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Neutrophil is known to critically impact the development of renal diseases (e.g., the clear cell renal cell carcinoma (ccRCC)),
whereas the heterogeneity of neutrophils in ccRCC remains unclear. In the present study, kidney biopsies from healthy donors
and ccRCC tissues were collected for single-cell RNA sequencing (scRNA-seq). In addition, the subpopulations of neutrophils in
a healthy kidney and in the tumor microenvironment (TME) of ccRCC were expressed and then analyzed. The genes reported
previously were mapped to all subpopulations identified here. On that basis, biological theme comparison and Gene Set
Enrichment Analysis (GSEA) were employed to reveal and compare relevant biological functions. In a healthy kidney,
neutrophils exhibit two subpopulations: one is more associated with renal autoimmunity, probably acting as therapeutic target;
the other is suggested to resist infectious microorganisms. It is noteworthy that six subpopulations were identified in ccRCC
biopsy, and two were more relevant to autoimmunity, while the other four are more relevant to the tumor pathology. Besides,
ccRCC neutrophil could resist anticancer immune therapies of ipilimumab and pembrolizumab for their low/no expressions of
CTLA-4, PD-1, and PD-L1. Thus, this study can help understand the heterogeneity and pathological significance of neutrophils
in renal diseases.

1. Introduction

Neutrophil heterogeneity refers to an emerging fantastic
topic. As revealed from recent studies, neutrophils are
highly heterogeneous varying from tissues and pathological
conditions [1, 2]. In addition, neutrophils are known to
exhibit different functions to tumor development, which

may impact the therapeutic efficiency against cancer [3,
4]. To identify neutrophil subpopulations and related
functions, especially in a range of tumors, further efforts
are required.

As revealed from recent studies, neutrophils critically
impact the development of renal carcinoma (e.g., ccRCC)
[5–7]. However, the diverse characters exhibited by different
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subpopulations have been extensively underestimated,
mainly because the frequency of neutrophils in the kidney
is extremely low and hinders the identification of its subpop-
ulations [8]. The existing advantage of scRNA-seq facilitates
the high-throughput analysis of thousands of genes at a
single-cell level, so exploring kidney neutrophil heterogeneity
under either healthy condition or ccRCC biopsies turns out
to be practical in an extremely specific manner.

In this study, the scRNA-seq data acquired from the
healthy kidney and ccRCC biopsies were investigated, and
the transcriptome of renal neutrophils was profiled. In a
healthy kidney, 2 subpopulations were identified. As indi-
cated from the enriched gene profile, one type was more
related to autoimmune diseases (e.g., IgA glomerulonephri-
tis, dermatitis, and rheumatoid arthritis), while the other type
is more related to infectious disease (e.g., Epstein-Barr virus
infection, dengue fever, and Salmonella infections). In the
ccRCC biopsy, however, considerable neutrophil was
observed. On that basis, a total of 6 subclasses were identified.
Note that the biological/pathological effects played by neu-
trophil subclasses that were identified in ccRCC biopsy over-
lapped with each other, so they are hard to term for the
controversial contributions to a range of diseases (e.g., vari-
ous tumors, infectious diseases, and autoimmune diseases).

2. Methods

2.1. scRNA-Seq Analysis. Raw data of healthy kidney biopsies
(GSE131685) were offered from Liao et al. [9]. In addition,
raw data of ccRCC biopsies (GSE121636) were retrieved
from the NCBI GEO database. Though the mentioned two
datasets were generated from different machines/platforms,
both were acquired with 10x Genomics technology. R pack-
age Seurat (version 3.2.1) was employed to process scRNA-
seq data [9–11]. SCTransform wrapper was adopted to
remove technical variations and confounding mitochondrial
genes during data normalization. Moreover, cell cycle phase
scores were determined to mitigate the effect of cell cycle het-
erogeneity. R package scCATCH (version 2.1) was used to
annotate cell clusters by complying with NCBI Gene symbols
[12]. The healthy kidney and ccRCC data were analyzed,
respectively, and then integrated with reciprocal PCA based
on conserved genes expressed in both groups. Next, all the
clusters were presented by unified manifold approximation
and projection (UMAP) with a resolution of 0.6. Further-
more, violin plots and feature plots were adopted to exhibit
the expression pattern of genes studied in this project.

2.2. Functional Enrichment Analysis [13]. Gene Set Enrich-
ment Analysis (GSEA) was conducted to identify gene sets
overrepresented in the respective cluster. The R package clus-
terProfiler (version 4.0) was used to analyze and visualize
functional profiles (GO and KEGG) of enriched gene sets
[14]. A P value < 0.05 showed statistical significance.

