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Summary
The pathologist emerged in the personalized medicine era as a central actor in the defi-
nition of the most adequate diagnostic and therapeutic algorithms. In the last decade, 
gastrointestinal oncology has seen a significantly increased clinical request for the inte-
gration of novel prognostic and predictive biomarkers in histopathological reports. This 
request couples with the significant contraction of invasive sampling of the disease, thus 
conferring to the pathologist the role of governor for both proper pathologic characteriza-
tion and customized processing of the biospecimens. This overview will focus on the most 
commonly adopted immunohistochemical and molecular biomarkers in the routine clinical 
characterization of gastrointestinal neoplasms referring to the most recent published rec-
ommendations, guidelines and expert opinions.
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Introduction

Personalized medicine in oncology has pinpointed a central role of pathol-
ogists in the multidisciplinary team for the definition of the most adequate 
diagnostic and therapeutic algorithms 1. As a result, in the last decade, 
numerous novel prognostic and predictive biomarkers have been intro-
duced and integrated in histopathological reports to obtain an inclusive 
morphological and molecular characterization of the biospecimens.
Several surgical pathology laboratories have implemented next gener-
ation sequencing (NGS) or multigene high-throughput technologies in 
their diagnostic portfolio; however, immunohistochemistry (IHC), in situ 
hybridization (ISH) and single gene analyses still retain a central role in 
the diagnostic scenario.
This overview will focus on the most commonly adopted immunohis-
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tochemical and molecular biomarkers in daily clinical 
characterization of gastrointestinal neoplasms refer-
ring to the most recent published recommendations, 
guidelines and expert opinions.

Gastroesophageal adenocarcinoma

HER2 ovERExpREssion/amplification

Definition and therapeutic implications

The HER2 (ERBB2) proto-oncogene is a member of 
the human epidermal growth factor receptor (HER/
GFR/ERBB) family and encodes a transmembrane 
growth factor receptor with tyrosine kinase activity. 
HER2 gene amplification leads to HER2 protein over-
expression, which is important for cancer initiation 
and progression.
The anti-HER2 monoclonal antibody trastuzumab in 
combination with standard chemotherapy has signifi-
cantly improved response rate and survival outcome 
in patients harboring HER2-positive tumors (i.e. IHC 
3+ or IHC 2+ and ISH+) 2,3. Moreover, other alternative 
HER2-targeted therapeutic approaches are in clinical 
trials with promising results  3. Thus, advanced gas-

troesophageal adenocarcinoma should be tested for 
HER2 status.

Clinical and pathological associated features

HER2 overexpression is observed in 15-20% gastro-
esophageal adenocarcinomas and has no significant 
prognostic impact.
The alteration is more common in intestinal-type ad-
enocarcinomas than diffuse-type cancers, low-grade 
than high grade adenocarcinomas and gastroesoph-
ageal junction cancers than distal gastric adenocarci-
nomas 4. 

Diagnosis

HER2 status may be clonally heterogeneous within 
the same tumor 5,6 and thus, HER2 testing should be 
performed on surgical samples or at least 6 biopsy 
samples 7,8. Moreover, in surgical samples, due to the 
presence of heterogeneous morphologic patterns is 
reasonable to select more than one tissue block for 
analysis. There is a high degree of concordance be-
tween primary and metastatic samples, hence, HER2 
testing should be performed on the most representa-
tive material9. In biopsy samples, it should be kept in 
mind that low-grade and high-grade dysplastic lesions 
may present HER2 overexpression/gene amplifica-

