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Purpose: To assess whether age can be predicted from deep learning analysis of
peripapillary spectral-domain optical coherence tomography (SD-OCT) B-scans and to
determine the importance of specific retinal areas on the predictions.

Methods:Deep learning (DL) convolutional neural networks were developed to predict
chronological age in healthy subjects usingperipapillary SD-OCTB-scan images.Models
were built using the whole B-scan, as well as using specific regions through image
ablation. Cross-validation was used for training and testing the model. Mean absolute
error (MAE) and correlations between predicted and observed age were used to evalu-
ate model performance.

Results: A total of 7271 images from 542 eyes of 278 healthy subjects were included. DL
predictions of age using the whole B-scan were strongly correlated with chronological
age (MAE = 5.82 years; r = 0.860, P < 0.001). The model also accurately discriminated
between the lowest andhighest tertiles of age,with anareaunder the receiver operating
characteristic curve of 0.962. In general, class activation maps tended to show a diffuse
pattern of activation throughout the scan image. For specific structures of the B-scan,
the layers with the strongest correlations with chronological age were the choroid and
vitreous (both r = 0.736), whereas retinal nerve fiber layer had the lowest correlation
(r = 0.492).

Conclusions: A DL algorithm was able to accurately predict age from whole peripapil-
lary SD-OCT B-scans.

Translational Relevance: DL models applied to SD-OCT scans suggest that aging
appears to affect several layers in the posterior eye segment.

Introduction

Spectral-domain optical coherence tomography
(SD-OCT) is a noninvasive technology able to provide
high-resolution images of retinal structures based
on interferometric analysis of low-coherence light.1
Because progressive retinal damage is a hallmark of
certain eye diseases, such as glaucoma and age-related
macular degeneration, identification of SD-OCT
structural changes over time is fundamental for the
diagnosis and monitoring of these conditions.2–5
However, detection of pathologic damage relies funda-

mentally on the ability to differentiate it from normal,
age-related structural changes. Although many differ-
ent tissues of the posterior segment of the eye seem
to be affected by aging,6–17 a precise identification of
the age-related structural changes on SD-OCT is still
lacking. Although some studies have focused on the
impact of aging on the thicknesses of specific layers,
such as the retinal nerve fiber layer (RNFL)6–14 or the
choroid,15–17 it is conceivable that aging may also affect
other tissue properties. However, without knowing a
priori which properties or image characteristics could
be affected, it becomes difficult to investigate the true
impact of age using traditional methods.
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In recent years, deep leaning (DL) with convolu-
tional neural networks has become the go-to algorithm
for computer vision tasks, such as image classification,
object detection, and segmentation,18 achieving and
sometimes surpassing human-level performance.19,20
These techniques have been applied to produce highly
accurate algorithms able to detect diseases such as
age-related macular degeneration, diabetic retinopa-
thy,21,22 and glaucoma23–26 from medical images.27
An important and appealing characteristic of DL
networks is that they do not require manual definition
of features from an image to succeed in performing a
task. The network learns automatically to extract the
most relevant features during training, so that only the
raw image needs to be fed as an input. This makes these
networks suitable to address the question of which
retinal layers and image characteristics of an SD-OCT
scan are mostly affected by age.

In this study, we used DL models to investigate
characteristics associated with normal aging on SD-
OCT B-scans. We hypothesized that a DL algorithm
could be successfully trained to predict age from
peripapillary SD-OCT B-scans. We also hypothesized
that the impact of aging on the different layers of the
retina, choroid, and vitreous could be ascertained by
image ablation, that is, using DL networks trained to
predict age from SD-OCT scans that had specific layers
removed.

Methods

Participants from this study were drawn from
the Duke Glaucoma Registry (DGR), a database of
research and clinical patients collected by the Vision,
Imaging and Performance (VIP) Laboratory at the
Duke Eye Center. All SD-OCT images and data were
deidentified according to the Health Insurance Porta-
bility and Accountability Act. The study adhered to
the tenets of the Declaration of Helsinki for human
subject research andwas approved by theDukeUniver-
sity institutional review board.

