences.
In the decoherence process, these off-diagonal elements go to zero more or less rapidly
depending on the parameters characterizing the environment—usually, damping constant
and temperature. Most of the studies involving quantum decoherence are being carried out
in the configuration space and very few in the momentum space. Venugopalan [19] stud-
ied the decoherence of a free single minimum-uncertainty-product Gaussian wavepacket
in the CL formalism within the context of measurement processes both in position and
momentum spaces. This study revealed that the emergent preferred basis selected by the
environment is the momentum basis. By considering a cat state, decoherence without
dissipation has been studied in phase space [20]. To this end, these authors considered the
quantum system in thermal equilibrium and assumed a weak interaction with the envi-
ronment in a way that dissipation could be neglected. Then, from principles of statistical
mechanics, the corresponding probability distribution were obtained by averaging over
a thermal distribution of velocities. Furthermore, the Wigner phase space distribution
function was also obtained and the destruction of the interference term was studied as a
function of time. Decoherence was claimed not to occur in momentum and phase space.
More recently, decoherence in momentum space has been studied in the context of sup-
pression of quantum-mechanical reflection [21] using a master equation resembling the
CL equation [11,18] in the negligible dissipation limit; and for a non-relativistic charged
particle described by a wave packet under the presence of linear interaction with the
electromagnetic field in equilibrium at a certain temperature [22]. Recently, in the chemical
physics community, studies about purity are also found questioning this quantity as a
measure of decoherence in the dynamics of quantum dissipative systems [23–25].

The central goal of this work is to show how decoherence affects the open dynamics of
cat states and identical spinless (bosons and fermions) particles within the momentum rep-
resentation, far less investigated than in the configuration space [26]. For cat states, while
the stretching parameter speeds up the decoherence, the external linear potential strength
does not affect the decoherence time; only the interference pattern is shifted. Furthermore,
the interference pattern is not observed for minimum-uncertainty-product-Gaussian wave
packets in the momentum space. Purity, a quantity appeared in the definition of the lin-
ear entropy, and its relation to coherence length is studied taking into account the role of
the stretching parameter. The next question is how the symmetry of the corresponding
wave functions is manifested in the decoherence process. This process is understood
here as the loss of the indistinguishable character of those particles due to the gradual
emergence of classical statistics with time. In particular, the well-known bunching and
anti-bunching properties of bosons and fermions, respectively, when minimum and non-
minimum-uncertainty-product Gaussian wavepackets are used is considered as a function
of the environmental parameters, temperature, and damping constant. We have observed
that the symmetry of the initial distribution is not preserved in the time evolution of the cor-
responding wave functions. However, fermionic distributions are slightly broader than the
distinguishable ones and these are similar to the corresponding bosonic distributions. This
could be interpreted as a residual reminder of the bunching and anti-bunching character of
the initial distributions in the momentum space but washing them out when increasing
the damping constant and temperature. This general behavior has also been confirmed
by carrying out a different theoretical analysis from the single-particle probability. Fi-
nally, an indirect manifestation of these properties for bosons and fermions have also been
observed when considering the so-called simultaneous detection probability.

This paper is organized as follows: in Section 2, the CL master equation in the momen-
tum representation is briefly introduced. In Section 3, open dynamics and decoherence of
minimum and non-minimum-uncertainty-product Gaussian wavepackets are analyzed
for cat states and under the presence of a linear potential. Then, open dynamics of two
identical spinless particles (bosons and fermions) are analyzed in Section 4. In Section 5,
results, discussion, and some concluding remarks are presented.
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2. The Caldeira–Leggett Master Equation in the Momentum Representation

In the context of open quantum systems and considering the reservoir as a set of
non-interacting oscillators, Caldeira and Leggett obtained the well-known master equa-
tion [11,18]

∂ρ̂

∂t
=

1
ih̄
[Ĥ0, ρ̂] +

γ

ih̄
[x̂, { p̂, ρ̂}]− D

h̄2 [x̂, [x̂, ρ̂]] (1)

for the reduced density matrix of the system where γ is the damping constant or dissipation
rate, and D = 2mγkBT plays the role of the diffusion coefficient with m the mass of particles;
kB and T being Boltzmann’s constant and the environment temperature, respectively.
The Hamiltonian Ĥ0 is given by

Ĥ0 =
p̂2

2m
+ V̂. (2)

Equation (1) in the momentum representation for an external potential V̂ = V(x̂, p̂) reads as

∂

∂t
ρ(p, p′, t) =

[
− i

2mh̄
(p2 − p′2) +

V
(

ih̄ ∂
∂p , p

)
−V

(
−ih̄ ∂

∂p′ , p′
)

ih̄

+γ

(
∂

∂p
+

∂

∂p′

)
(p + p′) + D

(
∂

∂p
+

∂

∂p′

)2]
ρ(p, p′, t) (3)

where the off-diagonal matrix elements are ρ(p, p′, t) = 〈p|ρ̂|p′〉 and known as coherences.
In the center of mass and relative coordinates,u =

p + p′

2
(4a)

v = p− p′ (4b)

