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Abstract

In this paper we present a new version of a mathematical model of Elishmereni et al.

describing androgen deprivation therapy (ADT) for hormone sensitive prostate cancer

patients (HSPC). We first focus on the detail description of the model, and then we present

mathematical analysis of the proposed model, starting from the simplified model without

resistance and ending on the full model with two resistance mechanisms present. We make

a step towards personalization proposing an underlying tumor growth law base on a cohort

of patients from Mayo hospital. We conclude that the model is able to reflect reality, that is in

clinical scenarios the level of testosterone in HSPC patients inevitably rises leading to the

failure of ADT.

Introduction

Prostate cancer is the second most common cancer worldwide among men, and incidence

rates are increasing every year [1]. Hormone sensitive prostate cancer (HSPC) patients are

treated by androgen deprivation therapy (ADT) as the standard of care, applied either continu-

ously or intermittently [2]. Eventually, however, androgen-independence emerges and the dis-

ease progresses to the most advanced stage of prostate cancer, castrate-resistant prostate

cancer (CRPC) which often occurs concomitantly with metastatic disease [3]. The clinical

occurrence of this process is signaled by a surge in the tumor surrogate biomarker prostate

specific antigen (PSA) while under ADT, otherwise termed biochemical failure on ADT [4].

The time to biochemical failure (TTBF) and progression to CRPC in ADT-treated patients

can span from a few months to ca. 3 years [5]. Anticipating this time in the individual patient

can have a vast impact on effective treatment planning and ultimate clinical outcome [6], yet

TTBF remains very hard to predict. Some biomarkers and prognostic factors have been sug-

gested based on statistical studies, yet none have reached clinical significance [7]. The large

variability in tumor PSA profiles among patients also gravely complicates the prediction of the

patient’s TTBF.

Mathematical modeling of tumor growth has a long history, starting from early papers of A.

K. Laird [8, 9]. However, these early papers were related to some general description, not
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focusing on specific laws for specific tumors. On the other hand, such general growth laws are

still used. In [10] the reader can find a thorough review on the models used in mathematical

modeling of prostate cancer growth and various types of treatment. Specific model, addressing

the problem of ADT for HSPC patients, we would like to consider in this paper, was proposed

in 2016 by Elishmereni et al. [11]. In [11] Elishmereni and colleagues published their work on

a personalized algorithm for predicting TTBF in HSPC patients. This algorithm was based on

a dynamic mathematical model and was trained on a real-world patient database from a hospi-

tal registry. Here, we expand this model and refine it to add a more mechanistic biological

backbone, and include pharmacokinetics/pharmacodynamics (PK/PD) of one ADT agent, leu-

prolide. Efforts are also made toward decreasing the inter-individual variability and the num-

ber of patient-specific parameters in the new model.

Methods

Scheme of the new model

In this subsection we focus on the description of the model of ADT therapy for HSPC patients.

Schematic diagram of the model is presented in Fig 1.

As it could be seen in the diagram first (cf. panel A in Fig 1), we would like to propose a

simplified law reflecting the underlying tumor growth. We assume that this should be an equa-

tion reflecting changes in prostate specific antigen (PSA) level which we take as a measure of

the tumor size. We base on a general equation of the form _P ¼ Pf ðPÞ, where P(t) is the level of

PSA at time t, while f is a positive function which reflect the per capita growth rate and will be

specified later on the basis of patients data.

Second (panel B in Fig 1), we need to describe PK/PD of the drug. Third (panel C in Fig 1),

the process of testosteron production will be included, and finally (panel D) we plan to include

some mechanisms of resistance. Note that there are many possible mechanisms of resistance

(several different biological pathways; c.f. [12, 13]), and since we do not know which of them

are more relevant here, we decided to address resistance more vaguely (as 1–2 components),

fit to the phenomenology of the ultimate PSA incline indicating that resistance has occurred.

This idea of including resistance comes directly from the original paper [11].

Fig 1. Schematic representation of the model of the ADT therapy for HSPC patients.

https://doi.org/10.1371/journal.pone.0263648.g001
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Dataset

In this study we use some part of the dataset described in more details in the original paper

[11]; cf. Table 1 at page 3 for statistical summary of the whole dataset, Fig 1 at page 3 for a typi-

cal structure of the data for one patient and Fig 3 at page 6 for several examples of specific

patients data. Here, in order to propose a simplified growth law of the tumor, we constructed a

subdataset of patients with PSA dynamics before the first application of ADT. This dataset

comprises 206 data points and total of 19 patients, and is summarized in Table 1. An exem-

plary course of PSA level in time for one of the patients is presented in Fig 2.

Nonlinear mixed effect modeling

Fitting parameters of assumed model to the data we use a statistical method called in general

mixed effect modeling. Here we focus on the nonlinear method (NMEM); cf. e.g. [14] for

detailed description. In this method, forM individuals numbered by i = 1. . .M we have ni mea-

surements. If yij denotes the jth observation for ith individual, then we assume

yij ¼ f ð�ij; xijÞ þ εij; i ¼ 1 . . .M; j ¼ 1; . . . ni:

Here f is a nonlinear function that depends on some parameters ϕij and predictions xij, and ε
reflects normally distributed noise. Furthermore, for parameters ϕij we assume

�ij ¼ Aijbþ Bijbi; bi � N ð0; s2DÞ;

where β describes so-called fixed effect (i.e. parameters fixed for the population), bi describes

so-called random effect (i.e. parameters varying randomly between individuals), Aij, Bij are

Table 1. Summary of the pre-treatment dataset.

property median range

# of data points per patient 10 6–22

timespan (days) 1162 388–5724

PSA (ng/ml) 2 < 0.1–1600

https://doi.org/10.1371/journal.pone.0263648.t001

Fig 2. An exemplary course of PSA level (patient No. 1248) in time.

https://doi.org/10.1371/journal.pone.0263648.g002
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so-called design matrices for these types of effects, respectively, and σ2 D is a variance-covari-

ance matrix. Parameters are estimated using maximum likelihood; cf. [14].

In our application of this method we did not include any covariates. We estimated the indi-

vidual parameters from the patients PSA data, as the modes of posterior distributions. Hence

the design matrix is just constant. The betas are the means of the individual parameters.

Description of the model

This section is devoted to the detailed description of the proposed model introduced in Fig 1.