Participants were healthy subjects older than 18
years and had completed a comprehensive ophthalmo-
logic examination, which included review of medical
history, diagnosis, visual acuity, intraocular pressure
measurements, gonioscopy, as well as anterior segment
and dilated slit-lamp exam. All patients underwent
SD-OCT imaging (Spectralis, Heidelberg Engineer-
ing, Dossenheim, Germany) and standard automated
perimetry (SAP; Humphrey Field Analyzer II and III;
Carl Zeiss Meditec, Inc., Dublin, CA, USA) that was
acquired with the 24-2 or 30-2 Swedish Interactive

Threshold Algorithm. Visual fields were excluded if
they had more than 33% fixation losses or more than
15% false-positive errors. Patients were excluded if
they had any history of ocular or systemic diseases
that could affect the retina, optic nerve or the visual
field.

Peripapillary circular B-scans, consisting of 1536 A-
scans from a 3.45 mm circle centered on the optic disc
were acquired on all subjects from multiple timepoints
during follow-up. The device’s eye-tracking capabil-
ity was used during image acquisition to adjust for
eye movements and to ensure that the same location
of the retina was scanned over time. Images were
reviewed manually to ensure quality and scan centra-
tion, and to ensure that there were no coexistent retinal
pathologies or artifacts. The signal strength ranged
from 0 (poor) to 40 decibels (excellent). Images that
had a signal strength below 15 were excluded.28–30
From a total of 7836 images available, there were
565 (7.21%) images excluded because of poor
quality, decentration, segmentation errors, or other
artifacts.

Deep Learning Algorithm to Predict Age

A convolutional neural network was trained to
predict age from the peripapillary SD-OCT B-scan
images. For training and testing, we used the standard
machine learning approach of fivefold cross-validation.
The 7271 available images from 542 eyes of 278 subjects
were randomly split at the participant level into five
equally sized folds. We used three folds for train-
ing, one fold for validation (to optimize the hyperpa-
rameters and select the best set of weights), and the
remaining fold for testing. This process was repeated
five times, reserving a different fold each time as the
testing set. These settings allowed us to evaluate the
model using the whole sample to improve generaliz-
ability of the results. Randomization at the subject
level was important to guarantee that no subject was
present in more than one fold to prevent leakage
and biased estimates of test performance. We used
a residual deep neural network (ResNet50) architec-
ture31 that had been pretrained to classify images in
the ImageNet dataset.32 To adapt the network’s archi-
tecture to predict the patient’s age at the time of the
SD-OCT scan, the last layer was replaced to produce a
single continuous output. The training was performed
with stochastic gradient descent, with minibatches of
size 64 and Adam optimizer.33,34 Initially, only the top
two layers were trained, without adjusting the weights
of the bottom layers. Subsequently, all layers were
unfrozen, and additional training was performed using
differential learning rates, in which a lower learning rate
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is used for the bottom layers and a gradually increasing
learning rate is used for the later layers. The best learn-
ing rate was found using the cyclical learning method
with stochastic gradient descent with restarts.35

To investigate the impact of different ocular struc-
tures represented in the SD-OCT peripapillary scan on
the predictions of age, we trained additional models
to predict age using specific regions of the B-scan: (a)
vitreous, (b) RNFL, (c) the remaining retina layers,
and (d) choroid. For each model, the region of inter-
est remained unchanged, while the rest of the image
was ablated, that is, removed by replacing it with
a black mask. The performances of the different
models were used as a proxy of how much informa-
tion related to aging could be extracted from each
region.

We also investigated the ability of the DL models
to discriminate the oldest from the youngest subjects
using SD-OCT scans. For this analysis, the sample was
divided into tertiles according to age, with the lowest
(i.e., youngest) and highest tertiles (i.e., oldest) of age
retained. Gradient-weighted class activation maps36
were built to assess which parts of the SD-OCT scan
were most relevant in discriminating between the two
groups.

Statistical Analyses

Pearson’s correlation coefficient (r) and mean
absolute error (MAE) were used to assess how well
the DL models were able to predict chronological age.
The area under the receiver operating characteristic
(ROC) curve (AUC) was used to assess the accuracy
of the DL model in discriminating the oldest from
the youngest subjects. Due to the fact that multi-
ple images were used from each participant, nonpara-
metric bootstrap resampling procedures were used to
derive confidence intervals (CI) andP values, where the
cluster of data for the participant was considered as
the unit of resampling to adjust standard errors. This
procedure has been used previously to adjust for the
presence of multiple correlated measurements from the
same unit.37

Multivariable linear regression models were built to
account for the effect of confounders, such as signal
strength, on the relationship between the DL predic-
tions of age from SD-OCT images and the actual
observed chronological age. Generalized estimating
equations were used to account for the hierarchical
and unbalanced nature of the data.38 The α level
(type I error) was set at 0.05. Statistical analyses were
performed with Stata (version 16; StataCorp, College
Station, TX, USA).