Equation (3) for the external linear potential V̂ = mgx̂ can be expressed as

∂

∂t
ρ(u, v, t) +

∂

∂u
j(u, v, t) +

i
mh̄

uvρ(u, v, t) = 0. (5)

the current density matrix being

j(u, v, t) = −
(

mg + 2γu + D
∂

∂u

)
ρ(u, v, t). (6)

As is known, when v = 0, the diagonal elements of the density matrix give the probability
density and the continuity equation is written as

∂P(p, t)
∂t

+
∂J(p, t)

∂p
= 0, (7)

where P(p, t) and J(p, t) are the diagonal elements of ρ(u, v, t) and j(u, v, t), respectively.

3. Open Dynamics and Decoherence of Gaussian Wave Packets: The Cat State

Let us consider a linear potential given by V̂ = mgx̂ for nonminimum-uncertainty-
product or stretched Gaussian wave packets in the CL framework for two cases: the open
dynamics of a single wave packet and afterwards the corresponding dynamics for a pure
initial state consisting of superposition of two well separated wavepackets, a cat state.
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3.1. A Single Gaussian Wave Packet in a Linear Potential

For a single Gaussian wave packet, the solution of Equation (5) can be easily found by
assuming the Gaussian ansatz,

ρ(u, v, t) =
1√

2πd2(t)
exp

[
d0(v, t)− (u− d1(v, t))2

4d2(t)

]
(8)

and, from Equation (6), one has that

j(u, v, t) =

[
−mg− 2γu +

D
2d2(t)

(u− d1(v, t))
]

ρ(u, v, t). (9)

On the other hand, let us consider the initial state as the stretched Gaussian wave
packet whose Fourier transform takes the form

φ0(p) =

(
2
π

σ2
0

h̄2

)1/4

exp

[
−(1 + iη)

(p− p0)
2σ2

0

h̄2 − i
(p− p0)x0

h̄

]
. (10)

Here, x0 and p0 are the center and kick momentum, and η is the stretching parameter
governing the position-space width, ∆x = σ0

√
1 + η2. Thus, the uncertainty product

∆x∆p = h̄
2

√
1 + η2 reaches the minimum value for η = 0. With this in mind, the solution

of Equation (8) reads

d0(v, t) = − i
h̄

xt v−
[
(η2 + 1)

σ2
0

2h̄2 + η
τ(t)
2mh̄

+
τ(t)2

8m2σ2
0
− D

3 + e−4γt − 4e−2γt − 4γt
16h̄2m2γ3

]
v2 (11a)

d1(v, t) = pt − i

[(
h̄

4mσ2
0
τ(t) +

η

2

)
e−2γt +

D
mh̄

τ(t)2

]
v (11b)

d2(t) =
h̄2

8σ2
0

e−4γt + D
1− e−4γt

4γ
(11c)

with 
xt = x0 +

p0

m
τ(t) + g

τ(t)− t
2γ

(12a)

pt = p0e−2γt −mgτ(t) (12b)

τ(t) =
1− e−2γt

2γ
. (12c)

Note that xt is the trajectory followed by a classical particle with mass m and initial velocity
p0/m immersed in a viscid media with a damping constant γ and under the presence
of a constant force field −mg; and pt = mẋt [14]. By imposing the conditions v = 0,
the probability density (PD) and the probability current density (PCD) are expressed as

P(p, t) =
1√

2πwt
exp

[
− (p− pt)2

2w2
t

]
(13)

J(p, t) =

[
−mg− 2γp +

D
w2

t
(p− pt)

]
P(p, t) (14)

with

wt =
√

2d2(t) = e−2γt h̄
2σ0

√
1 + D

2σ2
0

h̄2γ
(e4γt − 1) (15)
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being the width of the distribution function in momentum space. As Equations (13) and (14)
clearly show, in the momentum representation, the stretching parameter η plays no role in
the PD and PCD.

In the long time limit, γt� 1, only terms which are constant and/or depend linearly
on time survive and one has that

xt ≈ −
g

2γ
t, (16a)

pt ≈ −
mg
2γ

, (16b)

d0(t) ≈
(

i
h̄

g
2γ

v− D
4h̄2m2γ2

v2
)

t, (16c)

d1(t) ≈ −
mg
2γ
− i

D
4mh̄γ2 v, (16d)

d2(t) ≈
D
4γ

, (16e)

yielding

ρ(u, v, t) ≈
√

γ

πD
exp

[
−4γ2u2 + 4mγgu + m2g2

4γD
+

(
i
h̄

g
2γ

v− D
4h̄2m2γ2

v2
)

t
]

(17)

showing that the off-diagonal elements of the reduced density matrix, v 6= 0, decay
exponentially with time. This allows us to define a time as

td =
4h̄2m2γ2

Dv2 , (18)

which is the characteristic time required to damp momentum coherences over a distance
v. The inverse t−1

d plays the role of a decoherence rate. Thus, the momentum space is the
obvious choice for the preferred basis as already mentioned in [19].

