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A B S T R A C T

Lung metastasis, a leading cause of breast cancer mortality, lacks effective therapeutic options. 
Hypoxia-inducible factor 1-alpha (HIF-1α) plays important roles in breast cancer progression, but 
its direct impact on lung metastasis remains unclear. Herein, in this study, we investigated the 
role of HIF-1α in breast cancer lung metastasis and the potential of targeting it for therapeutic 
benefit. HIF-1α expression was knocked down in the 4T1 mouse mammary carcinoma cell line 
using a lentiviral vector. HIF-1α knockdown significantly reduced the migratory ability of 4T1 
cells in vitro and lung metastasis in a mouse model. Mechanistically, HIF-1α knockdown 
decreased the expression of matrix metalloproteinases (MMP-2 and MMP-9) that degrade the 
extracellular matrix and suppressed the epithelial-to-mesenchymal transition (EMT) by increasing 
E-cadherin and decreasing vimentin expression. The findings of this study demonstrate that HIF- 
1α knockdown effectively inhibits lung metastasis of 4T1 cells both in vitro and in vivo by sup
pressing EMT. These results underscore a promising new approach for managing breast cancer 
metastasis.

1. Introduction

Breast cancer is the most prevalent malignancy worldwide; however, with the continuous improvement in treatment methods, the 
survival times of patients have improved notably [1,2]. However, patients with metastatic breast cancer still face poor survival rates 
[3], and more than 90 % of breast cancer patients succumb to this disease due to metastasis [4]. Exploring the mechanism of distant 
metastasis will help develop effective treatment for the management of breast cancer [5].

Epithelial Mesenchymal Transition (EMT) and angiogenesis are well-established factors that contribute to tumor metastasis [6]. 
During EMT, epithelial cells lose their characteristic properties and gain mesenchymal traits, which enables cancer cells to migrate and 
invade surrounding tissues, ultimately promoting metastasis from the primary tumors [7–9]. It is well known that EMT and hypoxia 
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can activate similar signaling pathways, and EMT is essential for metastasis in many tumors [10].
Several studies have shown that the tumor microenvironment (TME) significantly influences tumor progression, promoting tumor 

migration, drug resistance, and immunosuppression [9,11]. Hypoxia, a lack of oxygen, is a common characteristic of solid tumors, 
especially in the core regions furthest from blood vessels [11]. Under hypoxic conditions, Tumor cells stabilize HIF-1α, a key tran
scription factor. HIF-1α binds to specific DNA sequences in target genes, regulating their expression and impacting the tumor 
microenvironment (TME). Several studies have revealed its multifaceted role. Wang et al. demonstrated that Mindin, an extracellular 
matrix protein, suppresses HIF-1α expression, thereby inhibiting colon cancer progression [13]. Samanta et al. showed that chemo
therapy can induce immune evasion in breast cancer through HIF-1α-mediated upregulation of CD47, CD73, and PDL1 in cancer cells 
[14]. tumor cells stabilize HIF-1α, a key transcription factor. HIF-1α binds to specific DNA sequences in target genes, regulating their 
expression and impacting the TME. The impact of low, physiological levels of HIF-1α on lung metastasis in breast cancer remains under 
investigation, particularly regarding its role in EMT-driven metastasis [12].

Herein, in this study, we aimed to address this gap by knocking down HIF-1α expression in 4T1 breast cancer cells using lentiviral 
transfection. We then evaluated the effects of HIF-1α knockdown on metastasis in vitro using wound-healing and Transwell assays, and 
further assessed its impact on lung metastasis in vivo using a mouse model. This work will provide new evidence for better understand 
the relationship between HIF-1α and breast cancer metastasis, and give more proof for HIF-1a targeted breast cancer therapy.

