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Abstract

Antibiotics need to be effective in diverse environments in vivo. However, the pathogen

microenvironment can have a significant impact on antibiotic potency. Further, antibiotics

are increasingly used in combinations to combat resistance, yet, the effect of microenviron-

ments on drug-combination efficacy is unknown. To exhaustively explore the impact of

diverse microenvironments on drug-combinations, here we develop a computational frame-

work—Metabolism And GENomics-based Tailoring of Antibiotic regimens (MAGENTA).

MAGENTA uses chemogenomic profiles of individual drugs and metabolic perturbations to

predict synergistic or antagonistic drug-interactions in different microenvironments. We

uncovered antibiotic combinations with robust synergy across nine distinct environments

against both E. coli and A. baumannii by searching through 2556 drug-combinations of 72

drugs. MAGENTA also accurately predicted the change in efficacy of bacteriostatic and bac-

tericidal drug-combinations during growth in glycerol media, which we confirmed experimen-

tally in both microbes. Our approach identified genes in glycolysis and glyoxylate pathway

as top predictors of synergy and antagonism respectively. Our systems approach enables

tailoring of antibiotic therapies based on the pathogen microenvironment.

Author summary

The antibiotic resistance epidemic has created a pressing need to understand factors that

influence antibiotic efficacy. An often-overlooked factor in the search for new treatments

is the pathogen environment. Understanding the differences in pathogen sensitivity to

antibiotics in lab conditions versus inside the host is necessary for translating new discov-

eries into the clinic. Hence, we experimentally measured the sensitivity of E. coli to drugs

and drug combinations in different metabolic conditions. Our data revealed that the envi-

ronment dramatically changes treatment potency. Each antibiotic class was affected

uniquely by each metabolic condition. The large number of metabolic conditions inside

the host greatly complicates the identification of effective therapies. To address this
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challenge, we present a computational approach called MAGENTA that accurately pre-

dicted efficacy of antibiotic regimens in different conditions, which we confirmed experi-

mentally. Furthermore, we show that MAGENTA can be applied to other bacterial

pathogens such as A. baumannii and M. tuberculosis without the need for generating

expensive data in each organism. MAGENTA accurately predicted efficacy in the patho-

gen A. baumannii using data from E. coli by identifying genes that are common between

the two bacteria. Our study revealed the significant yet predictable impact of environment

on drug combination potency.

Introduction

The threat of antibiotic resistance coupled with a diminishing pipeline of new drugs has cre-

ated a pressing need to enhance efficacy of existing antibiotics [1]. Combinations of antibiotics

are now being increasingly used to enhance the efficacy of treatment regimens and concur-

rently reduce resistance [2]. A key factor influencing the efficacy of antibiotic therapies is the

environmental context [3,4]. Antibiotics need to act in diverse and complex metabolic envi-

ronments in vivo, in contrast to well controlled lab conditions. Environmental factors such as

the availability of oxygen and extracellular metabolites impact cell killing by antibiotics [5].

The strong impact of metabolic state on drug efficacy has been observed across diverse micro-

bial pathogens [3,6,7].

In addition to individual drugs, pathogen metabolism can also influence the efficacy of

drug combinations. Drugs in a combination can enhance or interfere with other drugs’

actions, leading to synergistic and antagonistic interactions [8]. For example, combinations

involving bacteriostatic antibiotics, which inhibit cell growth, and bactericidal antibiotics,

which induce cell death, are typically avoided in the clinic due to their antagonistic interaction

[9]. This antagonism is hypothesized to occur due to their opposing effect on cellular respira-

tion [10]. While recent studies have focused on the influence of metabolic environment (i.e.

availability of nutrients, oxygen, extracellular metabolites) on individual drugs, a systematic

analysis of the impact of metabolic environment on drug interactions is lacking. It is unclear if

drug interactions are sensitive or robust to the environment.

Understanding the impact of metabolic environments on antibiotic efficacy is essential for

clinical translation of antibiotic therapies discovered from in vitro screens [11]. This can ulti-

mately help predict the impact of gut and tissue microenvironment on antibiotic susceptibility.

Further, knowledge of the pathogen metabolic environment is critical for treating slow-grow-

ing pathogens like M. tuberculosis and targeting pathogen biofilms.

Yet traditional in vitro testing is typically done in a single metabolic condition [11]. Given

the large space of possible metabolic environments in vivo [12], in silico algorithms are needed

to predict the impact of various metabolic environments on drug combinations. Existing

approaches to infer drug-drug interactions in both microbes and cancer cells, including the

INferring Drug Interactions using chemo-Genomics and Orthology (INDIGO) approach that we

previously developed [13], assume interaction outcomes are fixed for a drug combination.

To address this challenge of predicting the impact of metabolic environment on drug com-

bination efficacy, here we develop the Metabolism And GENomics-based Tailoring of Antibi-

otic regimens (MAGENTA) approach. This systems-biology approach comprehensively

captures the cellular processes involved in drug action and drug interactions such as stress

response, drug transport and metabolism. MAGENTA achieves this by harnessing chemoge-

nomic profiles associated with both distinct metabolic environments and drugs. Chemoge-

nomic screens measure fitness of gene knockout strains treated with drugs and stress agents of
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interest [14]. MAGENTA identifies genes that significantly impact fitness when exposed to

drugs or metabolic stressors from chemogenomics data resulting in a set of drug-gene and

metabolic environment-gene interactions. It then uses these chemical-genetic interactions to

predict drug-drug interactions in a new environment. MAGENTA applies a machine learning

algorithm called Random Forests to identify a core group of genes in the chemogenomic pro-

files that are predictive of drug synergy and antagonism across metabolic environments.

MAGENTA enables, for the first time, the prediction of impact of metabolic conditions on

antibiotic combination efficacy. We then experimentally validate this approach by testing pre-

dictions involving several drug combinations across distinct metabolic conditions in E. coli. In

addition, we apply the E. coli MAGENTA model to predict interactions in the pathogen—Aci-
netobacter baumannii, by identifying genes that are conserved between the two species. A. bau-
mannii is frequently associated with multi-drug resistance and is ranked as one of the most

dangerous pathogens in hospitals worldwide by the Infectious Diseases Society of America

[15]. Here we identified drug combinations that are synergistic across multiple conditions in

A. baumannii by overlaying orthologous genes on to the E. coli MAGENTA model. This

orthology mapping approach can enable the application of data from expensive chemoge-

nomics and drug-interaction screens in model organisms for identifying synergistic combina-

tions in several related bacterial pathogens with genome sequence information.