3.2. Purity and Coherence Length in Momentum Space

As is known, a pure state can not be preserved along its open dynamics. This can be
easily seen by evaluating the trace of the square of density matrix, ρ̂2(t), or purity

ξ(t) =
∫

dp
∫

dp′|〈p|ρ̂|p′〉|2 =
∫

du
∫

dv|ρ(u, v, t)|2. (19)

Writing Equations (11a) and (11b) in the form{
d0(v, t) = −d02(t) v2 − i d01(t) v (20a)

d1(v, t) = −d10(t)− i d11(t) v (20b)

where the new coefficients are very easily identified, one obtains

ξ(t) =
1

2
√

4 d2(t) d02(t)− (d11(t))2
(21)

for the Gaussian solution given by Equation (8). Then, from Equations (11a)–(11c), the pu-
rity ξ(t) is an independent quantity on p0, x0 and the field strength g. As expected, it
becomes unity for γ = 0. Expanding ξ(t) in powers of t yields

ξ(t) = 1 +

[
2γ−

4σ2
0 (1 + η2)

h̄2 D

]
t + O(t2) (22)
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whereas, in the long time limit, γt� 1, purity becomes zero. We should stress that this
linear behavior at short times is a typical feature of a Markovian regime [8,9]. In spite
of this result, there are proofs in favor of the quadratic behavior [27,28]. Invariance of
the trace under cyclic permutation has to be used, which is questionable when the state
space is infinite-dimensional. Furthermore, the quadratic behavior is also found when one
considers the time evolution of the Wigner function in phase space using a von Neumann-
like equation but with the Poisson bracket of Hamiltonian and the Wigner function instead
of their commutator [29]. As an illustration, in Figure 1, the evolution of purity with time is
plotted for different damping constants (left panel) and stretching parameters (right panel)
for σ0 = 5 and kBT = 2. This quantity decays faster with γ than with η. The same behavior
is expected when increasing the temperature although it is not shown in this figure.

0 1 2 3 4 5
t0.0

0.2

0.4

0.6

0.8

1.0

ξ(t )

0 2 4 6 8 10
t0.0

0.2

0.4

0.6

0.8

1.0

ξ(t )

Figure 1. Purity ξ(t) given by Equation (21) for σ0 = 5 and kBT = 2; and for minimum-uncertainty-
Gaussian wavepacket with different values of the damping constant (left panel) and for γ = 0.005
but with different values of the stretching parameter (right panel). Color curve codes are in the left
panel: γ = 0.01 (orange), γ = 0.05 (blue), γ = 0.2 (brown), whereas, in the right panel: η = 0 (black),
η = 1 (red) and η = 2 (green).

The range of spatial coherence in momentum space can also be quantified by the
off-diagonal direction p = −p′ [10]. From Equations (8), (20a) and (20b), one observes that
the width of the Gaussian in this direction is

µ(t) =

√
d2(t)

2[4d2(t) d02(t)− (d11(t))2]
(23)

which can be interpreted as the coherence length in momentum space [9]. Interestingly enough,
the ratio of this coherence length and the distribution width provides again the purity

µ(t)
wt

= ξ(t) (24)

where we have used Equation (21). This reveals that purity ξ(t) can also be interpreted
as a dimensionless measure of decoherence [9]. From Equations (11a)–(11c), one sees that
µ(t) decreases with the stretching parameter η. By expanding up to the second order in t,
one obtains

µ(t) ' h̄
2σ0

{
1− 4η2 σ2

0 D

h̄2 t + D

[
− 2

mh̄
η +

8σ2
0 γ

h̄2

(
−γ +

σ2
0

h̄2 (4 + 3η2)D

)
η2

]
t2

}
. (25)

Note that, for minimum-uncertainty-product wavepackets i.e., η = 0, there are no linear
and square terms in time. At long times, the coherence length vanishes according to

µ(t) ' 2mγh̄

√
2

D t
. (26)
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3.3. The Cat State

Let us consider now the initial state as a superposition of two well separated wave
packets in momentum space,

φ0(p) = N (φ0a(p) + φ0b(p)) (27)

N being the normalization constant. From Equation (27), the initial density matrix has
the form

ρ(p, p′, 0) = N 2(ρaa(p, p′, 0) + ρab(p, p′, 0) + ρba(p, p′, 0) + ρbb(p, p′, 0)) (28)

where ρij(p, p′, 0) = φ0i(p)φ∗0j(p′); i and j being a or b. Due to the linearity of the master
Equation (3), one obtains again the evolution of each term of Equation (28) separately by
using the method outlined above i.e., by assuming a Gaussian ansatz. Afterwards, these
solutions are superposed to have the time dependent PD according to [17],