2. Materials and methods

2.1. Cell culture and lentiviral transfection

4T1 mouse breast cancer cells were purchased from the National Collection of Authenticated Cell Cultures, and maintained in 
RPMI-1640 (Gibco; Thermo Fisher Scientific, Inc.) supplemented with 10 % FBS (Gibco; Thermo Fisher Scientific, Inc.) and 100U/ml 
penicillin, 0.1 mg/ml streptomycin (Beijing Solarbio Science & Technology Co., Ltd.). For knockdown of HIF-1A, pHBLV-U6-MCS- 
shRNA-HIF-1A-GFP-PURO (Hanbio Biotechnology Co., Ltd.) or control shRNA-lentivirus (Hanbio Biotechnology Co., Ltd.) were 
transfected into 4T1 cells when then reached a density of 40 %, using an MOI (multiplicity of infection) of 20. After 48 h, shRNA- 
expressing cells were selected by adding 5 μg/ml puromycin to the media for 15 days. The transfection ratio was confirmed by 
fluorescence microscopy or flow cytometry, and the expression of HIF-1α in 4T1 cells was detected by western blotting and reverse 
transcription-quantitative (RT-q) PCR.

2.2. Flow cytometry

The transfected 4T1 cells were digested with trypsin and then washed with PBS. Cell suspensions containing 1 × 106 single cells 
were assessed by flow cytometry using a BD FACS Calibur flow cytometer.

2.3. RT-qPCR

Following treatment, cells were washed with PBS 3 times, and total RNA was extracted using TRIzol reagent. The concentration and 
purity of the extracted RNA were determined using a NanoDrop spectrophotometer. cDNA was synthesized by RT, according the 
manufacturer’ protocol. The total reaction volume for qPCR was 20 μl, including template cDNA (1 μL), primer mix (2 μl), 2 × SYBR- 
green mix (10 μl), and RNase-free water up to a final volume of 20 μl. The reaction conditions were based on the manufacturer’s 
instructions. The sequences of the primers were: HIF-1α forward, 5′-TCAGCATACAGTGGCACTCA-3′, and reverse, 5′- AAGGGAGC
CATCATGTTCCA-3’; MMP-2 forward, 5′- ACAAGTGGTCCGCGTAAAGT-3′, and reverse, 5′- AAACAAGGCTTCATGGGGGC-3’; MMP-9 
forward, 5′-TGTGTGCTATGTGCACCCTC-3′, and reverse, 5′- TTGGCTTTGGAGGACGACAG-3’; E-cadherin forward, 5′- GACTTAGA
GATTGGCGAATAC-3′, and reverse, 5′- GAGGATGGCAGGAACTTG -3’; Vimentin forward, 5′-CAGCCTCTATTCCTCATCC-3′, and 
reverse, 5′- AGTTCTACCTTCTCGTTGG-3’; SNAIL forward, 5′- ATGGAGTGCCTTTGTACCCG-3′, and reverse, 5′- CAGTAAC
CACCCTGCTGAGG -3’; GAPDH forward, 5′-GGTTGTCTCCTGCGACTTCA-3′, and reverse, 5′- TGGTCCAGGGTTTCTTACTCC-3’. The 
results were represented using the relative quantitative method and calculated using the Delta-Delta CT (2− ΔΔCT) method.

2.4. Western-blotting

Cells were lysed in RIPA lysis buffer containing Protease inhibitors for 15 min, and the protein concentration was quantified using a 
BCA protein Assay kit. For each test, 30 μg of total protein was loaded per lane, and western blotting was performed as described 
previously [13]. The following antibodies were used: β-actin (1:1000; ProteinTech Group, Inc.), HIF-1α (1:1000; Cell Signaling 
Technology, Inc.), MMP2 (1:1000; ProteinTech Group, Inc.), MMP9 (1:1000; ProteinTech Group, Inc), SNAIL (1:1000; ProteinTech 
Group, Inc.),E-cadherin (1:1000; ProteinTech Group, Inc), vimentin (1:1000; ProteinTech Group, Inc.), horseradish 
peroxidase-conjugated anti-rabbit IgG(H&L) (1:1000; ProteinTech Group, Inc.) and horseradish peroxidase-conjugated anti-mouse IgG 
(H&L) (1:1000; ProteinTech Group, Inc.). Electron chemiluminescence reagent (Milliporpe Sigma) was used to visualize blots, β-actin 
was used as the loading control and densitometry analysis was performed using ImageJ (National Institutes of Health).
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2.5. Wound-healing assay