Figure 1. HER2 testing in gastroesophageal adenocarcinomas. (A) Diagnostic algorithm modified from Bartley AN, et al.(11). 
Tumor cell cluster is defined as a cluster of five or more tumor cells. (B) Representative immunohistochemical examples of 
a negative (0) case showing no reactivity in any of the tumor cells, a negative (1+) case with faint/barely perceptible mem-
branous staining, an equivocal 2+ immunoreaction and a strongly and diffuse 3+ positive case. CISH examples of a HER2 
non-amplified and an amplified case are also shown.
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tion which can coexist with a HER2-negative invasive 
counterpart 10. Thus, an accurate combined morpho-
logical and IHC evaluation should be performed.
HER2 status should be assessed first by IHC, followed 
by ISH when IHC result is 2+ (equivocal). Positive 
(i.e. 3+) or negative (0 or 1+) staining do not require 
further ISH testing  11. The IHC evaluation should be 
performed according the Ruschoff/Hofmann scoring 
system (Fig. 1) 12. Note that, in comparison to breast 
cancer, the completeness of membrane staining is in-
frequent and expression is often seen in a basolateral 
pattern. For ISH, a ratio of HER2 signal to CEP17 sig-
nal of ≥ 2.0 is considered positive. The ISH analysis 
evaluation should preferably be performed in areas 
marked as strongest HER2 IHC intensity. Brightfield 
ISH techniques have been suggested to be superior 
than FISH in HER2 testing for gastroesophageal ade-
nocarcinoma as they allow for easier identification of 
tumor nuclei in normal tissue 13.

EpstEin-BaRR viRus infEction

Definition and therapeutic implications

The Epstein-Barr virus (EBV) is a DNA virus member 
of the herpes family, which has been associated with 
several types of cancer, including gastric carcinoma 
(GC). An EBV-positive gastric cancer category based 
on its genomic and molecular features was proposed 
by The Cancer Genome Atlas Research Network (TC-
GA)  14. This peculiar class of GC is usually charac-
terized by overexpression of PD-L1 and shows high 
response rates to immunotherapy 15.

Clinical and pathological associated features

EBV infection is absent in gastric dysplasia or early 
GC, suggesting an EBV-specific carcinogenetic path-
way  16. EBV is more often detected in moderate to 
poorly differentiated GCs, medullary histotype carci-
nomas and those involving the proximal stomach  17. 
EBV association is also noted in cancers of the gastric 
stump following surgery. Tumors often present abun-
dant infiltrating lymphocytes, CDKN2A gene silencing, 
frequent PIK3CA mutations and a significant overex-
pression of PD-L1/PD-L2.
There is a male predominance and the prevalence 
is significantly higher among the Asian population 
in comparison to Caucasians. EBV-associated GCs 
have a low frequency of lymph node involvement and 
are characterized by an improved survival in compari-
son to EBV-negative cases 18.

Diagnosis

The gold standard assay for EBV is the targeting of 
EBV-encoded RNA (EBER) by ISH in paraffin-embed-

ded samples 19. This method localizes the viral infec-
tion to the malignant cells with a moderate to strong 
nuclear staining. The presence of EBER-positive lym-
phocytes within tumor samples has been described 
and should not be considered in the definition of 
EBV-positivity 18.

Colorectal adenocarcinoma (CRC)

RAS gEnEs mutational analysis

Definition and therapeutic implications

The RAS gene family is composed of four small cyto-
plasmic proteins with GTPase activity: H-Ras, K-Ra-
s4a, K-Ras4b, and N-Ras. These proteins promote 
cell growth, differentiation, proliferation and survival.
Mutations in the RAS genes (KRAS and NRAS) are 
well-recognized biomarkers of resistance to anti-EG-
FR monoclonal antibodies 20-23. 

Clinical and pathological associated features

KRAS mutations are an early event in colorectal car-
cinogenesis. In fact, there is a highly concordant rate 
(almost 95%) in paired primary cancers and metastat-
ic samples 24,25. Cancers may present a mucinous his-
tology and are usually located in the right colon.