P(p, t) = N 2(Paa(p, t) + Pab(p, t) + Pba(p, t) + Pbb(p, t)). (29)

By using the fact that Pba(p, t) = P∗ab(p, t), one can write

P(p, t) = N 2(Paa(p, t) + Pbb(p, t) + 2|Pab(p, t)| cos Θ(p, t)) (30)

where |Pab(p, t)| is the modulus of Pab(p, t) and Θ(p, t) its phase. Rewriting Equation (30)
as the typical interference pattern expression [8]

P(p, t) = N 2(Paa(p, t) + Pbb(p, t) + 2
√

Paa(p, t)Pbb(p, t) eΓ(t) cos Θ(p, t)), (31)

one has that

Γ(t) = log
|Pab(p, t)|√

Paa(p, t)Pbb(p, t)
, (32)

Γ(t) being the so-called decoherence function which is negative. The corresponding
exponential function

a(t) = eΓ(t) (33)

is called the coherence attenuation coefficient which quantifies the reduction of the interfer-
ence visibility [30].

Let us assume that the two wavepackets φ0a(p) and φ0b(p) are stretched Gaussian
functions, Equation (10), co-centered in position space, x0a = x0b = 0, having the same
stretching parameter η, width σ0, and different kick momenta, p0a and p0b.

3.4. Free Evolution

Then, the evolution of the cross term ρab(p, p′, 0) = φ0a(p)φ∗0b(p′) is given by the
Gaussian ansatz (8) with

d0,ab(v, t) = −
(p0a − p0b)

2σ2
0

2h̄2 (1 + η2) +

[
(p0a − p0b)σ

2
0

h̄2 (1 + η2)− i
τ(t)
2h̄m

[(p0a + p0b) + i(p0a − p0b)η]

]
v

−
[

σ2
0

2h̄2 (1 + η2)− τ(t)2

8m2σ2
0
+

τ(t)
2h̄m

η − D
3 + e−4γt − 4e−2γt − 4γt

16h̄2m2γ3

]
v2 (34)

d1,ab(v, t) =
1
2

e−2γt[(p0a + p0b) + i(p0a − p0b)η]− i

[
τ(t)
m

(
h̄

4σ2
0

e−2γt +
D
h̄
τ(t)

)
+

1
2

e−2γtη

]
v (35)
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Note that the additional subscript ab refers to the cross term ρab(p, p′, 0). For the
evolution of the remaining terms of (28), one just uses the corresponding momenta in
Equations (34) and (35); the function d2(t) remains the same as Equation (11c).

3.5. Linear Potential

In the presence of the external linear potential V̂ = mgx̂, the evolution of the cross
term ρab(p, p′, 0) = φ0a(p)φ∗0b(p′) is given by the same Gaussian ansatz (8) with

d0,ab(v, t) = −
(p0a − p0b)

2σ2
0

2h̄2 (1 + η2) +

[
(p0a − p0b)σ

2
0

h̄2 − i
τ(t)
2h̄m

[(p0a + p0b) + i(p0a − p0b)η] + i
t− τ(t)

2hγ
g

]
v

−
[

σ2
0

2h̄2 (1 + η2)− τ(t)2

8m2σ2
0
+

τ(t)
2h̄m

η − D
3 + e−4γt − 4e−2γt − 4γt

16h̄2m2γ3

]
v2 (36)

d1,ab(v, t) =
1
2

e−2γt[(p0a + p0b) + i(p0a − p0b)η]−mgτ(t)− i

[
τ(t)
m

(
h̄

4σ2
0

e−2γt +
D
h̄
τ(t)

)
+

1
2

e−2γtη

]
v. (37)

Analogously, for the evolution of the remaining terms of Equation (28), one just uses
the corresponding momenta in Equations (36) and (37). Again, the function d2(t) is given
by the same Equation (11c).

3.6. Decoherence

If the initial state is now a superposition of two stretched Gaussian wave packets with
the same width and located symmetrically around the origin of momenta

φ0(p) = N
(

2σ2
0

πh̄2

)1/4{
exp

[
−(1 + iη)

(p− p0)
2σ2

0

h̄2

]
+ exp

[
−(1 + iη)

(p + p0)
2σ2

0

h̄2

]}
(38)

where the normalization constant N is

N =

{
2 + 2 exp

[
−

2p2
0(1 + η2)σ2

0

h̄2

]}−1/2

, (39)

one readily obtains
Γ(t) = −

8p2
0σ4

0 (1 + η2)

h̄2
sinh(2γt)

h̄2γe−2γt + 4Dσ2
0 sinh(2γt)

D (40a)