Results

The metabolic environment significantly impacts drug combination

efficacy

To understand the impact of metabolic environment on drug interactions, we experimentally

measured all pairwise interaction outcomes of 8 antibiotics against E. coli cells grown in LB

(rich) and M9 glucose (minimal) media (Fig 1). We used the popular Loewe-additivity model

Fig 1. Antibiotic interactions change significantly in different growth environments. (a) Heat maps represent all pairwise interactions among 8 antibiotics in rich

media (LB) and minimal media supplemented with glucose. Blue, white or red boxes correspond to synergistic, additive or antagonistic pairs. All drug combinations on

average showed a significant shift towards synergy in glucose media. This was strongly pronounced for combinations involving both bactericidal and bacteriostatic

drugs. The average interaction score for each class of drug combinations is shown in the table. (b) Scatter plot comparison of interaction scores in rich media versus

glucose minimal media. The log transformed FIC interaction score is shown. While there is a significant correlation between interaction scores in the different media

conditions, there are salient differences. Outlier combinations that have divergent outcomes in each condition are highlighted. For example, ampicillin is synergistic

with azithromycin only in minimal media.

https://doi.org/10.1371/journal.pcbi.1006677.g001
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and the Fractional Inhibitory Concentration (FIC) metric to quantify the drug interactions

[16,17] (Methods). The FIC for a drug combination is obtained by adding the fractional MIC

(i.e. Minimum Inhibitory Concentration) of each drug in a combination. The FIC scores were

log2-transformed for ease of interpretation. Negative log-FIC scores (i.e. < 0) imply synergy,

i.e. the same amount of growth inhibition is achieved with a lower dose when both the drugs

are combined. Antagonistic interactions have a positive log-FIC score.

Analysis of our experimental drug interaction FIC scores revealed that change in metabolic

state strongly influenced sensitivity to drug combinations. The drug interaction FIC scores

changed considerably between the two conditions, with only 42% of the combinations showing

the same direction of interaction (i.e. antagonism–log-FIC > 0.2, synergy–log-FIC < -0.2).

Interestingly, interactions were significantly more synergistic in glucose media (mean log-FIC =

-0.13) compared to LB (mean log-FIC = +0.28; p-value = 0.001, paired t-test). Interactions

involving combinations of bactericidal and bacteriostatic drugs showed the strongest difference

between the two conditions compared to other drug combinations (Fig 1). These combinations

became strongly synergistic in glucose media from being weakly antagonistic in LB media

(mean log-FIC = -0.37 in glucose media, mean log-FIC = +0.14 in LB; p-value = 0.08, paired t-

test).

These results suggest that drug interaction outcomes are not fixed for a drug combination

and can change significantly depending on the metabolic environment. This further compli-

cates the challenge of predicting drug interactions–in addition to the large space of drugs and

dosage, the metabolic environment of the pathogen should also be considered.

Predicting drug–drug interactions in diverse metabolic environments

using MAGENTA

To account for this variability in drug interactions, we developed the MAGENTA framework

to predict the impact of metabolic environment. MAGENTA takes as input the chemoge-

nomics data of individual drugs and known drug-drug interaction training data, and outputs

the predicted interaction score for a list of novel drug combinations (Methods). To predict the

impact of metabolic state on drug sensitivity, we first identify genes that impact fitness during

growth in distinct metabolic conditions from chemogenomic profiling. We then model meta-

bolic perturbations using a similar framework for modeling drugs, and subsequently predict

the impact of metabolic state on drug combination efficacy.

We introduce two key features in MAGENTA to enable prediction of metabolic impact on

drug sensitivity, which is not possible using existing drug interaction tools such as INDIGO or

Overlap2 Method (O2M) [18]. Firstly, MAGENTA uses chemogenomic profile of the meta-

bolic condition as input, in addition to using chemogenomic profiles of the drugs in a combi-

nation. This involves the integration of three different chemogenomic profiles. While existing

chemogenomics frameworks can predict interactions between pairwise combination of drugs,

here we show that MAGENTA can make predictions of combinations of multiple stress agents

(i.e. > 2). This allowed us to simulate the impact of metabolic conditions on drug interactions.

The mathematical framework used by MAGENTA for quantifying drug chemogenomic pro-

file similarity and uniqueness respectively are directly scalable to multiple combinations (S1

Fig). To account for dosage, we re-scale the scores by normalizing them by the number of

drugs in a combination in order to achieve the same units as the model defined for two drugs.

Further, we found that chemogenomic profiles of metabolic conditions differ distinctly

from chemogenomic profiles of drugs and other stress agents (S2 Fig). This is because, while

drugs have significant number of chemical-genetic interaction with genes that confer both

resistance and sensitivity, nutrients such as glucose predominantly contain genes that confer

Metabolism And GENomics-based Tailoring of Antibiotic regimens (MAGENTA)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006677 December 31, 2018 4 / 24

https://doi.org/10.1371/journal.pcbi.1006677


sensitivity. Hence, as a second addition to the MAGENTA framework, we also used the genes

that confer resistance as input. Data on genes conferring resistance is relevant here for differ-

entiating media conditions from drugs.

Experimental validation of model predictions for 56 three-way drug

combinations

We trained MAGENTA using our experimental pairwise drug-drug interaction data in LB and

glucose media (Fig 1) along with data for 171 drug pairs generated in our prior study [13]. We

used chemogenomic profiles for these drugs and metabolic perturbations from the Nichols

et al. study [19], which screened 3979 gene-deletion strains of E. coli with 72 drugs and 8 meta-

bolic perturbations.