Underlying tumor growth

As mentioned above, to reflect tumor size we use the level of prostate specific antigen (PSA)

denoted by P(t). In general, we would like to explore the growth law described in a simple

manner by the equation

_P ¼ Pf ðPÞ; ð1Þ

where the per capita growth rate f : Rþ ! Rþ is a locally Lipschitz continuous function,

guaranteeing existence of unique solution for any nonnegative initial data P0 2 R
þ

. To specify

the function f we explored some of the well known functions used in the literature (cf. e.g. [15]

for the description of various growth functions). Following the ideas of A.K. Laird [8, 9], many

researchers use Gompertz [16, 17] model with f ðPÞ ¼ � a ln P
K to describe tumor growth. Here

a reflects maximal tumor growth rate and K is maximal tumor size, known as carrying capacity

in ecology. Another well known model is the logistic equation proposed by P.F. Verhulst [18],

Fig 3. Comparison between the fits obtained for the growth law proposed in this paper (panel A) with per capita

growth rate described by Eq (2) and the model proposed in [11] (panel B).

https://doi.org/10.1371/journal.pone.0263648.g003
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for which f ðPÞ ¼ a 1 � P
K

� �
, with the same meaning of parameters. Although this model has

simple mathematical structure, it is considered as not so well grounded in biology (cf. [15] and

also [19] for the discussion on that topic). Yet another possibility is to add additional parame-

ter reflecting spatial relations, like in the Greenspan [20–22] model, which is a special case of

generalized logistic equation, f ðPÞ ¼ a 1 � P
K

� �g� �
with γ = 2/3. All the mentioned models have

similar qualitative properties: the growth for small P is fast, next there is an inflection point

and the growth saturates at the carrying capacity K. However, in the case we are interested in,

we need to describe the PSA level only on finite interval, for which the ADT therapy is used,

which means that the asymptotic behavior of PSA is not important. Hence, the function f
needs not lead to the saturated growth. Therefore, the simplest growth law that could be used

is just exponential, with constant f. The growth law proposed in [11] includes modulated expo-

nent, that is _P ¼ a P
PR

� �kðtÞ
, where k increases linearly with time, i.e. _k ¼ l, and PR> 0 is some

constant level of PSA.

Specific form of the function f we used is related to the nature of the patients data. For 19 of

the patients the procedure of watchful waiting was applied, so that for them we have data

showing that without the treatment the growth is faster than exponential, at least for the part

just before starting the ADT treatment. To fit the model to the data we used nonlinear mixed

effect modeling (NMEM) method (cf. e.g. [14] for NMEM description) implemented in

MATLAB.

We made a fitting for several models described above and listed in Table 2. More precisely,

for all the presented models, using NMEM we fitted log PðtÞ
PR

(where PR is some reference value

of PSA which is constant and not considered as additional parameter) to the logarithms of the

PSA values in patients data. In general, as could be expected and seen in Table 2, the more

parameters the model has, the better fit could be obtained. However, this is not always the

case. Clearly, the exponential model with only one parameter is better fitted than the Gom-

pertz model with two parameters. This is related to the idea upon which the Gompertz model

was built, that the tumor growth is much faster than exponential at the early beginning. How-

ever, it seems that for the case we consider this assumption is not valid. Moreover, better fit is

obtained for models with the growth faster than exponential at the and of observed interval.

Although the best fit was obtained for the original growth law proposed in [11] (cf. Table 2

and Fig 3), we decided to use simplified model with the following per capita growth rate:

f ðPÞ ¼ a 1þ b ln
P
PR

� �g

; g 2 ð0; 1Þ; ð2Þ

Table 2. Models used for fitting and respective per capita growth rates vs statistical and information criteria describing quality of the fit.

model f(P) MSE R2 NLL AIC BIC

exponential a 0.4073 0.9513 183.95 379.91 399.88

Gompertz −a ln(P/K) 0.4305 0.9310 197.69 409.37 415.98

logistic a(1 − P/K) 0.3802 0.9479 182.65 379.29 385.90

general. logistic a(1 − (P/K)γ) 0.3776 0.9495 180.69 379.37 387.87

our model a(1 + b ln P/PR)γ 0.3138 0.9652 171.03 356.05 362.67

time modulated a(1 + λt)(P/PR)γ 0.3310 0.9617 173.32 364.63 373.13

original [11] a(P/PR)k(t) 0.2673 0.9756 154.72 327.45 335.95

Here: MSE—mean square error, NLL—negative log-likelihood, AIC—Akaike Information Criterion, BIC—Bayesian Information Criterion.

https://doi.org/10.1371/journal.pone.0263648.t002
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where PR could be considered as the level of detection here. Our decision is mainly related to

the simpler form and better mathematical properties of the model proposed above comparing

to the model from [11]. Clearly, our model is described by one autonomous differential equa-

tion, while the previous model needs two such equations because the power k(t) depends on

time.

Note that the function f defined by Eq (2) is well defined only for such values of P for which

1þ b ln P
PR
> 0, that is for

P > PR e� 1=b ¼ Pc:

However, we use the model for P> PR(> Pc), as below the level of detection we do not register

the values of PSA. On the other hand, we want to have the growth law defined for all P� 0.

Hence, we extend the function f in a continuous manner such that f(P) = a for P� PR, that is

we have exponential growth below the level of detection. This means that instead of Eq (2) we

consider

f ðPÞ ¼

a; for P 2 ½0; PR�;

a 1þ b ln
P
PR

� �g

; for P > PR;

8
><

>:
ð3Þ

and the growth law is described by Eqs (1) and (3).

PK/PD model for leuprolide

The drug, whether it is leuprolide or another druf used in ADT, is typically given as a depot,

which is a small implant that is injected under the patient’s skin. This provides a slow-release

of the drug over a given period, allowing for continuous shut down of the hormonal cascade

and therefore continuous inhibition of testosterone production (and PSA production), with-

out the patient having to frequently visit the doctor for more medication. Hence, delayed

absorption is observed. Some typical dosages include: 7.5 mg—one injection every 4 weeks,

22.5 mg—one injection every 12 weeks, 30 mg—one injection every 16 weeks, 45 mg—one

injection every 24 weeks. In this section we introduce two ideas of including the influence of

leuprolide into the model.

Mass action law based PK model. The first idea of modeling the influence of the drug

comes from the paper of Lim and Salem [23], where the authors presented a semi-mechanistic

model of PK/PD of leuprolide for prostate cancer patients which was fitted to patients data

using NMEM. To describe PK of the drug they assumed that there are three depots of the

drug: first, related to the delayed absorption, second, corresponding to the first order absorp-

tion, and third, corresponding to the zero-order absorption. The drug is supplied to the so-

called central compartment and there is an exchange of leuprolide between the central and

peripheral compartments. In [23] the authors mentioned that they tried to model the delayed

absorption using delay differential equations but it occurred that better fitting can be obtained

for considering additional transit compartments through which the drug flows before absorp-

tion in the central compartment.

Let D(t) denote the drug concentration that reaches to all the depots after an application,

Lc(t) and Lp(t) denote concentrations of leuprolide in so-called central and peripheral com-

partments specific for the drug. Moreover, we have n-transit compartments Li, i = 1, . . ., n
serving as a delayed absorption of leuprolide. Then, basing on the scheme of PK model
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presented in [23], the described PK model could be written as

_D ¼ � bD;
_L1 ¼ ktrD � ktrL1;

_L2 ¼ ktrL1 � ktrL2;

..

.
¼ ..