For wound-healing assays, 100,000 cells were seeded in six-well plates and allowed to adhere overnight. The following day, a clean, 
straight wound was created using a sterile pipette tip across the cell monolayer. The plate was then washed with PBS to remove 
detached cells and debris. Fresh media was added, and the wound was monitored and imaged at designated time points, 24, 48, and 72 
h. Wound closure was quantified by measuring the scratch width at each time point using a vernier caliper or image analysis software. 
The wound closure rate was calculated as following: [(initial scratch width - scratch width at time point)/initial scratch width] x 100 
%.

2.6. Transwell migration assay

A transwell migration assay was performed to assess cell migration using chambers with 8 μm pores. 3 × 105 cells in 150 μL medium 
were seeded in the upper chamber of each transwell. The lower chamber contained 500 μL of medium supplemented with 20 % FBS to 
serve as a chemoattractant. After 24 h of incubation, the transwell inserts were removed, washed, fixed in 4 % formaldehyde for 30 
min, stained with 0.25 % crystal violet for 30 min, and imaged. Four fields were randomly selected from each image, and the number of 
migrated cells in each field was counted. The results are presented as the average number of migrated cells per field.

2.7. Mouse lung metastasis model

All animal experiments were approved by the Ethics Committee of The First Affiliated Hospital of Xinxiang Medical University in 
accordance with institutional guidelines. Female BABL/C mice (6–8 weeks old) were injected intravenously (tail vein) with 1 × 106 

4T1-NC or 4T1-HIF-1α-KD cells. To minimize animal suffering, euthanasia was performed using a CO2 chamber with a gradual increase 
in CO2 concentration (10–30 % per minute) for a total exposure time of 5 min on days 3, 5, 7, 9, 11, and 13. Lungs were then collected 
for imaging and Hematoxylin and Eosin (H&E) staining. Each group consisted of 6 mice, and the experiment was repeated three times.

2.8. H&E staining and immunohistochemistry

Lung tissues were washed with PBS and fixed overnight in 4 % paraformaldehyde. Following fixation, tissues were paraffin- 
embedded, and 4 μm sections were prepared for histological analysis. H&E staining was performed according to the manufacture’s 
instructions to assess overall tissue morphology. To evaluate the expression of E-cadherin and Vimentin in the lung, deparaffinization 
and antigen retrieval were performed on the sections. Endogenous peroxidase activity was quenched with 3 % hydrogen peroxide. 
After identifying and delineating areas of interest, the sections were blocked with serum to minimize non-specific antibody binding. 
Subsequently, primary antibodies against E-cadherin (1:100 dilution) and Vimentin (1:100 dilution) were incubated with the tissue 
sections overnight at 4 ◦C. After washing, the sections were incubated with the corresponding horseradish peroxidase (HRP)-conju
gated secondary antibody at room temperature. Color development was achieved using a 3,3′-diaminobenzidine (DAB) chromogenic 
substrate kit. Finally, the sections were counterstained with hematoxylin and imaged.

Fig. 1. Knockdown of HIF-1α in 4T1 cells. A) GFP expression. Fluorescence microscopy analysis of GFP expression in 4T1-NC (control) and 4T1- 
HIF-1α-KD (knockdown) cells (scale bars, 100 μm). B) GFP þ cell quantification. Flow cytometry analysis of the percentage of GFP-positive cells in 
4T1, 4T1-NC, and 4T1-HIF-1α-KD groups. C) HIF-1α mRNA expression. Quantitative PCR (qPCR) analysis of HIF-1α mRNA levels in 4T1-NC and 
4T1-HIF-1α-KD cells relative to the 4T1-NC group (normalized to GAPDH). Data are represented as mean ± standard deviation (SD) from three 
independent experiments performed in triplicate. Statistical significance was determined using an unpaired t-test (***p < 0.001 compared to 
4T1-NC).
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2.9. Statistical analysis

Data were analyzed using GraphPad Prism and unpaired Student’s t-tests. Statistical significance was set at P < 0.05.