3. Results

3.1. Neutrophil Heterogeneity in Healthy Kidney. Healthy
kidney biopsies were donated by 3 patients after radical

nephrectomy [9, 13], and transcriptome data were acquired
with 10x Genomics Chromium technology [9]. Clustering
analysis was conducted with cells expressing PTPRC, a gene
coding CD45 (Figure 1(a)). Through clustering analysis, 5
cell types were generated. After revising gene symbols by
complying with NCBI Gene symbols, the mentioned 5 cell
clusters were annotated as NK cells (cell type score 0.58),
neutrophils (cell type score 0.67), Th cells (cell type score
0.63), nephron epithelial cells (cell type score 0.71), and B
cells (cell type score 0.86), respectively. Besides, NK cells
and neutrophils were reported to be the most abundant ones,
taking up 39% and 32% to total CD45+ cells (Figure 1(b)),
respectively. Note that nephron epithelial cells were also indi-
cated to be positive for this marker. To test the cell annota-
tion results, marker genes for the mentioned cell types were
revealed by the feature plot (Figure 1(c)), i.e., KLRD1 and
NKG7 for NK cells, MNDA and BCL2A1 for neutrophils,
IL7R and TRAC for Th cells, SLC22A8 and SLC13A3 for
nephron epithelial cells, and MS4A1 and IGHM for B cells
[15, 16]. It is noteworthy that MNDA and BCL2A1 were
expressed in a “compensatory”manner in the cluster of neutro-
phil, which demonstrated the existence of subpopulations. To
test the hypothesis of this study, the whole population of neu-
trophils was isolated, and cell expressing mitosis genes (i.e.,
TOP2A or KI67) were regressed to minimize cell cycle effect
on identification of neutrophil heterogeneity (Supplementary
Fig. 1). After the selection, neutrophils underwent the subclus-
tering, and 2 subpopulations were discovered (Figure 1(d)).
To address it in an easy manner, the mentioned 2 neutrophil
subpopulations were annotated with neutrophil (S100A8) and
neutrophil (LYPD2), respectively. As indicated by further anal-
ysis, these 2 neutrophil subpopulations expressed different level
of genes (e.g., S100A8, LYZ, LYPD2, and LST1) (Figure 1(e)),
which demonstrated that these 2 subpopulations could be dif-
ferent in the expressions of various genes.

To show the disparity in gene expression, 20 genes were
taken for comparison. Notably, the mentioned 2 subpopula-
tions displayed different gene profiles (Figure 2(a)), suggesting
that they could exhibit different immunological features.
Indeed, the gene profile from the first subpopulation was indi-
cated to be more relevant to antigen presentation, in assistance
to B cell/plasma cell for IgA production; the gene profile from
the second subpopulation was reported to be more associated
with BCR signaling and Fcγ-mediated phagocytosis (e.g., in
assistance to NK cell-mediated cytotoxicity) (Figure 2(b)). Fur-
thermore, these 2 subpopulations exhibited different patholog-
ical features. The first subpopulation was indicated to be more
related to autoimmune diseases (e.g., IgA glomerulonephritis,
juvenile chronic arthritis, rheumatoid arthritis, and sarcoido-
sis); the second one was more relevant to infectious diseases
(e.g., Epstein-Barr virus infection, Salmonella infection, and
dengue fever) (Figures 2(c) and 2(d) and Supplementary Fig. 2).

3.2. Neutrophil Heterogeneity in ccRCC Biopsies. ccRCC neu-
trophils were abstracted based on cell annotation by the R
package scCATCH [12]. Before the heterogeneity of ccRCC
neutrophils was explored, cells expressing either TOP2A or
KI67 were deleted (Supplementary Fig. 3). On the whole, 6
subclusters were identified, i.e., neutrophil (SEPP1),
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Figure 1: scRNA-seq analysis of CD45+ cells in healthy kidney. (a) UMAP plot shows clustering results from CD45+ cells from healthy
kidney. They are NK cells, neutrophils, Th cell, nephron epithelial cell, and B cells (dot size at 0.5). (b) Pie plot indicates the frequency of
each cell type. (c) Feature plots show the expression of known markers for each cluster. (d) UMAP plot shows 2 subclusters of neutrophils
in healthy kidney (dot size at 4). (e) Violin plots show the differential expression levels of selected 2 genes from each neutrophil subcluster.
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Figure 2: Continued.
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neutrophil (CCL4), neutrophil (S100A6), neutrophil
(COLT1), neutrophil (FN1), and neutrophil (LINC01272)
(Figure 3(a)). To be specific, the biggest part was comprised
by neutrophil (SEPP1), while the smallest part was neutro-
phil (LINC01272) (Figure 3(b)). Next, the expressions of
top 2 genes from each subcluster were tested and then com-
pared (Figure 3(c) and Supplementary Fig. 4). As revealed
from the analysis of the disparity of top 10 genes selected
from each subpopulation, ccRCC neutrophil subclusters
exerted overlapped expression of some genes (Figure 3(d)),
demonstrating that the mentioned subpopulations could