.
;

_Ln ¼ ktrLn� 1 � ktrLn;
_Lc ¼ k1Ln þ k2Dþ k3wðtÞ � QLc þ QLp � dLLc;

_Lp ¼ QLc � QLp;

ð4Þ

where β is the drug clearance rate, ktr are rates of transition along the delayed path, k1, k2 are

coefficients for first-order delayed and immediate absorptions, k3 reflects zero-order absorp-

tion, χ(t) = 1 during the ADT infusion and χ(t) = 0 otherwise, Q describes the flux between

central and peripheral compartments and dL is a clearance rate from central compartment.

It seems that we can simplify (4) even more, as if the compartments Li serve just as a transi-

tion of the drug then assumptions β = ktr and ktr = k1 are not pointless. It is obvious that know-

ing the ADT application scheme we are able to solve this system of linear equations.

Assuming one application of the drug we obtain DðtÞ ¼ ae� k1t, where α is related to the

portion of the drug absorbed via delayed path, and next we calculate (for details see A Appen-

dix in S1 Appendix)

LjðtÞ ¼ a
kj1tj

j!
e� k1t;

which then reflects a kind of distribution of the drug in the Lc–Lp system. Note that for single

input of ADT we can omit zero-order absorption, so we assume k3 = 0. Moreover, we realized

that using patients data we are not able to recognize the flow between the central and periph-

eral compartments, so it is reasonable to skip the division onto the peripheral and central com-

partments and consider only one compartment. Eventually, we approximate the amount of the

drug in the following way (again, for details see A Appendix in S1 Appendix):

LðtÞ ¼
ae� k1t

dL
k2 þ

knþ1
1
tn

n!

� �

: ð5Þ

Unfortunatelly, we were not able to retrieve the results from [23] and the fit to publicly avail-

able FDA data on Lupron [24] is not good (cf. Fig 4 left), and therefore we decided to turn to

another approach.

Diffusion-based PK model. The actual mechanism of the drug release is based on poly-

mer micro-spheres filled with the drug. We therefore consider diffusion of the drug out of the

spheres,

@r

@t
¼ Dr2r;

where ρ is the drug concentration and D is the diffusion coefficient. Assuming spherical sym-

metry, the diffusion equation simplifies to

@r

@t
¼ D

1

r2

@

@r
r2 @r

@r

� �

:
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As initial condition for this equation we take uniform distribution of the drug within the

sphere, that is ρ(r< R, t = 0) = ρ0, where R is the radius of the sphere. We also have to specify

boundary condition: we assume the diffusion outside the sphere is much faster than within it,

so the density outside is always homogeneous, and the boundary condition reads ρ(r = R, t) =

ρout(t). To further simplify the equation, we assume ρout(t)� ρ0 for all t, and solve the equation

with the boundary condition ρ(r = R, t) = 0. Now the equation can be solved using a series

expansion,

r r < R; tð Þ ¼
X1

n¼1

2r0R
npr
ð� 1Þ

nþ1 sin
npr
R

� �
e�

n2p2D
R2

t
:

The concentration can then be integrated to obtain the amount Min of the drug within the

sphere

Min tð Þ ¼ 4p

ZR

0

r r; tð Þr2dr ¼
X1

n¼1

8r0R3

n2p
e�

n2p2D
R2

t
:

Once the drug leaves the micro-sphere, it is cleared from the body at rate dL, therefore

_Mout ¼ �
_M in � dLMout;

where Mout is the amount of the drug outside the sphere. Let us denote cðxÞ ¼
P1

n¼1
e� p2n2x

and M0 ¼
4

3
pR3r0, that is the initial mass of the drug within the sphere, to obtain

_Mout ¼
6D
R2
M0c

D
R2
t

� �

� dLMout;

Fig 4. Comparison between the fits obtained for the drug concentration proposed on the basis of mass action law (left) and diffusion-based model (right).

Various colors reflect mean population levels for several different Lupron depots available from FDA label.

https://doi.org/10.1371/journal.pone.0263648.g004
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leading to final equation for leuprolide within the patients body

_L ¼ kc
at
M0

� �

� dLL:

Note that this approximation leads to much better fit to the data, as can be seen in Fig 4.

PD of the drug. In the description of PD for leuprolide the authors of [23] focused on the

competition between LHRH and the drug for receptors. If AGN denotes the concentration of

LHRH normalized by its receptor equilibrium dissociation constant and BNG is the concentra-

tion of leuprolide normalized in the same way, then FRAC ¼ AGNþBGN
1þAGNþBGN reflects the fraction of

activated receptors during the treatment and the equation describing the changes in total num-

ber of receptors (RT) proposed in [23] has the similar form as those describing LHRH in Sys-

tems (8) and (10), but the function h1 depends here on the difference between FRAC and the

number of such receptors at baseline. Moreover, it is assumed that a Hill coefficient may be

different than 1 (assumed by us for LHRH). As a consequence, the testosterone production

depends on the number of activated receptors, that is FRAC�RT. It should be marked that we

are not able to control the number of receptors, both activated or inactive. Hence, we decided

to include this idea indirectly into our model, taking into account a kind of mathematical

description of the competition between LHRH and the drug.

Modeling testosteron secretion

Mathematical modeling of testosteron secretion started around the eighties of the twentieth

century (cf. the review on this topic presented in [25]). The main aim of this research was

related to observed oscillations in this system, where three hormones interplay via feedback

loop. Testosteron (TES) secretion is regulated directly by luteinizing hormone (LH), which is

regulated by luteinizing hormone release hormone (LHRH), while the secretion of the last hor-

mone is regulated by TES. Simple three variable model reflecting this feedback was proposed

by Smith [26]. This is a model with general functions describing secretion and degradation of

the hormones. The model reads

_x ¼ p1ðzÞ � d1ðxÞ;

_y ¼ p2ðxÞ � d2ðyÞ;

_z ¼ p3ðyÞ � d3ðzÞ;

ð6Þ

where x(t), y(t), z(t) denote the level of LHRH, LH and TES, respectively, pi and di are their

production and degradation functions. All the functions are positive and monotonic, p1 is

decreasing and the others are increasing. Although Smith was able to find oscillatory behavior

in this model, but Cartwright and Husain [27] pointed out that this type of oscillations do not

capture the real pulse in this system. Later models include time delay/delays [15, 25, 27, 28],

due to the well-known property of delayed differential equations—namely, introducing time

delay in a proper way we are able to obtain oscillatory solutions. One of the simplest models of

that type was studied by Murray [15]. Clearly, Murray analyzed influence of time delay in the

following system:

_x ¼ p1ðzÞ � d1x;

_y ¼ p2x � d2y;

_z ¼ p3yðt � tÞ � d3z;

ð7Þ
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where now p2, p3 and di are positive constants and τ is the delay of TES secretion. He showed

that oscillations via a Hopf bifurcation with τ being a bifurcation parameter could appear in

this system.

It should be marked however, that we are not interested in short-time oscillatory dynamics

in TES levels. Clearly, from the point of view of the ADT treatment mean levels of TES

observed in longer time horizon play a crucial role. Hence, we decided not to include time

delays and our model is based on Eq (7) but with τ = 0. More precisely, we consider

_x ¼ h1ðzÞ � d1x;

_y ¼ p2x � d2y;

_z ¼ p3y � d3z;

ð8Þ

where:

• h1 is a smooth positive decreasing function, and we focus on

h1ðzÞ ¼
p1

1þ b1z
; ð9Þ

• pi are production rates;

• di are clearance rates.