Table 1. Demographic and Clinical Characteristics of
the Eyes and Participants Included in the Study

Total

No. of images 7271
No. of eyes 542
No. of participants 278
Age (years)

mean ± SD 55.8 ± 14.1
range 20.8 to 85.8

Female gender (%) 66.4
Race (%)

Caucasian 67.5
Black or African American 25.4
Asian 3.7
Other 3.4

SAP MD (dB), mean ± SD 0.07 ± 1.3
SAP PSD (dB), mean ± SD 1.6 ± 0.4
SD-OCT global RNFL thickness
(μm), mean ± SD

96.9 ± 9.9

MD, mean deviation; PSD, pattern standard deviation; SAP,
standard automated perimetry.

Results

The overall dataset included 7271 peripapillary SD-
OCTB-scans from542 eyes of 278 healthy participants.
The mean age of the study sample was 55.8 ± 14.1
years. Table 1 summarizes demographic information
and clinical data.

DL predictions of age from whole SD-OCT B-
scans were highly correlated with the true chronolog-
ical age (r = 0.860, R2 = 74%, P < 0.001), with a
MAE of 5.82 years. Figure 1 shows a scatterplot of

Figure 1. Scatterplot showing the relationship between predicted
age from the deep learning model applied to the whole SD-OCT
peripapillary B-scan versus the true chronological age on the study
dataset.
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Figure 2. AUC and confidence interval (CI) for the deep learning
algorithm in discriminating between oldest and youngest tertiles.

predicted versus actual age values. For discrimination
of the oldest versus youngest tertiles, the DL model
using the whole B-scan had an AUC of 0.962 (95% CI:
0.950 to 0.974) (Fig. 2). Figure 3 shows class activa-
tion maps (heatmaps) for the DL algorithm for scans
that were correctly classified into the youngest versus
oldest tertiles and examples of predictions with large
absolute errors. Of note, the heatmaps of scans that
were correctly classified showed a diffuse activation of
all layers in the retina and choroid. On manual inspec-
tion, no specific layer seemed of greater importance
for the classification decision. For the scans that were
correctly classified in the younger group, the posterior
vitreous was also generally highlighted as an impor-
tant area for the classification decision. The heatmaps
of images that had large prediction errors did not
appear to show a diffuse pattern but rather seemed
to highlight localized regions of the scan, although by
manual inspection it was not possible to identify the
characteristics of the image that were more relevant for
the classification.

We then retrained the DL networks using image
ablation to obtain further insight into the regions of the
scan that were most relevant for age prediction. When
trained and applied to the ablated B-scans for isolating
specific regions (i.e., vitreous, RNFL, choroid, and all
retinal layers except for the RNFL) the DL algorithm
also yielded age predictions with significant correla-
tions with the actual age and MAE ranging from 7.56
to 9.99 years. Figure 4 summarizes the performance of
the various DL models and illustrates an example of a
B-scan with the whole image and the structural areas
of interest in isolation. The correlation between the

chronological age and the DL predicted age was signif-
icantly greater for the DL algorithm using the whole
B-scan than the correlations for DL algorithms applied
to isolated regions of the scan (Table 2). Interestingly,
the weakest predictionwas observed for SD-OCT scans
that had only the RNFL, with MAE of 9.99 years and
a significantly lower correlation (r = 0.492, R2 = 24%)
compared to all other structural areas (Table 2).

Of note, signal strength measurements from the
SD-OCT B-scans were statistically significantly associ-
ated with true chronological age in univariable analy-
sis (r = −0.77; P < 0.001). To assess whether signal
strength could act as a confounder in the association
between DL predictions and observed age, we included
signal strength in a multivariable model for predict-
ing chronological age, along with the DL predictions.
The DL predictions remained statistically significantly
associated with observed age (P < 0.001), whereas
signal strength (P = 0.919) was no LONGER signifi-
cantly associated with age in the multivariable model.