Since the MAGENTA framework integrates multiple chemogenomic profiles, we first con-

firmed MAGENTA’s ability to predict the outcome of multi-drug combinations from individ-

ual drug chemogenomic profiles. To test the predictions by MAGENTA, we experimentally

measured 56 three-way combinations involving 8 antibiotics in LB media. These 8 antibiotics

included drugs with distinct targets and mechanism of action (Fig 2; Table 1). Comparison of

MAGENTA predictions with experimental measurement revealed that it accurately predicted

three-way drug interaction outcomes with significant correlation (Rank correlation R = 0.57,

p-value = 5 x 10−6; Fig 2). We observed a similar accuracy for predicting pairwise drug combi-

nations in our prior study [13]. This suggests that the MAGENTA framework can be seam-

lessly extended to multi-drug combinations. Further, we observed that the majority of the

three-way interaction outcomes were surprisingly antagonistic and only 2 out of the 56 combi-

nations showed synergy (interaction score< -0.2). Given the uneven distribution of synergy

and antagonism, we also assessed MAGENTA predictions using the Anova statistic and found

that the predicted interaction scores differed significantly for synergy and antagonism respec-

tively (p-value = 0.0003; S3 Fig). The high predominance of antagonism underscores the need

for a computational approach to discover synergistic combinations.

MAGENTA accurately predicts drug–drug interactions in a novel

metabolic environment

Having confirmed that MAGENTA can accurately predict three-way interactions, we then

applied MAGENTA to predict the impact of metabolic environment on drug interactions. Out

of the 8 metabolic conditions for which chemogenomic data was available from the Nichols

et al study [19], we used MAGENTA to predict interactions in minimal media with glycerol as

carbon source. We chose glycerol condition as E. coli is predicted to use a different metabolic

state than glucose [20]. We hypothesized that this major shift in metabolism will have a signifi-

cant impact on drug combination efficacy.

To validate the model predictions, we experimentally measured all 55 pairwise drug interac-

tions of 11 antibiotics in glycerol media, in duplicate. In addition to the 28 drug combinations

previously tested, we also tested 27 new drug combinations involving three new antibiotics

that were not part of the glucose media training data. These three antibiotics—cefoxitin, nali-

dixic acid and spectinomycin, use distinct mechanisms of action compared to those drugs

used in the training data set. Hence this validation data set would test the limits of the algo-

rithm with interactions involving both new metabolic conditions and new drugs with distinct

mechanism of action.

In contrast to the glucose condition, MAGENTA did not predict strong synergy between

bacteriostatic and bactericidal drugs in glycerol media. For example, MAGENTA predicted

that combination of ampicillin, a bactericidal drug, and tetracycline, a bacteriostatic drug,

Metabolism And GENomics-based Tailoring of Antibiotic regimens (MAGENTA)
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were additive in glycerol media. Similarly, combination of aztreonam and azithromycin was

also predicted to be additive in glycerol media. Experimental measurement of 55 drug combi-

nations in glycerol media validated the MAGENTA predictions. Overall, comparison with

experimental data revealed that MAGENTA accurately predicted interaction outcomes across

all 55 drug combinations (Rank correlation R = 0.69, p-value = 1 x 10−8; Fig 3). Thus, the inter-

action scores predicted by MAGENTA accurately represent whether the metabolic perturba-

tion can enhance or impede the efficacy of a drug combination.

Notably, a large subset of the test set involved new drug combinations for which we do not

have training data. For the drug combination subset that was shared across all conditions (28

pairs), the overall consistency between conditions was lower than the predictions from

MAGENTA. We split the interaction data as synergy (Interaction score < -0.2), neutral or

antagonistic (> 0.2). The consistency was 32% (p-value = 0.5) for LB and glycerol, 53%

(p-value– 6 x 10−4) for glucose and glycerol, 42% (p-value = 0.03) for LB and glucose. The con-

sistency for MAGENTA was 65% (p-value = 1 x 10−6) for this subset and 62% overall for 55

Fig 2. Predicting multi-drug combinations using MAGENTA. (a) Schematic workflow of MAGENTA approach. MAGENTA takes drug chemogenomic profiles and

interactions among drugs as input. This is used to train a Random Forest Model which can predict synergy and antagonism among pair-wise or higher-order

combinations of new drugs given their chemogenomic profiles. (b) All three-way interactions among 8 antibiotics are represented as 3D heat-map. Blue, white or red

boxes correspond to synergistic, additive or antagonistic three-way combinations. Among 56 combinations, only Azi+Min+Rif and Min+Cip+Rif exhibit strong

synergy. The three-way interactions among 8 antibiotics are also represented as layers for maximum visibility. The dotted lines depict the interaction between

nitrofurantoin, minocycline and chloramphenicol. (c) Scatter plot comparison of MAGENTA 3-way interaction predictions and experimental measurements

demonstrate that MAGENTA can robustly identify 3-way antibiotic synergy and antagonism (rank correlation R = 0.57, p = 5 x10-6).

https://doi.org/10.1371/journal.pcbi.1006677.g002
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combinations (p-value = 4 x 10−8). P-values were estimated by comparison of observed consis-

tency with 1,000 random permutations from the training data set using a t-test.

The extent of change in interaction outcomes in glycerol media was influenced by the bac-

teriostatic and bactericidal nature of the drugs in the combination. Interactions involving

combinations of bactericidal and bacteriostatic drugs did not show strong synergy in glycerol

growth condition (mean log-FIC = -0.04), in contrast to our observation in glucose minimal

media (mean log-FIC = -0.37). Surprisingly combinations involving two bacteriostatic drugs

showed the strongest synergy (mean log-FIC = -0.28). Hence while the correlation was high

between conditions for the subset of shared combinations, (R = 0.54 between LB and glucose,

0.64 between LB glycerol, and 0.77 for glucose and LB), it doesn’t represent the shift towards

synergy or antagonism. The mean of the glucose interaction scores was -0.13, while for glycerol

it was -0.27 for the combinations that overlapped and +0.26 for those that didn’t (S6 Fig).

MAGENTA had a similarly high correlation of 0.78 for this subset, but also captured both the

shift toward synergy and the relative ordering (S7 Fig, S8 Fig). To make predictions for a new

condition using MAGENTA, instead of measuring all pairwise combinations of n drugs (n

choose 2) across different media, only n chemogenomic profiles are needed along with a small

training data set.