potentially share some immunological/pathological features.
The first two ccRCC neutrophil subpopulations showed great
similarity in immunological procedures (e.g., antigen presen-
tation, lysosome, and phagosome); the third subpopulation
was suggested to critically impact COVID-19 injection and
ribosome; the last three subpopulations were significantly
more relevant to Salmonella infection (Figure 4(a)). Further-
more, the first two subpopulations were noticeably more rel-
evant to autoimmune diseases (e.g., IgA glomerulonephritis,
Alzheimer disease, Sarcoidosis, hypersensitivity, and arthri-
tis). Such a pathological feature made these two populations
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Figure 2: Analysis of healthy kidney neutrophil. (a) Heatmap shows the differential expression levels of top 10 genes selected from each
neutrophil subcluster of a healthy kidney. (b) Biological theme comparison of healthy kidney neutrophil subclusters. (c)
Overrepresentation analysis (ORA) of each healthy kidney neutrophil subcluster. (d) Cow plots show the gene concept network of each
healthy kidney neutrophil subcluster.
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parallel with the first neutrophil subpopulation identified in a
healthy kidney. However, these two subpopulations were also
suggested to be related to microbial infections to a certain
extent (Figures 4(b) and 4(c) and Supplementary Fig. 5).
The last four populations, however, were reported to be
mainly relevant to tumor development: neutrophil
(S100A6) for mammary neoplasm; neutrophil (COTL1) for
Burkitt lymphoma and cutaneous T cell lymphoma; neutro-
phil (FN1) for invasive neoplasm, papillary carcinoma,
undifferentiated carcinoma, etc.; neutrophil (LINC01272)
for Ki-1+ anaplastic large cell lymphoma and anaplastic car-
cinoma (Figures 4(b) and 4(c) and Supplementary Fig. 5).
Note that the fourth and sixth subpopulations were relevant

to infectious diseases as well, consistent with the second neu-
trophil subpopulation identified in a healthy kidney.

3.3. Comparison of Kidney Neutrophil Subpopulations
between Healthy and ccRCC Biopsies. To compare the healthy
kidney neutrophils and ccRCC neutrophils, these neutrophils
were first “merged” (Figure 5(a)), with which the Seurat
package will evaluate all the genes. The UMAP plot showed
significant different difference between these neutrophils,
demonstrating that ccRCC neutrophils are highly heteroge-
neous. Afterwards, these neutrophils were “integrated” based
on those conserved genes expressed by both ones. Next, 6
subpopulations were identified (Figure 5(b)). A more
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Figure 3: scRNA-seq analysis of neutrophils in ccRCC. (a) UMAP plot shows 6 neutrophil subclusters in ccRCC. (b) Pie plot indicates the
frequency of each neutrophil subcluster in ccRCC. (c) Feature plots show the expression of 2 genes selected from each ccRCC neutrophil
cluster. (d) Heatmap shows the differential expression levels of top 10 genes selected from each ccRCC neutrophil subcluster.
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considerable number of neutrophils were observed in ccRCC
than those in a healthy kidney. As revealed from the compar-
ison, most DEGs, in ccRCC neutrophils, were expressed in a
much higher level than in healthy ones (Figure 5(c), Supple-
mentary Figure 6), revealing that ccRCC neutrophils are
more active in the microenvironment of tumors. To verify
this finding, the above enriched genes were placed into
KEGG and GO analyses by clusters. In clusters 0 and 1,
neutrophils exerted activated signaling in a positive
regulation of apoptotic, programmed cell death and stronger
inflammatory response, and suppressed activity in
transferase, mitochondrion and membrane maintenance,
which demonstrated that the mentioned subpopulations
could be antitumor ones. Clusters 2, 3, 4, and 5 showed the
upregulation in metabolic, catabolic, and lytic vacuole; cell
communication; interaction with organisms; and cellular
biosynthetic processes, while the downregulation was
identified in ATP synthesis and proton-transporting ATP
synthase complex. Such an immunological feature indicated
that these could be more tumor-like cells and be more
effective in modulation of tumor environments (Figure 5(d)).

3.4. ccRCC Neutrophils Could Potentially Resistant to
Immune Therapies. Ipilimumab and pembrolizumab have
been extensively employed as immune therapies in clinic
against tumor, targeting on CTLA-4 and PD-1 signaling,
respectively [17, 18]. They are used for advanced renal cell
carcinoma [19, 20]. However, how ccRCC neutrophils will
react to these two medicines remains unclear. Thus, the
expression levels of CTLA4 (coding CTLA-4), PDCD1 (cod-
ing PD-1), and PDCD1LG2 (coding PD-L1) were tested. Dis-
appointedly, almost the whole ccRCC neutrophils do not
express these three genes (Figure 5(e) and Supplementary
Fig. 7), demonstrating that these cells could “escape” from
the immune therapy of either ipilimumab or pembrolizumab.