In System (8) with h1 described by (9) we expect that solutions will stabilize on some posi-

tive level in time.

First, we show that for any decreasing h1, System (8) has exactly one steady state (SS), which

is positive. Clearly, let ð�x; �y; �zÞ be a steady state. Then

�y ¼
d3

p3

�z; �x ¼
d2

p2

�y ¼
d2d3

p2p3

�z; h1ð�zÞ ¼ d1�x ¼
d1d2d3

p2p3

�z:

Looking at the relation

h1ðzÞ ¼
d1d2d3

p2p3

z

we see that the left-hand side is decreasing from h1(0) > 0 to some limit lim h1(z) (which

should be 0 in our case but it does not matter as regards the number of SS), while the right-

hand side increases from 0 to1, so the two curves cross each other exactly once at our SS.

Proposition 1. Unique positive steady state of System (8) with h1 described by (9) is locally
asymptotically stable regardless of the parameter values.

The proof of this proposition and the discussion on possible instability are presented in B

Appendix in S1 Appendix.

We also expect global stability in the case of Eq (8). It is easy to show that the system is dissi-

pative. Clearly, let Uðx; y; zÞ ¼ xþ d1

2p2
yþ d1d2

2p2p3
z. Then

_Uðx; y; zÞ ¼ h1ðzÞ � d1xþ
d1

2p2

p2x � d2yð Þ þ
d1d2

4p2p3

p3y � d3zð Þ

¼ h1ðzÞ �
d1

2
x �

d1d2

4p2

y �
d

4p2p3

z:
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Taking 0 < a <
minfd1 ;d2 ;d3g

2
we obtain

_Uðx; y; zÞ � h1ð0Þ � aUðx; y; zÞ:

This way we obtain the following conclusion.

Corollary 2. System (8) has a compact global attractor.
Although we are not able to completely precisely argue that the locally stable SS is globally

stable, i.e. it forms this global attractor, but from analytical point of view System (8) is almost

linear, with only non-linear part described by the function h1 that depend monotonically on

only one variable, and moreover thorough numerical analysis (results not shown) confirms

the expected behavior. Hence, it is reasonable to consider a simplified system, in which only

two hormones are taken into account, namely

_x ¼ h1ðzÞ � d1x;

_z ¼ p3x � d3z;
ð10Þ

where p3 is left for simplicity, although it is not the same coefficient as before. We can think of

Eq (10) as of a quasi-steady approximation of Eq (8). In such a case we have p2x = d2y, while

the equation for the variable z changes to _z ¼ p2p3

d2
x � d3z, and this leads to the same steady

states of Eqs (8) and (10). However, in the following we will not refer to Eq (8), and therefore

we decided to use simple parameter p3 instead of
p2p3

d2
.

For System 10 we can prove that the only steady state existing for any decreasing h1 is glob-

ally stable.

Proposition 3. System (10) has exactly one steady state which is positive and globally stable
in ðRþÞ2.

The proof of this proposition is presented in B Appendix in S1 Appendix.

At the end of this paragraph we present a comparison between the dynamics of both sys-

tems considered above. In Fig 5 we see that the dynamics of the full System (8) and simplified

System (10) are very similar, not only qualitatively but also quantitatively.

The model without resistance

In this subsection we combine proposed sub-models describing the underlying tumor growth,

the concentration of leuprolide and the secretion of testosteron into one model. First, we

need to include the influence of leuprolide to the subsystem describing testosteron. As we

mentioned above, pharmacodynamics of this drug could be reflected as some kind of

competition between LHRH and the drug. We therefore propose to make a small change in

Fig 5. Comparison of the dynamics of the full System (8) and simplified System (10) for all the model parameters

equal to 1: projection of the phase space portrait for (8) with initial values for y: (left) taken as 0 except for one case

where x(0) = y(0) = z(0) = 1; (middle) vary from 0 through 0.5 to 1; phase space portrait for (10) (right). Note that the

cross-section of trajectories visible in middle graph is a result of the projection of R3
intoR2

.

https://doi.org/10.1371/journal.pone.0263648.g005
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System (10)—instead of linear production term p3x we take

h3ðx; LÞ ¼
p3x

1þ b3ðxþ LÞ
: ð11Þ

Obviously, we can propose more general form of this function, which should be increasing

with respect to x and decreasing with respect to x + L. Hence, the testosteron secretion with

the influence of leuprolide is described by the following system:

_x ¼ h1ðzÞ � d1x;

_z ¼ h3ðx; LÞ � d3z:
ð12Þ

The dynamics of System (12) is crucial for further analysis of the model. Therefore, we present

most important result below, while additional information and comparision to the dynamics

of System (10) are presented in C Appendix in S1 Appendix, where we show that the dynamics

of System (12) for L = 0 is similar to the dynamics of System (10), not only qualitatively, but

also quantitatively. Clearly, in the same way as for System (10) we are able to prove that for

constant L� 0 there exists exactly one positive steady state which is globally stable in ðRþÞ2.

Proposition 4. For any L� 0, System (12) has unique positive steady state ð�xL; �zLÞ which is
globally stable in ðRþÞ2.

The proof is presented in C Appendix in S1 Appendix.

Now, combining Eq (1) with Eq (12) we obtain

_P ¼ Pf ðPÞ þ dPðz � �z0ÞP;

_x ¼ h1ðzÞ � d1x;

_z ¼ h3ðx; LÞ � d3z;

ð13Þ

where �z0 is the testosteron steady state without the treatment, while general functions f, h1 and

h3 satisfy:

1. f is of class C1 and has positive values on some interval (0, K), where either K<1 and then

it reflects maximal tumor size or K =1 and then tumor growth is unbounded;

2. h1 and h3 are positive bounded functions of class C1;

3.
dh1

dz < 0,
@h3

@x > 0,
@h3

@ðxþLÞ < 0.

In more specific (e.g. numerical) investigations we used the function f described by Eq (3),

the functions hi, i = 1, 3 described by Eqs (9) and (11), respectively, while the amount of the

drug L is described by (5).

The model with resistance

The last step in the model development is to include resistance to System (13). In patients that

are treated with LHRH agonists/antagonists for a continuous period, resistance to the drug

develops by various biological mechanisms, thereby bringing on the stage of hormone resis-

tance (or castration resistance) in these patients. Multiple mechanisms of resistance include

androgen receptor (AR) amplification and hypersensitivity, AR mutations, mutations in coac-

tivators/corepressors, androgen-independent AR activation, and intratumoral and alternative

androgen production. Indeed, the onset of this resistance is embodied in the regained PSA

production seen in these patients after a certain period (which is very variable, and can span

from 3 months after ADT onset, to 3 years after ADT onset). Without modeling this resistance
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effect (even in the most simplified way as we have done in our model) it is impossible to cap-

ture the PSA profiles in these patients over the mentioned periods of time.