Growth in glycerol had a unique impact on drug interactions compared to LB and glucose

media. Drugs that depend on facilitated transport like the aminoglycoside antibiotics—specti-

nomycin and amikacin, were more synergistic in glycerol media, possibly due to increased

active uptake due to the higher activity of TCA cycle in glycerol condition [21]. The difference

in interaction outcomes might also occur due to osmotic stress induced by glucose [22]. Drugs

such as ampicillin, aztreonam and triclosan that disrupt bacterial cell wall were more synergis-

tic in glucose media. The synergistic effect of ampicillin and triclosan is hypothesized to be due

to the disruption of the cell wall by these drugs resulting in enhanced cellular penetration of a

second drug [23]. The osmotic stress in glucose media relative to other conditions will further

enhance the synergy of cell wall disrupting drugs by increasing membrane permeability. The

differences in drug interaction outcome in glycerol media highlight the impact of metabolic

environment on drug combinations.

Table 1. List of drugs used in this study, their MIC, activity (bactericidal (C), bacteriostatic (S), or both (CS) in E. coli) and their targets are shown. Drug annota-

tions are from the Nichols et al study.

E. coli (MIC μg/ml) A. baumannii (MIC μg/ml)

Antibiotic Abbreviation Target LB Glucose Glycerol LB Glucose Glycerol

Amikacin (C) Amk Ribosome (30S) 2.8 14 16 25

Ampicillin (C) Amp Membrane 14 8 14 28 40 40

Azithromycin (S) Azi Ribosome (50S) 2 16 6

Aztroenam (C) Azt Membrane 0.03 46 20 8 12 22

Cefoxitin (C) Cef Membrane 3.6

Chloramphenicol (S) Chl Ribosome (50S) 2.4 6.6 4

Ciprofloxacin (C) Cip DNA gyrase 0.01

Minocycline (S) Min Ribosome 4

Nalidixic acid (C) Nal DNA gyrase 28 50 8 9 8

Nitrofurantoin (CS) Nit Multiple mechanisms 10

Rifampicin (C) Rif RNA Polymerase 7 14 20 0.7 0.2 1.2

Spectinomycin (S) Spe Ribosome (30S) 10 60 40

Tetracycline (S) Tet Ribosome (30S) 0.9 1.6 1.4 0.4 0.8 0.7

Triclosan (CS) Tri Membrane; fatty acid synthesis 1.4 1.8 1.8

https://doi.org/10.1371/journal.pcbi.1006677.t001
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The drug interaction validation data in glycerol media was used as additional training data

for MAGENTA to further improve its accuracy. The accuracy of the updated MAGENTA

model was then assessed through ten-fold cross validation analysis. Through cross validation

analysis we found that even higher accuracies (Rank correlation R = 0.7; Methods) can be

obtained if some training data involving the corresponding condition or drug is provided as

input for MAGENTA (S5 Fig). We use this final MAGENTA model for predicting drug inter-

actions in different environments and to identify genes predictive of drug interactions.

Metabolic pathways predictive of drug synergy and antagonism

While the chemogenomic profiling data used as input to MAGENTA encompasses 3979

genes, analysis of MAGENTA model revealed that a small subset of genes was sufficient to

explain most of the model’s predictive ability. The top 60, 319 and 867 genes are sufficient to

predict 50, 75, and 95% of the model’s predictive ability.

Fig 3. Predicting impact of novel metabolic environments on drug interactions using MAGENTA. (a) Schematic workflow of MAGENTA approach. MAGENTA

takes drug chemogenomic profiles and interactions among drugs or between drugs and metabolic conditions as input. This is used to train a Random Forest model

which can predict synergy and antagonism among pair-wise or higher-order combinations of new drugs in novel metabolic conditions given their chemogenomic

profiles. (b) All pairwise interactions among 11 antibiotics in minimal media supplemented with glycerol are represented as a heat map. Blue, white or red boxes

correspond to synergistic, additive or antagonistic combinations. Clustering of interaction scores was done using Euclidean distance and average linkage (Unweighted

average distance (UPGMA)). (c) Scatter plot comparison of MAGENTA predictions and experimental measurements in glycerol minimal media demonstrate that

MAGENTA can robustly predict antibiotic synergy and antagonism in new environments (rank correlation R = 0.69, p = 1x10-8).

https://doi.org/10.1371/journal.pcbi.1006677.g003
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Several metabolic pathways were over-represented among the top predictive genes (Table 2;

S1 Table). Genes in the oxidative phosphorylation pathway showed the highest extent of over-

representation among the top predictive genes (Table 2). The very high enrichment of the oxi-

dative phosphorylation pathway relative to other cellular processes is consistent with the fact

that this pathway is related to both drug sensitivity, drug-drug interactions and drug-media

interaction [10,24,25]. In addition to this pathway, other top pathways were related to target

processes of antibiotics like cell wall synthesis, DNA recombination and DNA mis-match

repair. In addition, pathways related to drug transport and resistance were also over-repre-

sented among the top predictive genes. Analysis of top predictive genes for making three-way

drug interaction predictions also revealed a significant enrichment for metabolic genes (S2

Table, S3 Table). Notably, the gene glmS, which was identified as the most predictive gene in

our INDIGO model, was among the top ten predictors in the MAGENTA model as well for

predicting three-way interactions and interactions across media conditions. glmS is a meta-

bolic enzyme that catalyzes the first step in hexosamine pathway which produces precursors

for cell wall synthesis and biofilm formation.

The interaction outcomes for each drug combination in a metabolic condition depends on

complex interplay between many genes. Nevertheless, the presence of genes associated with

specific pathways in the chemogenomic profiles of the drugs or metabolic conditions can be a

strong predictor of synergy or antagonism. When the chemical-genetic interaction with the

genes in these pathways change in a new condition, it influences MAGENTA predictions of

drug synergy. For example, we found that presence of genes in the glycolysis and TCA cycle

pathway in the drug chemogenomic profile were strongly associated with synergy (p-value =

0.001 and 0.01 for glycolysis and TCA cycle respectively, hypergeometric test). Surprisingly,

we found that genes in the galactose and glyoxylate metabolism pathway were the top predic-

tors of antagonism (p-value = 0.008 and 0.01 respectively, hypergeometric test; Table 2).

Increased activity of the glyoxylate pathway has been previously found to reduce sensitivity to

Table 2. Enriched biological pathways among the top predictive genes in the MAGENTA model. Pathway annota-

tions are from the KEGG database. The table also shows the top pathways associated with drug synergy and antago-

nism. The presence of genes associated with these pathways in the drug chemogenomic profile was associated with

synergistic or antagonistic interaction outcome.