Θ(p, t) = 4p0γησ2
0

p + mgτ(t)
h̄2γe−2γt + 4Dσ2

0 sinh(2γt)
(40b)

for the decoherence function and phase, respectively. Equation (40a) shows that Γ(t) = 0
for D = 0 implying that the last term in Equation (3) is responsible for decoherence [31].
The stretching parameter η speeds up the decoherence process. The external linear force
does not affect the decoherence process; only the interference pattern is shifted. Fur-
thermore, from Equation (40b), it is apparent that the phase function is zero for η = 0
i.e., the interference pattern is not observed for minimum-uncertainty-product-Gaussian
wave packets. This behavior is expected to also occur in isolated systems obeying the
Schrödinger equation,

φ(p, t) = 〈p|φ(t)〉 = 〈p|Û(t)|φ(0)〉 = e−ip2t/(2mh̄)φ(p, 0) (41)

where for simplicity we have considered free propagation. There is only an overall phase

factor. Thus, one has |φ(p, t)| = |φ(p, 0)| and from which Θ(p, t) = η
4p0σ2

0

h̄2 p; since the



Entropy 2021, 23, 1469 9 of 17

two wavepackets are well separated in the p-space with no overlapping, the interference
term is practically zero, PaaPbb ' 0.

In the long times limit, the decoherence function reaches the asymptotic value

Γ∞ ≈ −
p2

0
2σ2

p
(42)

where σp = h̄/2σ0. In the negligible dissipation limit where the third term is on the
right-hand side of Equation (3) is neglected, one has that

Γ(t) ≈ −
16p2

0σ4
0 (1 + η2)D

h̄2(h̄2 + 8Dσ2
0 t)

t (43a)

Θ(p, t) ≈ η
4p0σ2

0 (p + mgτ(t))

h̄2 + 8Dσ2
0 t

. (43b)

In this limit and for times t� σ2
p/D, one can introduce the decoherence time defined as

τD =
σ4

p

(1 + η2)p2
0D

; Γ(t) ≈ − t
τD

(44)

Note that one can get the same result directly from Equation (40a) in this short time limit.
As an illustration, in Figure 2, the decoherence function Γ(t) , given by Equation (40a),

is plotted versus time for kBT = 2 (left panel) and for γ = 0.005 (right panel). In the
left panel, the curves correspond to γ = 0.005 (black), γ = 0.01 (red), γ = 0.015 (green),
γ = 0.05 (blue). In the right panel, the curves correspond to kBT = 2 (brown), kBT = 3
(magenta) and kBT = 5 (cyan). The initial parameters for the two minimum-uncertainty
Gaussian (η = 0) wavepackets are σ0 = 5 and p0 = −1. In both cases, the asymptotic
behavior is reached at relative small times. However, when varying the temperature, this
behavior is reached around three times later. In other words, this function decreases faster
with γ than with temperature kBT.

0.2 0.4 0.6 0.8 1.0
t

-50

-40

-30

-20

-10

Γ(t )

0.5 1.0 1.5 2.0 2.5 3.0
t

-50

-40

-30

-20

-10

Γ(t )

Figure 2. Decoherence function Γ(t) given by (40a) versus time for kBT = 2 (left panel) and for
γ = 0.005 (right panel). Color curve codes in the left panel are: γ = 0.005 (black), γ = 0.01 (red),
γ = 0.015 (green), γ = 0.05 (blue); whereas in the right panel, kBT = 2 (brown), kBT = 3 (magenta)
and kBT = 5 (cyan). Parameters for the two minimum-uncertainty Gaussian wave packets are σ0 = 5
and p0 = −1.

4. Decoherence for Two-Identical-Particle Systems

Equation (1) is linear in ρ̂. Writing it as ˙̂ρ = L̂ρ̂, L̂ being a linear operator and assuming
ρ̂1 and ρ̂2 are two one-particle states describing two non-interacting particles 1 and 2, one
can easily see that the time evolution for the product state ρ̂1 ⊗ ρ̂2 is given by

∂

∂t
(ρ̂1 ⊗ ρ̂2) = (L̂1 + L̂2)(ρ̂1 ⊗ ρ̂2). (45)
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Let us consider now a system of two identical spinless particles. According to the
spin-statistics theorem, the state of such a system must have a given symmetry under the
exchange of particles; (anti-)symmetric for identical (fermions) bosons. By taking the initial
momentum-space wavefunction as the pure state

Φ±(p1, p2, 0) = N±{φ(p1, 0)χ(p2, 0)± χ(p1, 0)φ(p2, 0)} (46)

φ and χ being one-particle wave functions and N± the normalization constant for bosons
(+) and fermions (−), then the time evolution under the two-particle CL Equation (45)
yields

ρ±(p1, p2, p′1, p′2, t) = N 2
±{ρ11(p1, p′1, t)ρ22(p2, p′2, t) + ρ22(p1, p′1, t)ρ11(p2, p′2, t)

±ρ12(p1, p′1, t)ρ21(p2, p′2, t)± ρ21(p1, p′1, t)ρ12(p2, p′2, t)} (47)

where 
ρ11(p, p′, 0) = φ0(p)φ∗0 (p′) (48a)