In the model we distinguish two different mechanisms: resistance to the drug, that causes

testosterone to rise in the presence of ADT, and emerging independence from testosterone,

which causes PSA to rise even though the testosterone is low. In general, modeling drug resis-

tance for tumor growth, we distinguish between drug-sensitive and drug-resistant tumor cells.

However, in our case we do not describe tumor cells directly, and therefore another approach

is necessary. As mentioned above, including resistance we directly follow the ideas from [11].

This means that we have two additional variables ri, i = 1, 2, reflecting the strength of resis-

tance. We would like to propose as simple as possible form of equations reflecting that each ri
is increasing with increasing L. The simplest form of such equation is linear. Moreover, resis-

tance is acquired slowly and gradually, over a period of 3–18 months (on average) and is

patient specific. Taking into account limiting factors for the variables ri turned out to be crucial

to obtain a good fit to the data in the original article [11]. Therefore, we propose the following

equation

_ri ¼ biL 1 �
ri
li

� �

; ð14Þ

where βi and li reflect coefficients of proportionality and limitation contstants on resistance,

respectively. As we describe acquired drug resistance, we assume ri(0) = 0, as at the beginning

of the treatment there is no acquired resistance. This implies that both variables ri are positive

and bounded from above by li (cf. D Appendix in S1 Appendix for detailed analysis of Eq

(14)). The first variable r1 influences the level of PSA and therefore is included into the first

equation of (13), while the second one influences the level of TES due to the presence of the

drug, so we include it into the third equation of System (13). Although in [23] specific forms of

these influence were proposed, we can include more general influence functions g1 and g2 with

specific properties. Hence, following the ideas from [23] we obtain the full model with resis-

tance that reads

_P ¼ Pf ðPÞ þ dPðz � �z0 þ g1ðr1ÞÞP;

_x ¼ h1ðzÞ � d1x;

_z ¼ h3ðx; g2ðr2ÞÞ � d3z;

_r1 ¼ b1L 1 �
r1

l1

� �

;

_r2 ¼ b2L 1 �
r2

l2

� �

;

ð15Þ

with f, h1 and h3 as defined before and gi, i = 1, 2, are smooth non-negative functions having

the following properties:

• g1(0) = 0 and g1 is increasing; we focus on g1(x) = a1x;

• g2(0) = L and g2 is decreasing; we focus on g2ðxÞ ¼ L a2þex

ða2þ1Þex.

Note that although the function g1 is unbounded, its influence is limited because the values

of r1 are bounded above by its steady state value l1 (cf. D Appendix in S1 Appendix). Similarly,
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not all values of the function g2 may appear in System (15). Clearly, r2 2 [0, l2) yielding

g2ðr2Þ 2 L; L a2þel2
ða2þ1Þel2

h �
, while lim

x!1
g2ðxÞ ¼

L
a2 þ 1

.

Results

In this section we focus on the analysis of the model proposed above under the simplified

assumption that the level of ADT is constant in the organism, that is L = const. Although in

reality this assumption is not valid, but it gives a preliminary insight to the model dynamics.

We start with the analysis of Eq (13) and then switch to the analysis of the full model Eq (15).

In the presented analysis we mainly focus on the specific form of functions describing the

right-hand side of Eqs (13) or (15), however some of the model properties are valid for general

functions satisfying the properties listed in the previous section.

Analysis of Eq (13)

Let us first assume that the system is able to overcome resistance mechanisms and therefore

the dynamics of HSPC is governed by Eq (13).

Note that the (x, z)-subsystem is independent of the first variable P. Hence, the dynamics of

this subsystem is just a dynamics of System (12) and from Proposition 4 we know that for any

L� 0 there is only one positive steady state SS with coordinates ð�xL; �zLÞ which is globally stable

in the phase space ðRþÞ2, that is for any non-negative initial data ðxðtÞ; zðtÞÞ ! ð�xL; �zLÞ for

t!1. Moreover, for any L> 0 we have �zL < �z0. Clearly, coordinates of the SS satisfy the fol-

lowing system of equations:

p1

1þ b1
�zL
¼ d1�xL;

p3
�xL

1þ b3ð�xL þ LÞ
¼ d3zL:

Hence,

p1

d1ð1þ b1
�zLÞ
¼ �xL )

p1p3

d1ð1þ b1
�zLÞð1þ b3LÞ þ p1b3

¼ d3
�zL;

yielding

p1p3 ¼ d3
�zLðd1ð1þ b3LÞ þ b1d1

�zLð1þ b3LÞ þ p1b3Þ:

Eventually we obtain a quadratic equation of the form

b1ð1þ b3LÞ�z2
L þ 1þ b3Lþ

p1b3

d1

� �

�zL �
p1p3

d1d3

¼ 0; ð16Þ

and for any L> 0 coefficients next to quadratic and linear terms are greater than the appropri-

ate coefficients for L = 0, which means that the positive root �zL of Eq 16 for L> 0 is smaller

comparing to the case L = 0. Moreover, �zL decreases with increasing L. Clearly, if we treat �zL as

a function of L, using the theorem of implicit function we calculate

d
dL

�zL ¼ �
b3

�zLð1þ b3
�zLÞ

1þ b3Lþ
p1b3

d1

þ 2�zL 1þ b3Lð Þ

< 0:

This implies that �zL has a limit �z1 � 0. Calculating this limit we divide Eq 16 by L getting

b1 b3 þ
1

L

� �

�z2
L þ b3 þ

1

L
þ
p1b3

d1L

� �

�zL �
p1p3

d1d3L
¼ 0;
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and taking the limit for L!1 we obtain the relation

b3
�z1ð1þ b1

�z1Þ ¼ 0;

which means that �z1 ¼ 0. This also implies that �xL is an increasing function of L and

lim
L!1

�xL ¼ �x1 ¼
p1

d1

. Dependence of the location of the SS on L for exemplary parameter values

is presented in Fig 6.

Qualitatively the phase portrait of System (12) does not change essentially with increasing L
comparing to L = 0; cf. examples in Fig 7.

Knowing the behavior of (x, z)-subsystem, the asymptotic dynamics of PSA level can be

then described by the dynamics of single equation. Below we follow the idea of similar analysis

for immunotherapy of prostate cancer presented in [29]. Clearly, the right-hand side of the

first equation of System (12) depends only on P and z. We know that z! �zL as t!1. This

means that for any ε> 0 there exists such T that

�zL � ε � zðtÞ � �zL þ ε for t > T;

implying the following bounds for the first equation of System (12):

Pf ðPÞ þ dPð�zL � ε � �z0Þ P � _P � Pf ðPÞ þ dPð�zL þ ε � �z0ÞP:

Fig 6. Location of the SS of System (12) in the phase space for parameter values b1 ¼ b3 ¼
p1

d1
¼ 1,

p3

d3
¼ 20 and

various values of L. Red hyperbola represents null-cline for x, while other curves represent null-clines for z for L = 0,

0.5, 2, 9, 19, 49 (from top to bottom).

https://doi.org/10.1371/journal.pone.0263648.g006
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For any L> 0, due to the ineguality �zL < �z0 we can find ε sufficiently small to have

�zL þ ε � �z0 < 0.