3. Results

3.1. HIF-1α knock-down

4T1 cells were transfected with lentiviral vectors to achieve knockdown of HIF-1α expression. Two lentiviral constructs were used. 
One is pHBLV-U6-MCS-shRNA-HIF-1А-GFP-PURO, which encoded a short hairpin RNA (shRNA) targeting HIF-1α mRNA for degra
dation, along with a green fluorescent protein (GFP) reporter gene and a puromycin resistance cassette for selection; the other one is a 
control, which lacked the shRNA sequence but contained GFP and puromycin resistance for comparison. Following transfection for 15 
days, puromycin selection was applied to enrich for stably transfected cells. The resulting cell lines were designated 4T1-HIF-1α-KD 
(knockdown) and 4T1-NC (control). Fluorescence microscopy confirmed successful transfection, with nearly all cells in both groups 
exhibiting green fluorescence due to the GFP reporter (Fig. 1A). The Transfection ratio was assessed using a flow cytometer, revealing 
that over 95 % of the cells expressed GFP (Fig. 1B), indicating successful lentiviral vector delivery. To confirm HIF-1α knockdown, RT- 
qPCR analysis demonstrated significantly lower HIF-1α mRNA levels in 4T1-HIF-1α-KD cells compared to 4T1-NC cells (Fig. 1C). These 
combined results confirm the successful transfection of the pHBLV-U6-MCS-shRNA-HIF-1α-GFP-PURO lentivirus and the resulting 
knockdown of HIF-1α gene expression.

3.2. HIF-1α knockdown inhibited wound healing and migration of 4T1 cells

HIF-1α knockdown was assessed for its impact on various cellular processes in 4T1 cells, including wound healing, migration, 
proliferation, and apoptosis. While proliferation and apoptosis remained unchanged between control (4T1-NC) and HIF-1α deficient 
cells (4T1-HIF-1α-KD) (Fig. S1), wound healing was significantly affected (Fig. 2A). Cells with reduced HIF-1α expression displayed 
slower wound closure compared to control cells at 24, 48, and 72 h. At the earlier 12 h time point, no significant difference in wound 
healing rate was observed, likely due to insufficient time for migration processes (Fig. S2). Quantification of wound closure rate 
confirmed a significantly lower rate in 4T1-HIF-1α-KD cells compared to 4T1-NC cells at all later time points (Fig. 2B). Consistent with 
the wound healing assay, the transwell migration assay using crystal violet staining demonstrated a significantly lower migration rate 

Fig. 2. Low HIF-1α expression reduces 4T1 cell migration and invasion. A) Wound healing assay. 4T1-NC and 4T1-HIF-1A-KD cells were wounded 
with a scratch, and wound closure was monitored after 24, 48, and 72 h (scale bars, 200 μm). B) Quantification of wound healing assay. Wound 
healing rate was calculated from data in panel A. Data are represented as mean ± SD from three independent experiments plated in triplicate. (*p <
0.05, **p < 0.01, ***p < 0.001 compared to 4T1-NC at the same time point). C) Transwell migration assay. Migration of 4T1-NC and 4T1-HIF-1A- 
KD cells through a Matrigel-coated membrane was measured. (scale bars, 100 μm) D) Quantification of transwell migration assay. The number of 
migrated cells was quantified from data in panel C. Data are represented as mean ± SD from three independent experiments plated in triplicate. 
Statistical significance was determined using an unpaired t-test (ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.005 compared to 4T1-NC).
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for 4T1-HIF-1α-KD cells compared to control cells (Fig. 2C and D). These findings collectively demonstrate that HIF-1α plays a critical 
role in promoting both wound healing and migration of 4T1 cells.