Discussion

In the current study, we were able to estimate
chronological age using a DL algorithm trained on
peripapillary SD-OCT B-scan images of healthy adult
subjects. The ability to accurately predict age was
superior when the entire B-scan image was used in the
algorithm in comparison to when individual regions
were used.Moreover, we found that changes inmultiple
peripapillary structures on the SD-OCTB-scan seem to
be more important to predict age than RNFL itself.

DL algorithms have previously been used to inves-
tigate structural changes related to normal aging using
other imaging methods. Poplin et al.20 developed a DL
algorithm that was able to predict age and other cardio-
vascular risk factors from color fundus photographs.
The algorithm achievedR2 of 74% and 82% andMAEs
of 3.26 and 3.42 years in predicting age in two indepen-
dent test sets. In our study, using aDLmodel trained on
raw peripapillary SD-OCT B-scan images, we achieved
an identical R2 of 74% for predicting chronological age,
but with a higher MAE of 5.82 years. The larger MAE
in our sample may perhaps be explained by the wider
variability of age in our sample. Although the standard
deviations of age in the subjects included in the test
datasets of Poplin et al.20 were 8.2 and 10.9 years, ours
was 14.1 years. As Figure 1 shows, greater errors in the
predictions were apparent in individuals younger than
50 years. Despite this fact, the DL algorithm in our
study was still able to accurately discriminate between
the oldest and youngest tertiles with an AUC of 0.962.
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Figure 3. Examples from the age prediction and the class activation maps (heatmaps) showing the regions of the peripapillary spectral-
domain optical coherence tomography B-scan images that had the greatest weight in the DL algorithm’s discrimination between oldest
versus youngest tertiles. The chronological age and the predicted age are reported above each image. (A) Individual correctly classified
within the youngest tertile. (B) Individual correctly classified within the oldest tertile. (C) Young individual with an age prediction error
(overestimation of true age) of 15.4 years. (D) Older individual that had an underestimated prediction of age by 12.5 years.

In the work by Poplin et al.,20 they hypothesized
that the appearance of the retinal vessels seemed to be
the most important factor in their model’s predictions
of age. In fact, heatmaps of their model highlighted
the blood vessels in the fundus photographs in 95% of
the cases.20 In our study, we found that the heatmaps
tended to be more diffuse and involve several layers

of the retina. While peripapillary SD-OCT B-scans do
not contain clear information on the shape of retinal
blood vessels, it is possible that the model could still
be using information on the caliber of the vessels, as
derived from the shadows cast by them in the scan.
As another important consideration, it is possible that
results of the model by Poplin et al.20 could have been

Table 2. Comparison of Correlation Coefficients Between theAge Predictions from theDeep LearningAlgorithms
and the True Chronological Age Using the Entire B-Scan or the Different Isolated Areas

Choroid Vitreous Retina* RNFL

Entire B-scan 0.860 vs. 0.736
(0.006 to 0.155)

0.860 vs. 0.736
(0.071 to 0.267)

0.860 vs. 0.672
(0.061 to 0.305)

0.860 vs. 0.492
(0.307 to 0.418)

Choroid 0.736 vs. 0.736
(−0.058 to 0.219)

0.736 vs. 0.672
(−0.038 to 0.230)

0.736 vs. 0.492
0.148 to 0.490)

Vitreous 0.736 vs. 0.672
(−0.135 to 0.137)

0.736 vs. 0.492
(0.042 to 0.425)

Retina* 0.672 vs. 0.492
(0.006 to 0.425)

The parentheses show 95% confidence interval of the difference.
*Retinal layers without the RNFL.
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Figure 4. Results of deep learning models using image ablation for the different retinal structures.

confounded by issues of photographic quality. With
aging, the decrease in media quality might lead to
change in color, contrast, and brightness of fundus
photos. Theirmodel could be using such information to
predict age, rather than true anatomic changes. Because
they did not have an objective index to assess photo-
graphic quality, no adjustment could be done in their
study. In contrast, we used signal strength to directly
assess the impact of scan quality in the age predictions
from our model. We observed that even after adjusting
for signal strength, the DL model predictions were still
significantly associated with chronological age.