Top Enriched Pathways p-value

Oxidative phosphorylation 2.10E-06

Alanine, aspartate and glutamate metabolism 0.000121

Purine metabolism 0.000303

Phenylalanine, tyrosine and tryptophan biosynthesis 0.000656

Mismatch repair 0.000716

Lipopolysaccharide biosynthesis 0.001069

Homologous recombination 0.001541

Glycine, serine and threonine metabolism 0.001598

Top Pathways (Synergy) p-value

Glycolysis / Gluconeogenesis 0.001284

Phenylalanine, tyrosine and tryptophan biosynthesis 0.001383

Selenocompound metabolism 0.005778

Citrate cycle (TCA cycle) 0.017201

Top Pathways (Antagonism) p-value

Porphyrin and chlorophyll metabolism 0.005778

Galactose metabolism 0.008133

Glyoxylate and dicarboxylate metabolism 0.012333

https://doi.org/10.1371/journal.pcbi.1006677.t002
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antibiotics in both M. tuberculosis and P. aeruginosa by decreasing the activity of the TCA

cycle [6,7]. Our results suggest that drugs or metabolic conditions that increase the activity of

the glyoxylate pathway may result in antagonistic interactions. The presence of the glyoxylate-

and TCA cycle- pathways on opposing sides of the drug interaction outcomes supports the

validity of MAGENTA in inferring the underlying mechanisms influencing drug interaction

outcomes.

To further understand the underlying mechanism behind the differences in interaction out-

comes between the media conditions, we compared their corresponding chemogenomic pro-

files and identified genes unique to each condition. If the chemical genetic interactions of the

top predictive genes change significantly in a new condition, it impacts the predicted interac-

tion scores by MAGENTA. The gene sensitivity profile in glucose condition contained signifi-

cantly higher number of genes encoding transporters, two-component sensors, efflux pumps

(drug resistance genes) and sugar metabolism enzymes compared to glycerol condition (S4

Table). The predominance of transporters is consistent with the fact that glucose requires

active transport while glycerol can enter the cell by passive diffusion through the membrane.

The differential use of transporters and efflux pumps may further alter sensitivity to drugs that

require active uptake.

Predicting drug interactions across metabolic environments in new

bacterial species using orthology mapping

Since drug interactions changes across metabolic conditions depended on pathways such as

glycolysis that are highly conserved across evolution, we next tested the conservation of metab-

olism-related drug interaction changes in clinically-relevant organisms. In our prior study we

discovered that the extent of conservation of drug interaction related genes identified by

INDIGO were predictive of drug-drug interaction conservation between species. This enabled

us to use widely available chemogenomic data in E. coli to make predictions for pathogens

such as S. aureus and M. tuberculosis that are difficult to study and lack chemogenomics data.

In this study, we tested the conservation of metabolism-related drug interaction changes in the

pathogen A. baumannii.
Due to rising resistance, drug combination therapy is being explored for treating A. bau-

mannii infections [26]. A. baumannii is an opportunistic pathogen causing pneumonia, skin-,

wound, urinary-tract, brain- and bloodstream infections [27]. The metabolic flexibility of A.

baumannii is predicted to contribute to its persistence and colonization [27,28]. Hence, given

the importance of drug combinations to treat this pathogen and its metabolic flexibility, we

focused on the impact of pathogen metabolic environment on drug interactions in A.

baumannii.
Genes that were orthologous between E. coli and A. baumannii were obtained from Ortho-

lugeDB and mapped onto the MAGENTA model [29]. Overall, we found 1180 genes in A. bau-
mannii that were orthologous with genes in the E. coli MAGENTA model. These orthologous

genes were highly enriched among the top 319 drug interaction predictive genes (p-value = 7 x

10−5, hypergeometric test). Among the top predictive genes, pathways in central metabolism

were conserved between the two species, while genes in lipopolysaccharide synthesis & DNA

mis-match repair were not conserved (S5 Table). Thus, we hypothesized that many of the drug

interaction outcomes across metabolic conditions will be conserved between the two species.

Using this MAGENTA A. baumannii model, we predicted all 15 pairwise interaction out-

comes of 6 antibiotics in three media conditions we previously studied using E. coli–LB, glu-

cose minimal and glycerol minimal media. These 6 drugs were chosen based on their efficacy

in both E. coli and A. baumannii, and the availability of chemogenomics data. In addition, two
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drugs–amikacin and nalidixic acid, were included as they were not measured in the glucose

media training data for MAGENTA. The 45 drug interactions across three media conditions,

including 13 novel interactions involving the two new drugs will allow us to assess the accuracy

of MAGENTA for predicting interactions in a new organism involving drug-media combina-

tions that it was not trained on.

Overall, the predicted drug-drug interaction scores by MAGENTA across the three media

conditions significantly correlated with the measured interaction scores (Rank correlation

R = 0.57, p-value = 0.0001; Fig 4). The interaction scores for E. coli and A. baumannii showed

significant correlation for the 32 drug interactions that were experimentally measured in both

species (Rank correlation R = 0.57, p-value = 5 x 10−5). This suggests that drug interactions are

relatively conserved between the two species and is consistent with our observation that top

drug interaction predictive genes in MAGENTA were significantly conserved between the two

species. However, even for cases where there is no E. coli interaction data available in that spe-

cific metabolic condition, MAGENTA can accurately predict interaction outcomes with

Fig 4. Predicting the impact of metabolic environments on drug interactions in A. baumannii using MAGENTA. (a) Schematic workflow of the approach for

predicting interactions in a new bacterial strain using E. coli drug interaction and chemogenomics data. Genes that are common between E. coli and A. baumannii are

overlaid onto the E. coli MAGENTA model. The non-orthologous genes were deleted (i.e. they were set to be zero) and interaction outcomes were predicted using the

conserved orthologous genes alone. (b) All pairwise interactions among 6 antibiotics in three media conditions for A. baumannii are shown as heat maps. Blue, white

or red boxes correspond to synergistic, additive or antagonistic combinations. (c) Comparison of the interaction scores for each drug combination in three media

conditions identified combinations that are sensitive to the environment. For example, ampicillin-tetracycline combination is synergistic, additive and antagonistic in

glucose, LB and glycerol environment, respectively. (d) Scatter plot comparison of media specific interaction scores predicted by MAGENTA and experimental

measurements demonstrate that MAGENTA can robustly predict antibiotic synergy and antagonism in various environments for a new species using E. coli data

(Rank correlation R = 0.57, p = 5x10-5).

https://doi.org/10.1371/journal.pcbi.1006677.g004
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equally high correlation (R = 0.57) as demonstrated here using the drugs amikacin and nali-

dixic acid.