4. Discussion

Neutrophil heterogeneity and related immunological/patho-
logical features in the development of renal disease has

recently aroused wide attention [21]. It is known that neutro-
phils exhibit highly different phenotypes and functions
mainly depending on tissues and individual conditions [22–
25]. Though studies reported neutrophil subpopulation/he-
terogeneity in the blood, bone marrow, spleen, and even in
the brain, lung, and gut [26–28], the kidney neutrophil has
been rarely studied for its extremely low frequency in this tis-
sue. This study reported neutrophil heterogeneity in ccRCC,
comparing with it in healthy condition, in a single-cell level.
On that basis, kidney neutrophil subpopulations in healthy
condition and in ccRCC, together with their DEGs and dis-
crete immunological/pathological features, were described.

Existing studies simply classified neutrophils into either
antitumor or protumor subpopulations [29, 30], whereas this
preliminary nomenclature overshadowed versatile immuno-
logical/pathological features of neutrophils. To remedy this
defect, the transcriptome scRNA-seq technology provides
high-throughput outcome of genes on a single-cell level,
thereby making it practical to express and compare the sim-
ilarity and disparity among thousands of cells, and provides a
much better methodology to classify subpopulations in an
elegant manner. In this study, two neutrophils were found
in a healthy kidney, i.e., one was involved in autoimmunity,
and the other was more relevant to the resistant to infectious
diseases. The first subpopulation might act as a therapeutic
target against autoimmune renal diseases. In ccRCC biopsy,
neutrophil exhibited much higher heterogeneity, and 6 sub-
populations were finally identified. Besides, since abundant
genes were upregulated, immunological/pathological fea-
tures were overlapped among some subpopulations. Never-
theless, the first two populations were suggested to be more
relevant to autoimmune diseases, and the last four subpopu-
lations could potentially participate in the development of
cancers and act as therapeutic targets against cancer.

Limitation to this study includes the lacked technology of
depleting specific neutrophil subpopulations, which should
be addressed in the near future to systematically assess the
contribution of each neutrophil subpopulation to the devel-
opment of renal cancer. Besides, several other techniques
could be performed with either healthy kidney or ccRCC
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Figure 5: Analysis of integrated neutrophil of healthy kidney and ccRCC. (a) UMAP plot shows “Merged” healthy kidney neutrophils and
ccRCC neutrophils based on all the genes detected. (b) UMAP plot shows 6 neutrophil subclusters of integrated neutrophils based on
conserved genes. (c) Dot plots show the differential expression levels of the most significant genes for each cluster. (d) GSEA analysis of
each integrated neutrophil subcluster. (e) Expression levels of CTLA-1, PD-1, and PD-L1 in ccRCC neutrophils.
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biopsies (e.g., immunofluorescent staining and western blot)
to validate the discoveries.

Data Availability

The datasets and code generated or analyzed in this study are
available from the corresponding author upon reasonable
request.

Conflicts of Interest

The authors declare that this research was conducted in the
absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Authors’ Contributions

Yiliang Meng, Kai Cai, and Jingjie Zhao contributed equally
to this study.

Acknowledgments

This research was funded by grants from the Guangxi Natu-
ral Science Foundation (#2020GXNSFAA259050,
2020GXNSFAA297141), from the Youjiang Medical Univer-
sity for Nationalities Research Project (#yy2019bsky001),
from the National Natural Science Foundation of China
(#81460143, #31970745), and from the Self-financing project
of Guangxi Healthy Department (#2102005).

Supplementary Materials

Supplementary Figure 1: expression levels of TOP2A and KI67
by healthy kidney neutrophils. Feature plots and violin plots
show the expression levels of TOP2A and KI67 in healthy kid-
ney neutrophils. Supplementary Figure 2: gene-concept net-
work of healthy kidney neutrophil subpopulations. Heat-like
maps show disease-related genes in healthy kidney neutrophil
subpopulations. Supplementary Figure 3: expression levels of
TOP2A and KI67 by ccRCC neutrophils. Feature plots and vio-
lin plots show the expression levels of TOP2A and KI67 in
ccRCC neutrophils. Supplementary Figure 4: gene-concept net-
work of ccRCC neutrophil subpopulations. Heat-like maps
show disease-related genes in ccRCC neutrophil subpopula-
tions. Supplementary Figure 5: violin plots show the expression
levels of top 2 significant genes selected from each ccRCC neu-
trophil cluster. Supplementary Figure 6: detailed lists of DEGs
of integrated neutrophil subpopulations. Supplementary Figure
7: feature plots show the expression levels of CTLA-4, PD-1 and
PD-L1 in ccRCC neutrophil cluster. (Supplementary Materials)
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