3.3. HIF-1α knock down inhibits EMT in 4T1 cells

Since degradation of the extracellular matrix and basement membrane is crucial for cancer cell metastasis, we investigated the 
expression of MMP-2 and MMP-9, key enzymes involved in this process, in 4T1-NC and 4T1-HIF-1α-KD cells. Both RT-qPCR and 
western blotting analyses revealed that knockdown of HIF-1α significantly decreased the expression of both MMP-2 and MMP-9 at both 
the mRNA and protein levels (Fig. 3). To explore the effect of HIF-1α knockdown on the EMT of 4T1 cells, the expression levels of key 
EMT markers were assessed using RT-qPCR (Fig. 4A). As shown in Fig. 4A, compared to control cells (4T1-NC), HIF-1α knockdown 
(4T1-HIF-1α-KD) resulted in upregulation of E-cadherin and downregulation of Vimentin and SNAIL. Western blotting confirmed these 
findings at the protein level (Fig. 4B and C). Full uncropped western blots are presented in Fig. S4 for reference. Collectively, these 
results suggest that HIF-1α knockdown suppresses EMT in 4T1 breast cancer cells.

3.4. HIF-1α knockdown reduces lung metastasis of 4T1 tumor cells in vivo

To investigate the migratory ability of 4T1 cells in vivo, lung tissues from BABL/C mice were collected at various time points after 
tail vein injection of 4T1-NC or 4T1-HIF-1А-KD cells. On day 3 post-injection, a small nodule was observed in the 4T1-NC group. Over 
time, the size and number of nodules increased. However, the 4T1-HIF-1А-KD group exhibited delayed and reduced lung metastasis. In 
contrast, the 4T1-HIF-1α-KD group exhibited delayed and reduced lung metastasis. The first nodule was observed on day 11, and it was 
smaller than those seen in the 4T1-NC group (Fig. 5A and B). Additionally, the number of nodules was significantly lower in the 4T1- 
HIF-1α-KD group compared to the 4T1-NC group (Fig. 5B). These findings suggest that HIF-1α knockdown suppressed lung metastasis 
of 4T1 cells in mice.

3.5. Expression of EMT markers is decreased in 4T1-HIF-1α-KD formed metastatic nodules in mice

To investigate the contribution of EMT in lung metastasis, immunohistochemical staining was performed on metastatic lung tissue 
to assess E-cadherin and Vimentin expression. Since lung metastases were first detected on day 9 in the 4T1-HIF-1α-KD group, tissues 
were collected on days 9, 11, and 13. As shown in Fig. 6A, E-cadherin expression was significantly higher in the 4T1-HIF-1α-KD group 
compared to the 4T1-NC group. Conversely, Vimentin expression was significantly lower in the 4T1-HIF-1α-KD group compared to the 
4T1-NC group (Fig. 6B). These results showed that HIF-1α knockdown may suppress lung metastasis by inhibiting EMT in breast cancer 
cells.

Fig. 3. HIF-1α knockdown reduces MMP-2 and MMP-9 expression in 4T1 cells. A)MMP-2 and MMP-9 mRNA expression. qRT-PCR analysis of 
MMP-2 and MMP-9 mRNA levels in 4T1-HIF-1α-KD cells relative to 4T1-NC cells (normalized to β-actin). Data are represented as mean ± SD from 
three independent experiments performed in triplicate. Statistical significance was determined using the Delta-Delta CT method. B) MMP-2 and 
MMP-9 protein expression. Western blot analysis of MMP-2 and MMP-9 protein levels in 4T1-NC and 4T1-HIF-1α-KD cells. β-actin served as a 
loading control. C) Quantification of Western blot. Band intensities were quantified using ImageJ software. Data are represented as the ratio of 
target protein to β-actin and shown as mean ± SD from three independent experiments performed in triplicate. Statistical significance was 
determined using unpaired t-tests (ns = not significant, *p < 0.05, **p < 0.01 compared to 4T1-NC).
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4. Discussion