Diagnosis

KRAS is mutated in approximately 40% of cases, 
mostly in exon 2 codons 12 (70-80%) and 13 (15-
20%). The remaining mutations are mainly located in 
exon 3 codons 59-61 and in exon 4, which includes 
codons 117 and 146. Mutations in NRAS are present 
in approximately 3% to 5% of colorectal cancer sam-
ples particularly in exon 3 codon 61 (60%) and in exon 
2 codons 12, 13 22.
NRAS mutations are typically mutually exclusive with 
KRAS and BRAF mutations.
Patients with CRC being considered for anti-EGFR 
therapy must be profiled for RAS mutational sta-
tus 26. Different methods can be used, such as muta-
tion-specific real-time polymerase chain reaction (RT-
PCR), Sanger sequencing, pyrosequencing, BEAM-
ing technique, and next-generation sequencing, 
among others. On the basis of the evidence that no 
improvement in the selection of patients for anti-EG-
FR therapy was obtained by adjusting the mutant al-
lele fraction threshold in tissue samples from 5% (by 
pyrosequencing) to 1% (by NGS)  27, Colon Cancer 
Guidelines by Italian Association of Medical Oncolo-
gy (AIOM) suggests that mutational analysis should 
carried out by a method with a sensitivity detection 
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of 5% mutant allele fraction, at least in cases with 
high neoplastic cellularity (more than 50%) (https://
www.aiom.it/wp-content/uploads/2019/10/2019_LG_
AIOM_Colon-1.pdf)

BRAF gEnE mutational analysis

Definition and therapeutic implications

The BRAF gene encodes a serine/threonine protein 
kinase, which plays a role in regulating the MAPK/
ERK signaling pathways, affecting cell growth and 
proliferation. Missense somatic mutations in the BRAF 
gene have been found in about 8-15% of metastatic 
CRCs 28.
The most common BRAF mutation (>  90%), result-
ing in a constitutive-active kinase, is a CTG → CAG 
transversion at residue 1799 (T1799A), leading to an 
amino acidic substitution from valine to glutamic acid 
at codon 600 (p.V600E) in exon 15.
BRAF mutations are observed in hyperplastic polyps 
and as an early event in the “serrated” carcinogenet-
ic cascade 29. In the metastatic setting, BRAF-mutat-
ed CRCs have a poor prognosis and do not seem 
to benefit from EGFR inhibition 30. The phase III trial 
BEACON has recently proved a significant survival 
advantage associated with the combination of en-
corafenib plus cetuximab or the same doublet plus 
binimetinib compared to current standard treatments 
in BRAF-mutated tumors 31,32, paving the way for inno-
vative BRAF-specific therapeutic options.

Clinical and pathological associated features

BRAF-mutated metastatic CRCs arise in older pa-
tient (> 60 years old) and with a higher prevalence in 
the female gender in comparison to BRAF-wild type 
cases, regardless of the MSI status 33-35. The proximal 
colon is the preferential location. Moreover, this class 
of tumors present a unique metastatic pattern, show-
ing high rates of peritoneal metastases, distant lymph 
node metastases and low rates of lung metastases 28. 
However, no significant differences have been ob-
served in liver or brain metastases rates 36.
From a histopathological point of view, BRAF-mutat-
ed CRCs frequently present mucinous features, poor 
differentiation and high stage at diagnosis  28; from 
the biological point of view, they mostly derived from 
serrated precursor lesions. Other less characteristic 
features include a higher frequency of tumor budding 
and signet ring cells histotype, infiltrative pattern of 
invasion with an increased risk of lympho-vascular 
albeit not perineural invasion, different grade of Tu-
mor Infiltrating lymphocytes (TILs) and of peritumoral 
lymphoid reaction with follicular appearance (Crohn-
like) 37.

CRCs bearing non-V600 BRAF mutations constitute 
a distinct clinico-pathological subset  38. BRAF mu-
tations are grouped in activating RAS-independent 
signaling as monomers (class 1-V600E) or as dimers 
(class 2-codons 597/601), and RAS-dependent with 
impaired kinase activity (class 3-codons 594/596) 38,39. 
Class 3 CRCs usually are non-mucinous, microsatel-
lite stable (MSS), arise on the left side of the colon 
of younger male patients, have no peritoneal spread, 
are lower grade at presentation and are related to a 
more favorable overall survival (OS) rate compared to 
both V600EBRAF mutants and wild-type CRCs, where-
as class 2 lesions are clinically similar to V600EBRAF 
CRCs.