ρ22(p, p′, 0) = χ0(p)χ∗0(p′) (48b)

ρ12(p, p′, 0) = φ0(p)χ∗0(p′) (48c)

ρ21(p, p′, 0) = χ0(p)φ∗0 (p′). (48d)

Although ρ11(p, p′, t) and ρ22(p, p′, t) are one-particle densities, ρ12(p, p′, t) and ρ21(p, p′, t)
are not. However, all of these functions are solutions of one-particle CL Equation (3)
satisfying the continuity Equation (7). The joint detection probabilities are given by the
diagonal elements of Equation (47);

P±(p1, p2, t) = N 2
±[P11(p1, t)P22(p2, t) + P22(p1, t)P11(p2, t)± 2Re{P12(p1, t)P21(p2, t)}] (49)

where

Pij(p, t) = ρij(p, p, t) (50)

and the last term of Equation (49) is due to the symmetry of particles. In this context,
and due to the environment, this term becomes zero over time, and we have decoherence
in the sense of indistinguishability loss. Note that, for distinguishable particles obeying the
Maxwell–Boltzmann (MB) statistics, the probability density is given by

PMB(p1, p2, t) =
1
2
[P11(p1, t)P22(p2, t) + P22(p1, t)P11(p2, t)]. (51)

For the single-particle density, Psp,±(p, t) =
∫ ∞
−∞ dp2ρ±(p, p2; p, p2, t), one obtains

Psp,±(p, t) = N 2
±[P11(p, t) + P22(p, t)± 2Re{P12(p, t)s(t)}] (52)

where the overlapping integral s(t) is

s(t) =
∫ ∞

−∞
dp′P21(p′, t). (53)

Due to the continuity Equation (7), s(t) is a constant which does not depend on the environ-
ment parameters γ and T and time: s(t) =

∫
dx′P21(p′, t) =

∫
dp′P21(p′, 0) = 〈χ(0)|φ(0)〉.

On the other hand, if the system is isolated, states evolve under the Schrödinger equation
and we have

Psp,±(p, t) = N 2
±[|φ(p, t)|2 + |χ(p, t)|2 ± 2Re{〈χ(0)|φ(0)〉φ∗(p, t)χ(p, t)}]. (54)
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A comparison of Equations (52) and (54) reveals that, for open systems, the quantity
P12(p, t) plays the role of φ∗(p, t)χ(p, t). Thus, in analogy to Equation (31), we have again

|P12(p, t)| =
√

P11(p, t)P22(p, t)eΓ12(t) (55)

leading to

Γ12(t) = log
|P12(p, t)|√

P11(p, t)P22(p, t)
. (56)

By considering now one-particle states χ and φ as minimum-uncertainty-product Gaussian
wave packets i.e., as in Equation (10) η = 0, with parameters y0 = 0, q0, δ0 and x0 = 0, p0,
σ0, respectively, one obtains

P12(p, t) =

√
2σ0δ0

σ2
0 + δ2

0

1√
4πb2(t)

exp
[

b0 −
(p− b1(t))2

4b2(t)

]
(57)

s(t) = eb0

√
2σ0δ0

σ2
0 + δ2

0
(58)

N± =

2

1±

√√√√ 2σ0δ0

σ2
0 + δ2

0
exp

[
−
(p0 − q0)2σ2

0 δ2
0

h̄2(σ2
0 + δ2

0)

]
−1/2

(59)

where

b0 = −
σ2

0 δ2
0

σ2
0 + δ2

0

(p0 − q0)
2

h̄2 (60)

b1(t) = e−2γt p0σ2
0 + q0δ2

0
σ2

0 + δ2
0
−mgτ(t) (61)

b2(t) = e−4γt h̄2

4(σ2
0 + δ2

0)
+ D

1− e−4γt

4γ
. (62)

Note that, for δ0 = σ0, one has b2(t) = w2
t /2. P11(p, t) and P22(p, t) are given by

Equation (13) by using appropriate momenta. For δ0 = σ0 from Equation (56), one obtains

Γ12(t) = −
σ2

0 (p0 − q0)
2

2h̄2

1−
[

1 + D
2σ2

0

h̄2γ
(e4γt − 1)

]−1
. (63)

One sees that the decoherence function is negative and the same for both bosons and
fermions. The decoherence process due to the last term of Equation (52) is interpreted
here as loss of being indistinguishable as described in [17]. Notice that the case p0 = q0
can take place only for bosons for which then the wave function (46) takes the product
form just as classical states, revealing that quantum statistics is unimportant when the
decoherence function Γ12(t) becomes zero. Another possibility for vanishing the last term
of Equation (52) is when the overlapping integral is negligible. In such a case, the quantum
statistics is unimportant too. However, this possibility can also happen in isolated systems,
and it is not a result of interaction with the environment. Therefore, one should consider
the effect of environment on P12(p, t) and P21(p, t) as an additional source of decoherence
taking place for identical particle systems.