Because multiple studies have suggested that global
RNFL thickness declines with aging at a rate of
approximately 0.2 to 0.5 μm per year,8–13 we expected
that the RNFL would be an important feature driving
the DL algorithm’s prediction of age. However, the
model developed with images ablated to isolate the
RNFL had a significantly weaker ability to predict
chronological age, with r = 0.492 (R2 = 24%),
compared to the model involving all layers. This is an

interesting result as it might suggest on first look that
the impact of age on RNFL is not as important. In
fact, in a study by Fortune and colleagues39 imaging
Rhesus monkeys with SD-OCT and performing histo-
logic counting of the optic nerve axons, the authors
found only a small influence of age on axon count,
with an R2 lower than 1%. They suggested that a large
proportion of the effect of aging on SD-OCT RNFL
thickness could actually be explained by optical degra-
dation of the aging eye reducing SD-OCT scan quality,
as well as thinning of the major blood vessels. The
issue of whether aging leads to retinal ganglion cell and
axonal loss is controversial, with several other studies
suggesting significant losses over time.40–43 Regardless
of whether age effects are explained by actual loss of
neural tissue, changes in blood vessels or signal quality,
the end result is that aging does seem to affect estimates
of SD-OCTRNFL thickness in longitudinal studies, as
shown by Wu et al.12 In our study, approximately one
quarter of the variability in chronological age could
be explained by the DL model using only RNFL.
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Therefore it still seems important to take aging into
account when using SD-OCT for glaucoma diagnosis
and assessment of progression.

Other than the RNFL, the DLmodels using ablated
images all had a similar performance in predicting age.
When applied to the combined retinal layers excluding
RNFL, the correlation was 0.672 (R2 = 45%), whereas
the model applied to the choroid only had correla-
tion of 0.736 (R2 = 54%), which was similar to the
model using the vitreous and vitreoretinal interface
(r = 0.736, R2 = 54%). All of these structures have
been previously described to suffer age-related anatom-
ical changes. Choroidal thickness has been shown to
progressively decrease with normal aging.15,16 Senes-
cent microstructural changes in all layers of the human
retina have been previously reported, such as thick-
ening of the internal limiting membrane, decrease of
retinal pigment epithelial cells density, as well as loss
of photoreceptors.17,44,45 With aging, the vitreous body
suffers gradual liquefaction which may lead to separa-
tion from the internal limiting membrane of the retina,
causing posterior vitreous detachment which can often
be visualized on SD-OCT.46–49

One could argue that training separate DL models
on the ablated images could lead to differences
in performance related to the model characteristics
themselves, rather than actual differences related to the
specific anatomic structures. We therefore rerun our
analyses by using only the original model trained on
the whole image and applying it without modifica-
tion to predict age on the ablated images. The results
showed much lower predictive ability for all structures,
including vitreous (r = 0.137, R2 = 1.9%), RNFL (r
= 0.037, R2 = 0.1%), retinal layers excluding RNFL
(r = 0.102, R2 = 1%) and choroid (r = 0.258, R2 =
6.7%). This result seems to indicate that age predictions
of the original model used a combination of informa-
tion derived from several different regions of the scan.

Our study had limitations. We only had cross-
sectional data and the inter-subject variability may
have made it difficult to evaluate subtle age-related
changes that might occur over time in an individual.
Longitudinal deep learning studies will be important
to clarify this. As another limitation, we used only
peripapillary RNFL scans. Our choice was due to
the lack of available data from other scanning areas,
but future studies could be directed at investigating
aging effects on the macula and optic nerve head scans
using a similar methodology. Axial length has also been
shown to influence RNFL thickness and optic nerve
head parameters fromOCT, and further studies should
investigate whether adding it as a feature could improve
DL algorithm’s accuracy for age estimation. The use of
other techniques such as OCT angiography may also

help to clarify the effects of aging on blood vessels as
well.

In conclusion, a DL model applied to SD-OCT
peripapillary scans was able to predict an individual’s
chronological age with high accuracy. The collective
information gathered from the DL models applied to
the whole scan and to specific retinal areas through
image ablation suggests that the effect of aging occurs
diffusely in many anatomical regions and is not primar-
ily due to RNFL changes. Future longitudinal studies
should be conducted to provide further clarification on
the effects of aging on retinal tissues.
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