Diagnosis

BRAF mutational testing should be performed in 
metastatic CRCs for prognostic stratification, where-
as there is insufficient evidence to support its testing 
as a predictive molecular biomarker for response to 
anti-EGFR inhibitors 26. The recent publication of the 
BEACON study pinpointed novel BRAF-targeting 
therapies in this oncological setting 31.
BRAF gene exon 15 mutational analyses can be per-
formed as single gene analysis or in combination with 
the other RAS genes with high-throughput technolo-
gies. The VE1 clone has been demonstrated to be an 
alternative sensitive and specific immunohistochem-
ical marker for the detection of BRAF p.V600E-mu-
tated CRCs 40. However, considering the clinical and 
therapeutic implication of non-V600 mutations, the 
analysis of the most common exon 15 hotspots should 
be preferred.
Beyond the metastatic setting, V600EBRAF mutation is 
strongly associated with (~60%) the somatic inactiva-
tion of the DNA mismatch repair machinery (MMR) 
genes, which is virtually absent in Lynch syndrome 41. 
Hence, somatic BRAF mutation testing has been in-
cluded into the Lynch syndrome screening algorithm 
(see below).

Pancancer biomarkers

DEfEctivE DNA mismatcH REpaiR complEx (DmmR)/
micRosatEllitE instaBility (msi)

Definition and therapeutic implications

MMR is a highly conserved protein complex that rec-
ognizes and repairs erroneous short insertions, short 
deletions and single base mismatches that can arise 
during DNA replication and recombination. The most 
important MMR players include MLH1 (mutL homo-
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logue 1), MSH2 (mutS homologue 2), MSH6 (mutS 
homologue 6) and PMS2 (postmeiotic segregation in-
creased 2) 42. These four proteins function in heterod-
imers, namely MLH1-PMS2 and MSH2-MSH6  43,44, 
where MLH1 and MSH2 are obligatory partners of 
these heterodimers. In fact, PMS2 and MSH6 can only 
form a heterodimer with MLH1 and MSH2, respective-
ly. On the other hand, MLH1 and MHS2 can form het-
erodimers with other MMR proteins, namely MSH3, 
MLH3 and PMS1. An alteration in MLH1 and MSH2 
results in subsequent proteolytic degradation of the 
mutated protein and its secondary partner, PMS2 and 
MSH6, respectively 44. Conversely, mutations in PMS2 
or MSH6 may not result in proteolytic degradation of 
their primary partners.
The inactivation of these genes (i.e. dMMR) can occur 
due to germline and/or somatic mutations or epige-
netic silencing, resulting in the accumulation of frame-
shift mutations (either through insertions or deletions) 
with a subsequent increased mutational burden. 
Germline mutation(s) of the MMR genes is the hall-
mark of Lynch syndrome and constitutional mismatch 
repair deficiency (CMMRD) 45. Epigenetic silencing is 
usually represented by MLH1 gene promoter hyper-
methylation; secondary epigenetic silencing of MSH6 
is observed after neoadjuvant radiochemotherapeutic 
treatments 46,47.
Microsatellites are repetitive DNA sequences that are 
distributed along the genome of both coding and non-
coding regions and are particularly sensitive to DNA 
mismatching errors. The identification of microsatellite 
instability (MSI; i.e. clustering of mutations in micro-
satellites typically consisting of repeat length altera-
tions) is, therefore, an indirect evidence of a dMMR 48. 
Of note, 6-7% of MSI tumors retain MMR IHC expres-
sion 49. Some of these cases presented an abnormal 
focal or dot-like nuclear MLH1 expression; some oth-
ers were associated with an ultramutated status due 
to POLE mutations and subsequent alterations in the 
MMR machinery 49.
Importantly, for assessment tumor mutation burden, 
novel NGS approaches have been introduced to test 
MSI in the clinic, which have also been suggested in 
the analysis of non-Lynch associated cancers 49-51.
MMR screening/MSI testing has several important 
clinical implications: (i) dMMR/MSI universal screening 
in colorectal and endometrial cancers has been rec-
ommended to identify Lynch syndrome families  43,52; 
(ii) stage II/III colorectal cancers should be tested for 
dMMR/MSI because they do not benefit from 5-fluoro-
uracil adjuvant therapy 53; (iii) dMMR/MSI tumors are 
eligible for immune checkpoint inhibitor therapies and 
are characterized by overexpression of PD-L1 15,54-56. 