Decoherence can also be studied through what is called simultaneous detection proba-
bility i.e., measuring the joint detection probability for both particles in a given interval
of the p-space. If we consider a detector, in momentum space, located at the origin with a
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width ∆, then the ratio of simultaneous detection probability of indistinguishable particles
to the distinguishable ones is given by

p±(t) =
pBE

FD
(t)

pMB(t)
=

∫ ∆/2
−∆/2 dp1

∫ ∆/2
−∆/2 dp2 P±(p1, p2, t)∫ ∆/2

−∆/2 dp1
∫ ∆/2
−∆/2 dp2 PMB(p1, p2, t)

(64)

where ± corresponds to bosons (Bose–Einstein statistics) and fermions (Fermi–Dirac statis-
tics), respectively.

5. Results and Discussion

Numerical calculations are carried out in a system of units where m = h̄ = 1. In
Figure 3, probability densities (31) together with Equations (40a) and (40b) are plotted for
the cat state of two minimum-uncertainty-Gaussian wave packets, η = 0, for γ = 0.005
and different values of temperature: kBT = 2 (left top panel), kBT = 5 (right top panel),
kBT = 10 (left bottom panel) and kBT = 15 (right bottom panel). The initial parameters
used are the same as in Figure 2. As discussed previously, no interference pattern is ob-
served in the momentum space at any temperature. Obviously, the width of the probability
density also increases with time.
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Figure 3. Probability density plots (31) for the superposition of two minimum-uncertainty-Gaussian
wave packets, η = 0, for γ = 0.005 and different values of temperature: kBT = 2 (left top panel),
kBT = 5 (right top panel), kBT = 10 (left bottom panel) and kBT = 15 (right bottom panel).
The same parameters as in Figure 2.

In order to gain some insight on this open dynamics, information about the reduced
denrity matrix in the uv-plane is helpful. Thus, in Figure 4, density plots in the uv-plane
at different times are shown for the cat state consisting of two minimum-uncertainty-
product Gaussian wavepackets in the absence of external potential. The off-diagonal matrix
elements |ρ(u, v, t)| are shown at t = 0 (left top panel), t = 2 (right top panel), t = 5 (left
bottom panel) and t = 8 (right bottom panel) for η = 0, g = 0, γ = 0.005 and kBT = 2. It is
clearly seen how the coherences or off-diagonal matrix elements goes to zero at long times.
The same behavior is observed when the stretching parameter is different from zero as well
as the linear potential is present, this decoherence process being a little bit faster.
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Figure 4. Density plots of modulus of density matrix elements given by time evolution of (28),
|ρ(u, v, t)|, in uv-plane at different times t = 0 (left top panel), t = 2 (right top panel), t = 5 (left
bottom panel) and t = 8 (right bottom panel) for η = 0, g = 0, γ = 0.005 and kBT = 2, the same
parameters as in Figure 2.

Decoherence for identical particle systems discussed in previous section can be ana-
lyzed in several ways. First, in Figure 5, two-particle probability density plots for finding a
particle with zero momentum and the second one at any value are shown. These results
are issued from Equation (51) for two distinguishable particles obeying the MB statistics
(left top panel) and Equation (49) for two identical bosons (left bottom panel) and fermions
(right top panel) at different times: t = 0 (blue curves), t = 1 (red curves) and t = 2 (green
curves). The right bottom panel depicts the same two-particle probability density for dis-
tinguishable particles (brown curve), identical bosons (cyan curve) and identical fermions
(magenta curve) at t = 5. One-particle states are taken as minimum-uncertainty-Gaussian
wave packets with the same width σ0 = δ0 = 2 and opposite kick momenta p0 = −0.3 and
q0 = 0.3. The parameters of the environment have been chosen to be γ = 0.005 and kBT = 5.
As can be seen, for distinguishable particles obeying the MB statistics, the two lobes at t = 0
describes the two initial separated Gaussian wave packets. With time, the corresponding
Gaussian wavepackets broaden and the two lobes disappear; the maximum being also
around to zero momentum for the second particle. For bosons and fermions, the dynamics
are quite different. The normalization factor also plays an important role since, from (59),
one has that N+ < NMB < N− where NMB = 1/