While majority of antibiotic combinations that were synergistic in E. coli were also synergis-

tic in A. baumannii, combinations of amikacin and tetracyline, showed synergy in A. bauman-
nii but were antagonistic in E. coli in LB media. In contrast, combination of amikacin and

ampicillin were synergistic in E. coli in glycerol media but not in A. baumannii. Importantly,

MAGENTA correctly identified combinations that differed between the two species. The pre-

dicted extent of difference in interaction outcome correlated significantly with the observed

extent of interaction change (rank correlation R = 0.59, p-value = 2 x 10−5).

We also observed significant difference in interaction outcome for ampicillin and aztreo-

nam, which target cell wall synthesis. For instance, combination of aztreonam with ampicillin

was synergistic in A. baumannii but antagonistic in E. coli in glucose media. This observation

is in agreement with the lack of conservation of the cell wall lipopolysaccharide (LPS) synthesis

pathway between the two species. While LPS synthesis is essential in E. coli, it is dispensable in

A. baumannii [30].

Landscape of 2556 drug interactions in nine distinct metabolic

environments reveals robust synergistic combinations

Some drug combinations, such as amikacin-tetracycline and ampicillin-aztreonam showed

robust synergy across all three conditions in A. baumannii. These combinations might serve as

promising leads for treating A. baumannii. To discover other combinations in both A. bau-
mannii and E. coli with broad spectrum metabolic synergy, we predicted interaction outcomes

for 2556 pairwise drug combinations involving 72 drugs across 9 growth conditions for which

we had chemogenomics data (Fig 5). These 9 metabolic conditions—namely growth in glu-

cose, glucosamine, glycerol, acetate, maltose, succinate, ethanol minimal media, aerobic and

anaerobic growth in LB, represent a wide spectrum of potential metabolic states for the bacte-

ria. In vivo metabolic conditions span growth in diverse substrates such as sugars, nucleotides,

glycerol, lipids and hypoxic conditions [12] and these 9 metabolic conditions studied here are

representative of the conditions in vivo.

The nine metabolic conditions uniquely impacted drug interaction outcomes. Growth in

anaerobic condition had a very strong and distinct impact on drug interactions compared to

other conditions (Fig 5). Given that oxidative phosphorylation was the top predictive pathway

for drug interactions across media conditions, growth conditions that change the activity of

this pathway exert strong influence on interaction outcomes. In E. coli, we identified 119 com-

binations out of the 2556 combinations screened that were synergistic across all metabolic con-

ditions. For example, we found that combinations of azithromycin and rifampicin, and

ampicillin and chloramphenicol were synergistic across all 9 metabolic conditions (S6 Table).

Several combinations used clinically also showed robust synergy across these conditions. The

list of 119 combinations included combinations of rifampicin with tetracycline, ampicillin, azi-

thromycin and clarithromycin. These combinations with rifampicin are frequently used for

treating biofilm associated infections [31]. In addition to rifampicin, the antibiotics—ampicil-

lin, vancomycin and fusidic-acid were also over-represented in the list of 119 combinations

with robust synergy.

Analysis of drug interaction landscape in A. baumannii revealed 19 combinations that

showed synergy across all the growth conditions (Interaction score < -0.5, S6 Table). This rep-

resents just 0.74% (1 out of 134) of the total combinations screened. Thus, MAGENTA can

potentially reduce the search space by 100-fold compared to a trial and error approach or a

blind screen.
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The accurate estimation of drug interactions in A. baumannii was possible because of the

conservation of top predictive genes in the E. coli MAGENTA model in A. baumannii. To

assess the generalizability of this approach, we compared the conservation of the top predictive

genes in the pathogens S. aureus and M. tuberculosis. Top genes predicted by MAGENTA

were enriched for those that are conserved between the two species. We found a significant

enrichment for orthologs of S. aureus (1 x 10−5) and M. tuberculosis (2 x 10−8). This suggests

that we can apply MAGENTA model to make accurate predictions across metabolic environ-

ments in these systems as well.

We have predicted interaction outcomes for 2556 pairwise drug combinations involving 72

drugs across 9 growth conditions for these two organisms (S9 Fig). Analysis of drug interac-

tion landscape in these two pathogens revealed 113 and 108 combinations that showed strong

synergy across all the growth conditions in M. tuberculosis and S. aureus respectively (Interac-

tion score< -0.5, S7 Table). Of note, we identified robust synergistic interactions involving

the frontline drugs used for treating Tuberculosis. We found that the antibiotics azithromycin

and fusidic acid had robust synergy with the Tuberculosis drugs rifampicin and isoniazid

respectively. Overall, this dataset can be used to prioritize combinations effective in specific

growth conditions and potentially used to identify metabolically-robust drug combinations.

Discussion

In this study we found that the pathogen metabolic environment significantly modulates drug

combination efficacy. This trend was observed across nine different metabolic conditions and

Fig 5. The drug-drug interaction landscape. (a) The heat maps show the predicted impact of 9 distinct metabolic environments on the interaction outcomes

of 2556 pairwise drug combinations (synergy (blue), antagonism (red)). The drug combinations and metabolic conditions are clustered based on similarity

(Euclidean distance) and the dendrogram was plotted based on average linkage. Panel b shows the corresponding interaction scores for A. baumannii.

https://doi.org/10.1371/journal.pcbi.1006677.g005
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several antibiotics spanning various target processes; each metabolic state had a distinct and

unique impact on each drug. This observation greatly complicates the search for finding effec-

tive therapies, given the wide range of metabolic conditions that pathogens encounter in vivo
or in biofilms. The differences in sensitivity between metabolic conditions may also explain

the differences in efficacy in vitro and in vivo observed for drugs [11].