Clinical and pathological associated features

Patients with dMMR/MMR tumors are more often 
characterized by a prolonged overall survival in com-
parison to proficient MMR (pMMR)/MSS cases 14,57,58. 
However, there is a negative prognostic effect in pa-
tients treated with (neo)adjuvant chemotherapy 57,58.
dMMR/MSI has been well described in several types 
of human cancers, most frequently in colorectal (17% 
among all stages), endometrial (20%), and gastric 
(13%) adenocarcinomas 44,59, which are also the most 
frequently observed among Lynch syndrome patients.
Most dMMR/MSI tumors are characterized by a sig-
nificant intra- and peri-neoplastic lymphocytic infil-
tration and phenotypic heterogeneity 60. In colorectal 
adenocarcinoma, dMMR/MSI status is associated 
with mucinous histology and rare histotypes such as 
medullary carcinoma and signet-ring cell adenocarci-
noma 61,62. Thus, in experienced hands, histopatholo-
gy can significantly improve the efficacy of dMMR/MSI 
detection. This consideration introduces the concept 
of the so-called “reflex test”, which can represent a mo-
lecular test directly performed by pathologist based on 
a peculiar morphological feature typically associated 
with a genetic profile (e.g.: medullary histology and 
MSI). This kind of approach can greatly reduce the 
overall diagnostic turnaround time in selected cas-
es. On the other hand, remaining in the dMMR/MSI 
landscape, it has to be noticed that a small subset 
(~6%) of colorectal cancers with this genetic altera-
tion have no detectable dMMR/MSI-specific histologic 
characteristics 62. In gastric adenocarcinoma, dMMR/
MSI status is associated with intestinal-type histo-
type, an elderly age of onset and a distal location 63. 
In adenocarcinomas of the small intestine dMMR/MSI 
status has been observed in 8.3% of cases 44, is as-
sociated with a history of celiac disease 64 and with a 
mucinous histotype 65. Among gastrointestinal tumors 
with low prevalence of dMMR/MSI (< 5%), dMMR/MSI 
pancreatic ductal adenocarcinomas show medullary 
or mucinous/colloid histology and are associated with 
a KRAS/TP53 wild-type molecular background  66,67, 
dMMR/MSI cholangiocarcinomas show papillary and 
mucinous histotype 68.

Diagnosis

The use of immunohistochemistry to assess the pres-
ence or absence of MLH1, PMS2, MSH2 and MSH6 
is recommended in all the patients with any sporad-
ic cancer type belonging to the spectrum of cancers 
found in Lynch syndrome (i.e. colorectal, endometrial, 
small intestine, urothelial,central nervous system and 
sebaceous gland)  26. Due to the high concordance 
rate among IHC and PCR 69, IHC analysis is usually 
preferred over microsatellite instability testing. In fact, 
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IHC has a lower turnaround time, allows to directly 
understand the altered gene(s) and requires a limited 
amount of tissue (i.e. 4 tissue slides). ESMO recom-
mendations discourage the use of a two-antibody (i.e. 
PMS2 and MSH6) approach 44.
MMR protein expression is interpreted as (i) retained, 
when a moderate to strong expression (similar to what 
is observed in the stromal cells as internal control) is 

present in ≥ 10% tumor cells; (ii) loss, in case of com-
plete loss of nuclear expression in cancer cells; (iii) 
indeterminate, if IHC staining intensity in tumor cells is 
lower than the internal control or the tumor is positive 
in < 10% (Fig. 2) 70. Indeterminate IHC results should 
undergo MSI testing.
False negative MMR immunostainings are mainly 
caused by pre-analytical issues, such as tissue fixa-