Now, instead of the first equation of System (12) we consider an auxiliary equation

_P ¼ Pðf ðPÞ � dPAÞ≕ FðPÞ; ð17Þ

where A ¼ �z0 � �zL � ε > 0 or A ¼ �z0 � �zL þ ε > 0. In generic cases Eq (17) has at most two

steady states: �P0 ¼ 0 and positive �P > PR satisfying

a b ln
�P
PR
þ 1

� �g

� dPA ¼ 0:

Note that below the threshold of detection, to have _P ¼ 0 for P 6¼ 0 there must be a = dPA,

which is impossible in the generic case. Solving the equation

b ln
�P
PR
þ 1

� �g

¼
dP
a
A

we require
dP
a A > 1, and then

�P ¼ PR exp

dP
a
A

� �1=g

� 1

b

0

B
B
B
@

1

C
C
C
A
:

Otherwise, there is only one steady state �P0 ¼ 0.

Looking for stability of the steady states of Eq (17) we obtain the following proposition.

Proposition 5. For Eq (17),

1. if a< dPA, then there exists the positive steady state �P and for initial data satisfying P < �P
the trivial state �P0 attracts the solution, while for initial data satisfying P > �P solutions are
repelled from �P and grow to1;

Fig 7. Phase portraits for System (12) with parameters as in Fig 6; L = 0 (top left), L = 0.5 (top middle), L = 2 (top

right), L = 9 (bottom left), L = 19 (bottom middle), L = 49 (bottom right).

https://doi.org/10.1371/journal.pone.0263648.g007
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2. if a> dPA, then there is no positive steady state and all solutions grow to1.

Proof. Assuming that �P 6¼ PR we can calculate the derivative of the right-hand side of Eq

(17) with respect to P obtaining

F0ðPÞ ¼
a b ln

P
PR
þ 1

� �g

� dPAþ abg b ln
P
PR
þ 1

� �g� 1

for P > PR;

a � dPA for P < PR:

8
>><

>>:

We see that

F0ð�P0Þ ¼ a � dPA; F0ð�PÞ ¼ abg b ln
�P
PR
þ 1

� �g� 1

> 0:

This means that stability of �P0 depends on the sign of a − dPA, while �P is unstable whenever

exists. More precisely,

1. if a< dPA, then �P0 is stable, while �P exists and is unstable,

2. if a> dPA, then �P0 is unstable, while �P does not exist.

Taking the limit ε! 0, we obtain an asymptotic version of the first equation of System (12)

that reads

_P ¼ Pf ðPÞ þ dPð�zL � �z0ÞP; ð18Þ

with

�P ¼ PR exp

dP
a
ð�z0 � �zLÞ

� �1=g

� 1

b

0

B
B
B
@

1

C
C
C
A
; ð19Þ

and we can reformulate Proposition 5 for this equation.

Proposition 6. For arbitrary L� 0, solutions of Eq (18) satisfy:

• if a < dPð�z0 � �zLÞ then there exists the positive steady state �P and for initial data satisfying
P < �P the trivial state �P0 attracts the solution, while for initial data satisfying P > �P solutions
are repelled from �P and grow to1;

• if a > dPð�z0 � �zLÞ then there is no positive steady state and all solutions grow to1.

Note that, according to Formula (19), if the positive steady state �P exists, then it is increas-

ing in L (as �zL is decreasing), which means that the basin of attraction of �P0 enlarges. Let us

check for which parameter values there is no positive steady state of Eq (18). We need

�z0 � �zL <
a
dP

that is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1b3

d1

þ 1

� �2

þ 4b1

p1p3

d1d3

s

�
p1b3

d1

þ 1

� �

2b1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1b3

d1

þ 1þ b3L
� �2

þ 4b1

p1p3

d1d3

ð1þ b3LÞ

s

�
p1b3

d1

þ 1þ b3L
� �

2b1ð1þ b3LÞ
<
a
dP
;
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and, as we see, the left-hand side of the inequality above depends neither on a nor dP, which

means that for sufficiently large a or small dP there is no positive steady state and all solutions

grow to1.

Let us look at this inequality for changing L. The left-hand side as a function of L is increas-

ing, as �z0 does not depend on L while �zL is decreasing. With L increasing to1 the left-hand

side increases to �z0 as �z1 ¼ 0. Hence, if �z0 <
a
dP

, then there is no positive steady state for any

L� 0. This inequality is equivalent to a
dP
> ~a

dP
, where

~a≔ dP�z0:

Corollary 7. For Eq (18), depending on L,

• if a > ~a, then there is no positive steady state and all solutions grow to1;

• if a < ~a, then for sufficiently large L> 0 there exists a positive steady state �P and solutions
have the following dynamics depending on the initial value P0 > 0:

if P0 <
�P then P decreases to 0;

if P0 >
�P then P grows to1.

This corollary means that, depending on the early beginning growth rate of tumor

described by the parameter a, if a is large, then there is no possibility to cure the disease even

using arbitrary large doses L, while if a is small, the possibility of cure depends on the initial

tumor size, and moreover larger tumors can be cured for larger L. On the other hand, we can

reformulate this corollary taking into account the value of dP. Clearly, we are interested in

HSPC patients, which means that the influence of testosterone (reflected by dP) on the tumor

growth and thus PSA level is significant. Hence, we can conclude that in general, in HSPC

patients, the more hormone-sensitive the tumor, the more probable it is to be cured in an ideal

scenario when there is no drug resistance. Moreover, small values of dP should reflect CRPC

patients who cannot be cured even with very high doses of the drug.

Note that the results presented above does not essentially depend on the form of the tumor

per capita growth rate f(P). In fact, we can follow this line of reasoning for any positive,

increasing and unbounded function f.

Analysis of the full model (15)

Now, we turn to the similar analysis for the full system with resistance described by Eq (15).

We can divide our study into two cases which could be analyzed separately.

Case 1. If only the first resistance mechanism is present, then the (x, z) subsystem is inde-

pendent of this resistance, and from the previous subsection we know that these variables tend

to their steady state values and the system could be reduced asymptotically to one equation for

P. As r1 influences the right-hand side of the first equation of (15) monotonically, this means

that one can proceed exactly in the same way as in the previous subsection to obtain the same

qualitative result. The only difference is related with the threshold condition for the existence

of the positive steady state being also the threshold value for P0, which is now dependent on

the limit of r1. More precisely, the threshold condition for the existence of �P changes from

a ¼ ~a to aþ a1dpl1 ¼ ~a (where a1 is the parameter of the linear function g1 and l1 is the limit

of the variable r1), while �P ¼ PR exp
dP
a ð�z0 � �zL � a1dPl1Þð Þ

1=g
� 1

b

� �

.