HIF-1α, a transcription factor, plays a critical role in tumor survival [14]. Tumors often experience hypoxia, and under these 
conditions, HIF-1α degradation is inhibited [15], allowing it to accumulate and translocate to the nucleus. There, HIF-1α binds to 
hypoxia response elements (HRE) in the DNA of target genes [16]. This binding activates the transcription of over 200 genes, 
collectively enabling tumor cells to survive and adapt to the hypoxic environment [17]. In the present study, it was demonstrated that 
knocking down HIF-1α expression under normal conditions reduces breast cancer cell metastasis in both cell culture and animal 
models. HIF-1α knockdown decreases the expression of MMP-2 and MMP-9, proteins that degrade the extracellular matrix and 
basement membrane, crucial for cell migration [18,19]. Additionally, the expression of Vimentin, a protein that promotes migration, 
was down-regulated, while the expression of E-cadherin, the adhesion protein, was up-regulated at both the mRNA and protein levels 
(Fig. 3).As a cellular adhesion molecule, E-cadherin plays a critical role in epithelial cancers by regulating cell-to-cell adhesion and 
inhibiting cell growth [20]. It is generally considered a metastasis suppressor protein, and its loss is associated with increased tumor 
aggressiveness, as observed in this study. However, some studies suggest E-cadherin can promote metastasis in specific environments. 
Understanding this dual role is essential for a more complete picture of how E-cadherin influences tumor metastasis. Understanding its 
dual roles is essential for a more complete picture of how E-cadherin influences tumor metastasis. Similar to findings in ovarian 
carcinoma and VHL-deficient renal cell carcinoma [21,22], this study demonstrated that HIF-1α regulates E-cadherin expression in 
mouse breast cancer cells.

Vimentin, a key regulator of various cellular processes like migration, differentiation, and adhesion, was downregulated following 
HIF-1α knockdown in this study [23–25]. This suggests a potential role for HIF-1α in regulating metastasis through Vimentin. How
ever, it’s important to acknowledge that EMT is a complex multistep process. While markers like SNAIL, E-cadherin, and Vimentin 
provide valuable insights, analyzing only a limited panel presents an incomplete picture. This represents a limitation of the current 
study.

Of note, in the mouse metastasis model, normal 4T1 cells migrated to the lungs by day 3, while HIF-1α knockdown 4T1 cells were 
not observed until day 11. Lung metastasis was assessed by counting nodules and using H&E staining. However, incorporating imaging 
techniques, such as bioluminescent imaging with IVIS, would strengthen the results by providing real-time monitoring of tumor 
development.

This study demonstrates that HIF-1α, a transcription factor in breast cancer cells, promotes metastasis. Reducing HIF-1α expression 
may be a promising strategy to inhibit breast cancer spread.

In conclusion, knocking down HIF-1α suppressed breast cancer metastasis, highlighting its critical role in EMT and metastasis. 
These findings strengthen the rationale for targeting HIF-1α as a therapeutic approach for breast cancer.

Fig. 4. HIF-1A knockdown regulates EMT markers in 4T1 cells. A) mRNA expression of EMT markers. qRT-PCR analysis of SNAIL, E-cadherin, 
and Vimentin mRNA levels in 4T1-HIF-1α-KD cells relative to 4T1-NC cells (normalized to GAPDH). Data are represented as mean ± SD from three 
independent experiments performed in triplicate. Statistical significance was determined using the ΔΔCt method. (*p < 0.05 compared to 4T1-NC). 
B) Protein expression of HIF-1α and EMT markers. Western blot analysis of HIF-1α, SNAIL, E-cadherin, and Vimentin protein levels in 4T1-NC 
and 4T1-HIF-1α-KD cells. β-actin served as a loading control (Full uncropped western blots are shown in Supplementary Fig. 3.). C) Quantification 
of Western blot. Band intensities were quantified using ImageJ software. Data are represented as the ratio of target protein to β-actin and shown as 
mean ± SD from three independent experiments performed in triplicate. Statistical significance was determined using unpaired t-tests (ns = not 
significant, *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001 compared to 4T1-NC).
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