Figure 2. Immunohistochemical interpretation of MMR proteins in colorectal adenocarcinoma. (A) Diagnostic algorithm for 
MMR staining interpretation modified from Remo, et al. (43). (B and C) Heterogeneous MMR protein expression. (B) The 
lesion was heterogeneous for MSH2/MSH6 status and proficient for MLH1/PMS2. The microdissected areas also showed a 
heterogeneous status of the MSI testing. (C) A heterogeneous MSH6 staining pattern observed in a MLH1 mutated Lynch 
syndrome patient. (D) A case of indeterminate positivity for MMR proteins, in which the staining intensity observed in cancer 
cells’ nuclei is significantly lower in comparison to surrounding stromal cells. This case was MSI at molecular testing.
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tion, but this can be easily recognized by the absence 
of signal in the internal positive controls (stromal 
cells or normal mucosa)  71. Another reason to retest 
the sample by MSI testing is the finding of aberrant 
staining patterns such as cytoplasmic, dot-like or per-
inuclear staining 71. False positive results (i.e. pMMR 
but MSI) may be determined by catalytically inactive 
mutated MMR proteins, which retain their antigenic 
integrity  71. MMR/microsatellite status heterogeneity 
has been described 15,72; in these cases, the analysis 
should be repeated on a representative sample of the 
metastatic disease.
In colorectal adenocarcinoma (and solely in this set-
ting!), MLH1/PMS2 negative tumors should be tested 
for BRAF p.V600E since this mutation is frequent-
ly observed in sporadic cases  26. Another option to 
identify a MLH1/PMS2 negative tumor as sporadic is 
the evaluation of MLH1 promoter methylation 43. The 
latter diagnostic approach is also extended to other 
cancer types in addition to colorectal lesions; howev-
er, MLH1 constitutional methylation should be ruled 
out 73.
MSI testing is based on PCR amplification of micro-
satellite markers. Two possible panels are currently 
in use: (i) five microsatellites comprising two mon-
onucleotide (BAT-25 and BAT-26) and three dinu-
cleotide (D5S346, D2S123 and D17S250) repeats; 
(ii) five poly-A mononucleotide repeats (BAT-25, 
BAT-26, NR-21, NR-24, NR-27). Historically, loss of 
stability in 1 of the five microsatellite markers was 
defined as MSI-low and loss of stability in ≥  2 as 
MSI-high. The term MSI-low should be abandoned 
and MSI-low tumours should be included within mi-
crosatellite stable tumours  74. The pentaplex panel 
of five poly-A mononucleotide repeats is the recom-
mended panel given its higher sensitivity and spec-
ificity 75. Moreover, it may obviate the need for nor-
mal tissue for comparison, which is of central im-
portance in the analysis of small biopsies obtained 
from cancer tissue.
Of note, a recent report demonstrated that almost 
10% of patients had been enrolled for immunothera-
py in metastatic colorectal cancer with a false positive 
dMMR or MSI-PCR result assessed by local laborato-
ries 76. Thus, both MMR-IHC and MSI-PCR have to be 
performed in assessing the eligibility to treatment with 
immune checkpoint inhibitors.
NGS represents an appropriate alternative molecular 
test to assess MSI, especially in non-Lynch-associ-
ated tumors 77. However, NGS should be carried out 
only in selected centers experienced in these tech-
niques.