Case 2. If only the second resistance mechanism is present, then the (x, z) subsystem is

dependent on this resistance. However, when L is not large (and this should be the case of real
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ADT) we do not expect that it will influence qualitative dynamics of this subsystem. Let us

focus on the dynamics of the (x, z, r2) subsystem which is independent of the other equations

of the full System (15), that is we consider

_x ¼
p1

1þ b1z
� d1x;

_z ¼
p3x

1þ b3ðxþ g2ðr2ÞÞ
� d3z;

_r2 ¼ b3 1 �
r2

l2

� �

;

ð20Þ

with β3 = β2L = const. in the invariant subset Or2
¼ ½xm; xM� � ½zm; zM� � ½0; l2� � ðRþÞ

3
(cf. B

Appendix and D Appendix in S1 Appendix).

First, we show that there exists a unique positive steady state of Eq (20) which is locally sta-

ble. As in Or2
the resistance r2 influences the (x, z) subsystem only to some extent we also

expect global stability. However, as the dependence of Eq (20) on r2 is highly non-linear, it is

difficult to find a suitable Lyapunov function for this system for any parameters values. We

will prove global stability for sufficiently small values of L.

Proposition 8. System (20) has exactly one positive steady state which is locally stable inde-
pendently of the model parameters.
Proof. For a steady state ð�x; �z;�r2Þ we have

�x ¼
p1

d1ð1þ b1
�zÞ
; �z ¼

p3
�x

d3ð1þ b3ð�x þ g2ð�r2ÞÞÞ
; �r2 ¼ l2:

Let us denote qi ¼
pi
bidi

, ci ¼ 1

bi
, i = 1, 2. This yields �x ¼ q1

c1þ�z, �z ¼ q3�x
c3þ�xþg2ð�r2Þ

, and therefore

�z ¼
q1q3

q1 þ ðc1 þ �zÞðc3 þ g2ðl2ÞÞ
) c3 þ g2ðl2Þð Þ�z2 þ q1 þ c1ðc3 þ g2ðl2ÞÞð Þ�z � q1q3 ¼ 0;

and there exists exactly one positive solution �z of this quadratic equation which depends on L
via the values of g2(l2).

Calculating Jacobian matrix of Eq (20) we obtain

Jð�x; �y;�r2Þ ¼

� d1 �
b1p1

ð1þ b1
�zÞ2

0

p3ð1þ b3g2ð�r2ÞÞ

ð1þ b3ð�x þ g2ðr2ÞÞÞ
2

� d3 ?

0 0 �
b3

l2

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

;

where ? is some expression depending on the model parameters and not influencing stability

of the steady state. Clearly, the steady state is locally stable as the third eigenvalue

l3 ¼ �
b3

l2
< 0, while for the (x, z)-subsystem we have the trace −(d1 + d3)< 0 and the determi-

nant d1d3 þ
b1ð1þb3g2ð�r2ÞÞp1p3

ð1þb1�zÞ2ð1þb3ð�xþg2ðr2ÞÞÞ
2 > 0.

Theorem 9. For sufficiently small values of L the steady state ð�x; �z;�l2Þ is globally stable.
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Proof. Let us denote u ¼ x � �x, v ¼ z � �z , w ¼ r2 � �r2 and rewrite Eq (20) in the new vari-

ables:

_u ¼ � d1u �
q1v

ðc1 þ �zÞðc1 þ �z þ vÞ
;

_v ¼ � d3vþ
q3ðĉ3u � �xðg2ðwþ �r2Þ � g2ð�r2ÞÞÞ

ðĉ3 þ �xÞðĉ3 þ �x þ uþ g2ðwþ �r2Þ � g2ð�r2ÞÞ
;

_w ¼ �
b3

l2
w;

ð21Þ

where ĉ3 ¼ c3 þ g2ð�r2Þ and now qi ¼
pi
bi

, ci ¼ 1

bi
, i = 1, 2.

We propose the following Lyapunov function for this system:

Lðu; v;wÞ ¼
q3ĉ3

ĉ3 þ �x
u � ðĉ3 þ �xÞ ln

ĉ3 þ �x þ u
ĉ3 þ �x

� �

þ q1 v � ðc1 þ �zÞ ln
c1 þ �z þ v
c1 þ �z

� �

þ
B
2
w2;

where B = const.> 0 is to be chosen appropriately.

We easily see that L(u, v, w)� 0 whenever L is defined, in particular in the invariant set. Let

us calculate the derivative of L along solutions of (21). We obtain

_Lðx; z; r2Þ ¼
q3ĉ3u

ðĉ3 þ �xÞðĉ3 þ �x þ uÞ
� d1u �

q1v
ðc1 þ �zÞðc1 þ �z þ vÞ

� �

þ
q1v

ðc1 þ �zÞðc1 þ �z þ vÞ
� d3vþ

q3ðĉ3u � �xðg2ðwþ �r2Þ � g2ð�r2ÞÞÞ

ðĉ3 þ �xÞðĉ3 þ �x þ uþ g2ðwþ �r2Þ � g2ð�r2ÞÞ

� �

� Bb3w2

¼ �
q3ĉ3d1u2

ðĉ3 þ �xÞðĉ3 þ �x þ uÞ
�

q1d3v2

ðc1 þ �zÞðc1 þ �z þ vÞ
� Bb3w

2

�
q1q3ĉ3uv

ðĉ3 þ �xÞðĉ3 þ �x þ uÞðc1 þ �zÞðc1 þ �z þ vÞ

þ
q1q3ðĉ3uv � �xvðg2ðwþ �r2Þ � g2ð�r2ÞÞÞ

ðc1 þ �zÞðc1 þ �z þ vÞðĉ3 þ �xÞðĉ3 þ �x þ uþ g2ðwþ �r2Þ � g2ð�r2ÞÞ
:

Note that g2ðwþ �r2Þ � g2ð�r2Þ ¼ g 0
2
ðzÞw (where z is an intermediate value), so we can treat

Lðu; _v;wÞ as a quadratic form of (u, v, w) with variable coefficients. We can check positivity of

� _L studying the matrix

ĉ3d1Cx

ĉ3 þ x
ĉ3CxCzg 02ðzÞw

2ðc1 þ zÞðĉ3 þ xÞðĉ3 þ xþ g 02ðzÞwÞ
0

ĉ3CxCzg 02ðzÞw
2ðc1 þ zÞðĉ3 þ xÞðĉ3 þ xþ g 02ðzÞwÞ

d3Cz

c1 þ z
�xCxCzg 02ðzÞ

2ðc1 þ zÞðĉ3 þ xþ g 02ðzÞwÞ

0
�xCxCzg 02ðzÞ

2ðc1 þ zÞðĉ3 þ xþ g 02ðzÞwÞ
Bb3

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

;

where Cx ¼
q3

ĉ3þ�x, Cz ¼
q1

c1þ�z. Now, we need to check main minors of this matrix:

1. D1 ¼
q3 ĉ3d1

ðĉ3þ�xÞðĉ3þxÞ
,
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2. D2 ¼
q1q3 ĉ3d1d3

ðc1þ�zÞðc1þzÞðĉ3þ�xÞðĉ3þxÞ
�

q1q3 ĉ3g02ðzÞw
2ðc1þ�zÞðc1þzÞðĉ3þ�xÞðĉ3þxÞðĉ3þxþg02ðzÞwÞ

� �2

,

3. D3 ¼ Bb3D2 �
q1q3�xg0

2
ðzÞ

2ðc1þ�zÞðc1þzÞðĉ3þ�xÞðĉ3þxþg02ðzÞwÞ

� �2
q3 ĉ3d1

ðĉ3þ�xÞðĉ3þxÞ
.