To address this challenge, in this study we developed a computational approach (MAGENTA)

to predict how metabolic environments can impact drug combination efficacy. An important

finding from this study is that interactions between drugs across metabolic conditions can be pre-

dicted based on chemogenomic profiles of the individual drugs and the metabolic perturbation.

This suggests that metabolic stress can be modeled using a similar framework as drug induced

stress. Our approach can be potentially extended to other stressors including antimicrobial prote-

ases and toxins [32,33].

Multi-drug combinations can greatly reduce the rise of resistance and enhance potency

compared to single agents [34]. However, the number of possible permutations increases expo-

nentially with the number of drugs in a combination regimen; this greatly underscores the

need for computational tools like MAGENTA to identify most synergistic combinations. Prior

studies on predicting drug interactions using chemogenomics focus only on pairwise drug

combinations; here we demonstrate that the MAGENTA approach accurately predicted inter-

action outcomes involving multi-drug combinations. Multi-drug interaction predictions are

especially relevant for diseases like tuberculosis, where combinations of 4 antibiotics are com-

monly used for treatment.

Theoretical models suggest that pairwise combinations of underlying drugs can be used to

predict triplet combinations [35,36]. To make predictions for all 3-way combinations of n

drugs, only n chemogenomic profiles are needed along with a small training data set for

MAGENTA, but (n choose 2) pairwise interactions are needed for the pairwise approach.

MAGENTA is hence more effective in exploring large number of combinations. Furthermore,

MAGENTA can make predictions for combinations with new drugs that it was not trained on

using chemogenomics data. In our case, three out of the 8 tested drugs are not part of the train-

ing set. Out of the 56 triplet combinations, the pairwise approach can be used to make predic-

tions for only 10 triplets using pairwise data in the training set.

Notably, MAGENTA was able to predict interaction outcomes in a new metabolic condi-

tion (glycerol) based on training data in glucose and LB media. This result corroborates the

ability of MAGENTA to extract mechanistic features that influence drug interactions from

chemogenomic profiles, such as the role of metabolic pathways. Our unbiased data-driven

approach confirmed the importance of oxidative phosphorylation and cellular respiration

pathway on antibiotic efficacy. Reducing respiration is known to inhibit bactericidal drug

lethality [10]. The oxidative phosphorylation pathway likely affects antibiotic efficacy in multi-

farious ways including oxidative stress, redox homeostasis and facilitating drug import. Our

analysis also revealed the opposing association of TCA cycle and glyoxylate pathway with drug

synergy and antagonism respectively, supporting previous studies [6,7,10,37].

Interactions involving combinations of bactericidal and bacteriostatic drugs showed strik-

ing differences between different metabolic conditions. This is consistent with the sensitivity

of this drug combination to cellular metabolic state [10]. While this combination is avoided in

the clinic due to antagonism [9], our results suggest that this combination is not antagonistic

during growth in glycerol and becomes strongly synergistic during growth in minimal glucose

media. Antagonism between combinations of bactericidal and bacteriostatic drugs is predicted

due to their opposing effects on cellular respiration and TCA cycle. Hence shifting E. coli to a

growth condition with higher activity of TCA cycle will have a significant impact on respira-

tion and efficacy of these drugs. This change in nutrient source will shift the balance in favor
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of one class of drugs over the other. Our data revealed that metabolic state not only influences

combination involving both bacteriostatic and bactericidal drugs, as previously believed, but it

also strongly influences combinations involving only bactericidal or bacteriostatic drugs.

The nine metabolic conditions studied here are representative of in vivo metabolic condi-

tions such as the gut environment and biofilms. Our study takes the first step towards rational

design of combination therapies that are robust to the in vivo environment. While we have

focused on the impact of a single metabolic perturbation on antibiotics in this study, the in
vivo environment is complex and dynamic. Future modeling efforts that expand the capability

of MAGENTA to dynamic conditions can enable prediction of effective therapies.

Our analysis of the drug sensitivity landscape revealed that metabolic environments had a

significant impact on the efficacy of drug combinations (Fig 5). Nevertheless, by searching

through 2556 combinations, we identified a small subset that were synergistic across all meta-

bolic conditions in both E. coli and A. baumannii. Such synergistic drug combinations are

urgently needed for treating A. baumannii infections. This opportunistic pathogen is a fre-

quent cause of drug resistant wound-, urinary tract- and pneumonia infections. It is responsi-

ble for 2–10% of all Gram-negative hospital infections [38]. A. baumannii infections display

resistance to most antibiotics used in the clinic and new treatments are desperately needed

[26].

A key limitation of our approach is the need for chemogenomic profiling data. However,

with the development of single gene knockout libraries, chemogenomic profiling data is

increasing in number. For instance, the Resistome database has a compendium of chemoge-

nomic profiles for 230 different perturbations in E. coli [39]. Similar large compendiums exist

for S. cerevisae [40]. This approach could hence be potentially applied to a wide range of drugs

in both prokaryotic and eukaryotic systems. Furthermore, our theoretical framework can be

extended for discovering effective anti-cancer drug combinations. Drug combinations are fre-

quently used in cancer chemotherapy to reduce resistance [41–44]. Our approach can enable

the identification of robust combination therapies targeting the tumor microenvironment.

While our validation data sets tested the algorithm’s predictive ability involving novel drugs

and conditions, through cross validation we found that higher accuracies (Rank correlation

R = 0.7) can be obtained if some training data is provided as input for the corresponding con-

dition or drug. An optimal experimental design should involve sparse sampling of multiple

drug combinations and metabolic conditions rather than exhaustive combinations of a few

drugs in one condition. The use of defined media rather than complex undefined media con-

taining yeast extract or serum can also greatly improve modeling efforts. Knowledge of in vivo

metabolic environments can enable direct prediction of effective therapies.

In sum, our study demonstrates that metabolic environment can elicit significant effects on

antibiotic combination efficacy. Our new approach MAGENTA goes beyond existing drug

combination discovery platforms by predicting the impact of metabolic state on combination

therapies. Further, we were able to leverage existing chemogenomic and drug interaction data

in E. coli to infer antibiotic interactions across metabolic conditions in the pathogen A. bau-
mannii. Our approach can enable identification of robust therapies tailored to the pathogen

and the metabolic environment.