pD-l1 ExpREssion status

Definition and therapeutic implications

Programmed death-ligand 1 (PD-L1; also known as 
CD247 or B7-H1) is one of the ligands of the pro-
grammed cell death 1 (PD-1) receptor, a dominant 
negative regulator of antitumor T cell effector func-
tion  56. PD-L1 is induced by inflammation and is ex-
pressed in the tumor microenvironment and on tumor 
cells. The blockade of the PD-1–PD-L1 interaction with 
therapeutic antibodies has emerged as an important 
therapeutic option in tumors overexpressing PD-L1 or 
tumors with an activation of T-cell immunoresponse 
such as in case of high tumor mutation burden or EBV 
associated gastric cancers. In fact, anti-PD-1/PD-L1 
therapies result in T cell proliferation and infiltration in-
to the tumor, inducing a cytotoxic T cell response that 
leads to an objective tumor response 15,78. Apart from 
colorectal cancer, in which dMMR/MSI status is the 
preferred predictive biomarker in the selection of pa-
tients for immunotherapy, PD-L1 expression emerged 
of importance for gastroesophageal cancers. FDA ap-
proved pembrolizumab (an anti PD-1 antibody) as a 
second-line standard of care therapy for patients with 
advanced or metastatic esophageal squamous cell 
carcinoma and PD-L1 combined positive score (CPS) 
≥ 10 79,80 and as third-line option in metastatic gastro-
esophageal junction adenocarcinomas with a PD-L1 
CPS ≥ 1 81.

Clinical and pathological associated features

In gastric cancer PD-L1 positivity is seen predomi-
nantly in the EBV-associated and dMMR/MSI tum-
ors  15, although contrasting data are available on its 
prognostic impact. In colorectal adenocarcinomas, 
high level of PD-L1 expression has been associated 
to a poorer prognosis 82. In pancreatic ductal adeno-
carcinoma, the prognostic value of PD-L1 expression 
is still unclear; however, in the undifferentiated vari-
ant with osteoclast-like giant cells, its expression has 
been correlated with a poorer prognosis 83.

Diagnosis

Immunohistochemistry represents the gold standard 
for PD-L1 expression evaluation. Pathologists should 
be aware that this analysis is significantly affected by 
several factors: (i) different standardization protocols 
of PD-L1 assays, (ii) variability in PD-L1 antibody use 
among the different Institutions 84; (iii) different PD-L1 
quantification scoring systems  85; and (iv) intratumor 
heterogeneity of PD-L1 expression  44. Moreover, 
PD-L1 is also expressed in pre-invasive lesions, which 
should be not considered in the evaluation 86,87.
PD-L1 positive controls are lung macrophages, pla-
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centa, spleen and tonsil, whereas negative staining 
are alveolar cells, hepatocytes and normal squamous 
epithelium.
In gastroesophageal carcinomas, PD-L1 evaluation 
is performed as CPS, which is the number of PD-L1 
stained cells (i.e. tumor cells, lymphocytes, mac-
rophages) dived by the total number of viable tumor 
cells, multiplied by 100  88. This is different from the 
Tumor Proportion Score (TPS), applied in non-small 
cell lung carcinoma, which is the percentage of viable 
tumor cells showing partial or complete membrane 
staining at any intensity.
At present, only pembrolizumab has indications re-
stricted to tumors expressing PD-L1 (beyond dMMR/
MSI status) and requires the use of a companion di-
agnostic, which is currently represented by the PD-L1 
IHC 22C3 pharmDx (Dako). Other three antibod-
ies have been approved by FDA for PD-L1 IHC as-
say: PD-L1 IHC 28-8 pharmDx assay for nivolumab 
treatment, VENTANA PD-L1 IHC (SP142) assay for 
atezolizumab treatment and VENTANA PD-L1 IHC 
(SP263) assay for durvalumab.

Other current and potential biomarkers 
with clinical impact

• Gastrointestinal stromal tumors (GISTs) are the 
most common mesenchymal tumors of the gastro-
intestinal tract and should be profiled for KIT and 
PDGFRA due to their predictive value for tyrosine ki-
nase inhibitors therapies 89-91. In fact, almost all KIT/
PDGFRA alterations, but the PDGFRA p.D842V 
mutation, are activating the tyrosine kinases. KIT/
PDGFRA mutations are present in around 85% of 
GISTs, the other 10-15% cases are usually char-
acterized by mutations in SDH, NF1 or BRAF 92,93. 
KIT/PDGFRA alterations are usually tested by di-
rect sequencing and NGS technologies.