√
2. According to Equation (59), for our

parameters, N+ ≈ 0.63 and N− ≈ 0.81. The blue curves in each case display different
behavior. At the initial time, bosons display a bunching-like behavior and fermions a clear
anti-bunching like behavior, compared to distinguishable particles. For this open dynamics,
the last term of Equation (49) together with the overlapping integral s(t) governs clearly
the time evolution. The decoherence process takes place at t ∼ 10 which is at least one
order of magnitude less than the relaxation time tr = 1/γ. It should be emphasized that
the decoherence time depends strongly on the choice of the one-particle states parameters.
For instance, for motionless Gaussian wave packets with different widths σ0 = 3 and
δ0 = 0.1 where N+ ≈ 0.68 and N− ≈ 0.73, the decoherence process takes place close to
the relaxation time. With time, the initial bunching and anti-bunching character of the
initial distributions are not preserved. Finally, in the right bottom panel, the two-particle
probability density for the three kind of particles is plotted at t = 5. As expected, the time
behavior for the three types of particles is quite similar by starting from quite different
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initial conditions. Notice, however, that the fermionic distribution is a little bit broader than
the distinguishable, and this is similar to the bosonic one. This can be seen as a reminder of
the bunching and anti-bunching character of the initial distributions.
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Figure 5. Two-particle probability density plots for finding a particle with zero momentum (51) for
two distinguishable particles obeying MB statistics (left top panel) and (49) for two identical bosons
(BE statistics, left bottom panel) and fermions (FD statistics, right top panel) at different times: t = 0
(blue curves), t = 1 (red curves) and t = 2 (green curves). Right bottom panel depicts two-particle
probability density for distinguishable particles (brown curve), identical bosons (cyan curve) and
identical fermions (magenta curve) at t = 5. One-particle states are taken as minimum-uncertainty-
Gaussian wavepackets with the same width σ0 = δ0 = 2 and opposite kick momenta p0 = −0.3 and
q0 = 0.3. Environment parameters have been chosen to be γ = 0.005 and kBT = 5.

The second analysis one can carry out is on the single-particle probability. We can ask
ourselves which is the corresponding probability density for finding a particle with mo-
mentum p independent on the momentum value of the second particle, see Equation (52).
This is shown in Figure 6 for distinguishable particles (brown curves), identical bosons
(cyan curves) and fermions (magenta curves) at different times t = 0 (left top panel), t = 2
(right top panel), t = 3 (left bottom panel) and t = 10 (right bottom panel). One-particle
states are taken as minimum-uncertainty-Gaussian wavepackets with the same widths
σ0 = δ0 = 2 but opposite momenta p0 = −0.3 and q0 = 0.3. Environment parameters have
been chosen to be γ = 0.005 and kBT = 5. For these parameters, the decoherence time is
one order of magnitude less than the relaxation time. The same behavior is observed with
respect to the previous figure.

The third type of analysis is by considering the simultaneous detection probability
given by Equation (64). In Figure 7, the relative simultaneous detection probability p+(t) =
pBE(t)
pMB(t)

(cyan) for two identical bosons and p−(t) = pFD(t)
pMB(t)

(magenta) for two identical
fermions, measured by a detector with a width ∆ = 2 located at the origin are plotted.
One-particle states are taken to be minimum-uncertainty-Gaussian wavepackets with the
same widths σ0 = δ0 = 2 but opposite momenta, p0 = −0.3 and q0 = 0.3, and the damping
constant has been chosen to be γ = 0.005. Using Equations (49) and (51) in (64) yields

p±(t) = 2N 2
±

1±

∣∣∣∫ ∆/2
−∆/2 dp P12(p, t)

∣∣∣2∫ ∆/2
−∆/2 dp P11(p, t)

∫ ∆/2
−∆/2 dp P22(p, t)

. (65)
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In this figure, we can clearly see that, at short times, the symmetry of the corresponding
wave functions is patent but at asymptotic times the simultaneous detection probability
tends to one; that is, to the classical or MB statistics for both bosons and fermions.

Finally, in this work, we have put forward evidence of the quite different behavior of
the decoherence process in the momentum space when considering cat states and identical
spinless particles—whereas, with the first states, no diffraction pattern is observed in this
space when compared with the configuration space for minimum uncertainty product
Gaussian wave packets, a residual manifestation of the well-known bunching and anti-
bunching properties of bosons and fermions is observed with time. This behavior is washed
out more rapidly when increasing the damping constant and temperature.
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Figure 6. Single-particle probability density for distinguishable particles (brown curves); and for
identical bosons (cyan curves) and fermions (magenta curves) at different times t = 0 (left top panel),
t = 2 (right top panel), t = 3 (left bottom panel) and t = 10 (right bottom panel). One-particle
states are taken as minimum-uncertainty-Gaussian wavepackets with the same widths σ0 = δ0 = 2
but opposite momenta p0 = −0.3 and q0 = 0.3. Environment parameters have been chosen to be
γ = 0.005 and kBT = 5.
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Figure 7. Relative simultaneous detection probability p+(t) =
pBE(t)
pMB(t)

(cyan) for two identical bosons

and p−(t) =
pFD(t)
pMB(t)

(magenta) for two identical fermions, measured by a detector with a width
∆ = 2 located at the origin, see Equation (64). One-particle states are taken as minimum-uncertainty-
Gaussian wavepackets with the same widths σ0 = δ0 = 2 but opposite momenta p0 = −0.3 and
q0 = 0.3 and the damping constant has been chosen to be γ = 0.005.
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