Analyzing these minors we conclude:

1. The first minor Δ1 > 0 for any parameters, and moreover D1 2
q3 ĉ3d1

ðĉ3þ�xÞðĉ3þxMÞ
;

q3 ĉ3d1

ðĉ3þ�xÞðĉ3þxnÞ

h i
in

the invariant subset.

2. If L = 0, then g 0
2
ðr2Þ ¼ 0, as this function depends on L linearly. Therefore, for L = 0 we have

Δ1 > 0, which implies that for small L> 0 there is Δ2 > 0 as the dependence on L is smooth.

3. Knowing that Δ2 is bounded from below by a positive constant, we can chose B large

enough for Δ3 > 0.

This completes the proof.

Note that the second resistance partially counteracts the effect of treatment on testosterone

level. The larger the values of parameters a2 and l2, the smaller the asymptotic values the func-

tion g2(r2) approaches. This leads to increase of the asymptotic level of testosterone.

Combining the results of our analysis for both resistance mechanisms separately we con-

clude that the first resistance may directly lead to the change of the threshold level �P leading to

unbounded growth of PSA for smaller initial tumors, while the second resistance affects PSA

through the asymptotic level of testosterone that increase again when this mechanism is pres-

ent. In reality (e.g. when L is small), either there is no positive steady state of Eq (15) and P
always increases to1, or this state does exist and—depending on initial data—either P goes to

0 (this is in fact the case not observed by medical doctors as then P goes to 0 without the treat-

ment) or P goes to1.

Discussion

Now, we would like to discuss scenarios that are possible according to the model presented

above, and confront it with real-life/clinical scenarios.

Case 1. No disease. When there is no disease, mean levels of hormones remain at their

steady state, while the level of PSA should be undetectable, that is we consider it as 0. This case

is perfectly reflected by the model without resistance (13) and without the treatment (L = 0),

where there is always healthy steady state ð�P0; �x0; �z0Þ. Moreover, even if the state deviates from

this steady level a little bit, in the case without disease our model has (i.e. the inequality a <
dP�z0 holds) a positive steady state ð�P; �x0; �z0Þ, and therefore for small deviations the level of

PSA comes back to 0. The steady state value �P is a threshold below which such behavior is

observed.

Case 2. Disease is present. In the disease case, before the treatment, the patient’s state is

again governed by Eq (13) with L = 0, however the level of testosterone rises and this lead to

increasing level of PSA. We assume that the medical intervention is now inevitable, which

means that either there is no positive thereshold level �P of PSA, or the detected level fo PSA

exceeds this threshold, and according to the model, we observe unbounded growth of PSA.

We consider HSPC patients, and this case could be interpreted as sufficiently large values of

the coefficient dP, such that according to Corollary 7 there exists sufficient level of the drug

L> 0 for which the threshold value of PSA appears and in ideal scenario if there is no acquired

drug resistance (ADR), then the disease may be cured. However, ADR always occurs, and then

we need to switch to the full model with resistance (15). Note that the analysis of the full model
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present in Results section does not exclude the possibility of cure even in the case with ADR.

However, in reality after some time HSPC transforms into CRPC, and this transformation

could be interpreted as decrease of the values of the coefficient dP. Hence, we expect that the

positive steady state �P disappears and the level of PSA becomes uncontrolable, meaning

unbounded tumor growth. Note that we added two types of ADR mechanisms, following the

original article [11] where the authors were not able to fit the model to the data using only one

type of ADR. However, in our case this should be verified, as it seems that the second ADR

mechanism (leading to the changes in the testosterone level) is more close to reality. We hope

that our model, better grounded in the biology of the described processes, will be able to reflect

the data succesfully to be usefull in predicting biochemical failure and proposing better treat-

ment schedules.

Conclusion

In this paper we have focused on modeling ADT for HSPC patients. We proposed an advanced

mathematical model of this treatment, basing on earlier research by Elishmereni et al. [11],

where the authors focused on retrieving clinical data from Mayo hospital. In the present paper

we reformulated the previous model including more biological and pharmacokinetic informa-

tions. We focused on detailed derivation and description of the new model, along with mathe-

matical analysis allowing to predict the model dynamics.

With the advent of new-generation hormonal therapies such as enzalutamide and abirater-

one, the arsenal of therapeutic ADT possibilities for HSPC patients is constantly growing (cf.

[30]), and this reality requires new models that could assist in clinical decision making. It is

worth mentioning that administration of ADT in HSPC patients harbors several obstacles.

Hormone-based therapeutics entail a negative impact on the quality of life, and require dealing

with life-threatening adverse events (such as cardiovascular events and neurocognitive dis-

function; cf. [31]). Moreover, long-term continuous use of ADT for suppressing androgen

release has been suggested to carry a risk of early onset of resistance mechanisms to the drug,

and earlier progression of the patient to the castrate-resistant stage of the disease (cf. [32]).

Therefore, early identification of conversion from hormone-sensitivity to castration resistance

is critical, for adequately planning ADT. Our updated model could potentially serve as a plat-

form for simulating and optimizing ADT selection and schedules for the given patient.

Using mixed effects modeling we partially compared the model with clinical data, propos-

ing the underlying tumor growth law on the basis of the relevant part of the data from Mayo

hospital. More precisely, we have been able to reflect the underlying tumor growth for a cohort

of 19 patients for which the data before ADT onset was available. Then we fit the pharmacoki-

netic part of the model to the publicly available FDA data for patients under continuous ADT.

However, in this paper we mainly focused on mathematical analysis of the proposed model.

We first analyzed a simplified model without resistance, showing that, depending on the initial

data and the model parameters, there is either a possible cure or the testosterone level increases

to infinity. Then we showed that for the full model with two resistance mechanisms the

dynamics is qualitatively the same, there are only quantitative differences. Exactly such type of

the behavior is observed in HSPC patients, that is after some time of controlled dynamics the

level of PSA rises, and although the model predicts the possibility of cure using large doses of

the drug, in practice such doses are far too large to be able to safely applied. We conclude that

our model is able to reflect real clinical scenarios in which the level of PSA eventually increases,

concomitant with failure of ADT. The new personalized model should next undergo sufficient

steps to ensure its validation and usefulness in predicting the time to biochemical failure, and

moreover, could help in delaying this process and offering better ADT scheduling on an
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individual basis. The next steps of validation and personalization of the model are within our

future plans.
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