• Recently, the therapeutic portfolio of biliary tract 
cancers has significantly improved with the intro-
duction of targeted therapies associated with the 
molecular profile of the tumor 94. In particular, ther-
apies targeting actionable genomic aberrations 
such as BRAF 95 or IDH1 96 mutations and FGFR2 
gene fusions 97,98 have been successfully entered 
clinical development with significant responses 
and durable clinical benefit in selected patients. 
As a result, the demand for molecular profiling in 
this tumor setting will rapidly increase in our clin-
ical practice. FGFR2 fusions can be detected by 
RNA-based NGS panels, but also RT-PCR-based 
kits have been recently introduced into the market.

• Amplification of the HER2 gene characterizes 

around 5% of KRAS/NRAS/BRAF wild type colorec-
tal adenocarcinomas and HER2-targeting showed 
promising results in HER2-positive tumors refracto-
ry to standard of care therapies with EGFR inhib-
itors  99-101. HER2 assessment in colorectal cancer 
is performed according the HERACLES diagnostic 
criteria (i.e. 2+/3+ HER2-IHC in ≥ 50% tumor cells 
confirmed by FISH) 101.

• The analysis of neurotrophic tyrosine receptor ki-
nase (NTRK) gene fusions has emerged as a pre-
dictive biomarker for the efficacy of inhibitors of the 
tropomyosin receptor kinase (TRK) proteins across 
a range of solid tumor types 102. In the gastrointesti-
nal setting, NTRK gene fusions are extremely rare 
with a 0.23-0.31% prevalence in colorectal ade-
nocarcinomas, 0.34% in pancreatic carcinomas, 
0.25% in cholangiocarcinomas, 0.48% in appen-
diceal adenocarcinomas and 0.31% in neuroen-
docrine tumors  103,104. Of note, NTRK gene rear-
rangements are enriched in MLH1/PMS2 deficient 
and BRAF wild-type colorectal cancers, in which 
a 5.3% prevalence was described 105. Despite this 
relative rarity, the request for NTRK testing is in-
creasing. NTRK alterations can be detected by 
immunohistochemistry, RT-PCR and RNA-based 
NGS. 

• Germline and somatic mutations within the ho-
mologous recombination repair pathway (i.e. ATM, 
BRCA1, BRCA2 or PALB2) have been observed 
in pancreatic ductal adenocarcinoma and are 
associated with an increased sensitivity to plati-
num-based chemotherapy  106,107. Moreover, tum-
ors with BRCA1/2 mutations display increased 
sensitivity to PARP inhibitors which, when used 
as maintenance therapy, result in a prolonged pro-
gression-free survival 108.

• SMAD4 is a genetic driver of pancreatic ductal 
adenocarcinoma; it is also known as DPC4 and 
is genetically inactivated in about half of pancre-
atic ductal adenocarcinomas (PDAC) 109. A reliable 
surrogate methodology to investigate its mutation-
al status is represented by immunohistochemis-
try, with the loss of the nuclear expression of the 
protein indicating the genetic inactivation. SMAD4 
mutations (SMAD4 immunohistochemical loss) 
have been correlated with widespread metastat-
ic patterns in PDAC patients  110 and with higher 
rates of local and distant failure in those receiv-
ing adjuvant chemoradiation  111. Its determination 
may be useful for planning therapeutic decisions: 
although such situations are generally managed in 
ultra-specialized pancreatic centers, the presence 
of SMAD4 mutations may support radiofrequency 
ablation-based therapy 112.
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Conclusions

We are facing molecularly-driven treatment choices 
for advanced gastrointestinal cancers and histopatho-
logic diagnosis is becoming an integrated morpholog-
ical and molecular characterization of the biospec-
imen. The pathologist should be aware of the novel 
therapies and how to improve the management of bio-
specimens in the personalized medicine era.
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