Methods

Experimental drug interaction assays

All drug interaction experiments were conducted using the diagonal method [36,45]. For each

drug, we constructed a linearly increasing concentration range of 14 concentrations from 0

drug to a Minimum Inhibitory Concentration (MIC), which results in almost complete
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inhibition. For pairwise or 3-way interactions, we constructed a similar dose series, with the

top concentration MIC/2 or MIC/3 of each constituent drug. For each pairwise drug interac-

tion assay, sensitivity to linearly increasing doses (dose-response) were collected for two single

drugs and a 1:1 mixture of two drugs. For each three-way drug interaction assay, dose-

responses were collected for three single drugs and a 1:1:1 mixture of three drugs.

Cell growth in these two or three drug mixtures were compared to growth in single drug

components to calculate FIC values. For this, we located the dose fraction that gives the same

level of inhibition in the single drug or combination dose-responses. The dose that results in a

defined inhibition level is divided by the “expected dose” that would give the same inhibition if

the drugs in the combination were same drugs, resulting in the Loewe Additivity based FIC

drug interaction measure. For example, when considering a 3-way interaction, if the 50%, 60%

and 70% of the top dose of drugs A, B and C result in IC50, then the expected IC50 was defined

as ~0.6. If the dose fraction of the combination that gives IC50 is 60%, this 3-way combination

is additive. If it is smaller or larger than 0.6, it is synergistic or antagonistic, respectively. The

FIC for a drug combination is obtained by adding the fractional MIC of each drug in a combi-

nation. The fractional MIC is calculated by dividing the dose of a drug when used in combina-

tion by the MIC of that drug when used individually. FIC is equal to 1 if drugs are additive,

less or more than 1 if drugs are synergistic or antagonistic, respectively. In this study, we used

the log2 of FIC values as drug combination interaction values. We have used a quantitative

metric rather than discrete classification of interactions for two key reasons. Firstly, use of

quantitative interaction scores allows for a quantitative validation of model predictions. Sec-

ondly, regression algorithms perform better with a continuous range of values.

For FIC calculation, we used the drug or mixture dose that resulted in 70% inhibition

(IC70) throughout the analysis. This choice was guided by our initial analysis which showed

this inhibition level results in the highest reproducibility among replicates (S10 Fig, S11 Fig,

S12 Fig). We also show that the scores are robust to the IC choice, as scores obtained using dif-

ferent ICs in the range of IC60 and IC80 highly correlate (r> 0.8) (S11 Fig, S12 Fig).

Escherichia coli MG1655 and Acinetobacter baumannii Bouvet and Grimont ATCC 17978

were used as bacterial strains. All drugs were purchased from Sigma. MICs for each drug are

provided in Table 1. We defined drugs as bacteriostatic or bactericidal based on annotation

from Nichols et al [19]. All pairwise drug interaction experiments were done in duplicate, with

correlation of 0.8 and 0.86 for E. coli and A. baumannii experiments, respectively (S10 Fig).

We used the arithmetic average of two replicates as the drug interaction score for each pair.

LB media was prepared by dissolving 20g LB powder (Sigma) in 1l of water and autoclaving.

Minimal media was prepared as final concentration of 1X M9 salts, 2uM MgSO4, 0.1uM

CaCl2 and carbon source in water, and filtered for sterilization. A final concentration of 0.04%

Glucose or 0.08% Glycerol was made, which makes the carbon resource levels equivalent in

two media. 5ml bacteria cultures were grown in 15ml breathable culture tubes for 16 hours, by

mixing 20ul of 25% glycerol stock of cells at OD600 = 1 and 5ml respective growth media, and

shaking at 250RPM at 37C. After overnight growth, cells were diluted to OD = 0.01 and used

as inoculums for the drug interaction experiments.

Drugs were dissolved in dimethyl sulfoxide and stored at −20˚C. Nanoliter volumes of

drugs and their combinations were printed on 384-well plates using a digital drug dispenser

(D300e Digital Dispenser, HP). All drug sensitivity quantifications were done by measuring

the optical density (OD600) of 50ul bacteria grown for 16 hours at 37C without shaking in

384-well plates (Synergy HT, BioTek). Dispense locations were randomized within each plate

to minimize plate position effects. Plates were sealed with aluminum plate seals and incubated

without shaking at 37˚C. After data collection, plate data were reconstructed from randomized

positions for further analysis.

Metabolism And GENomics-based Tailoring of Antibiotic regimens (MAGENTA)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006677 December 31, 2018 16 / 24

https://doi.org/10.1371/journal.pcbi.1006677


Prediction of drug interactions using MAGENTA

The entire series of steps to predict drug interactions using MAGENTA is described in S4 Fig.

The inputs for MAGENTA were chemogenomic profiles of drugs and media conditions from

Nichols et al [19], and log2 transformed drug interaction FIC scores for the training set. Che-

mogenomic data was quantile-normalized using the quantilenorm function in MATLAB.

Interactions with chemogenomics fitness score less than -2 (two standard deviations below the

mean) or greater than +2 were chosen to be significant and used as input to MAGENTA.

MAGENTA represents each drug in silico as a function of its corresponding drug-gene

interactions inferred from chemogenomic profiling. MAGENTA assumes that cellular

response to a combination of stressors can be represented as a linear combination of cellular

response to individual stressors, as observed in prior studies [46,47]. This enables it to predict

drug-drug interaction outcomes across metabolic conditions from individual chemogenomic

profiles using the machine learning algorithm–Random forests. The random forest algorithm

creates an ensemble of decision trees and outputs the mean prediction of the individual trees

[48,49]. We used the RandomForest toolbox in MATLAB. The regression random forest algo-

rithm was used with default parameters—500 trees (default) and number of variables sampled

(default value–N/3, where N is the number of variables).

In addition to the test-set predictions, MAGENTA’s predictive ability was also assessed

through tenfold cross-validation. In tenfold cross-validation, 10% of the interactions were ran-

domly blinded and predicted by the model based on information from the remaining 90% of

the interactions (S5 Fig). Through tenfold cross validation, we found that MAGENTA could

accurately predict interactions with compounds that belong to novel chemical classes or with

distinct mechanisms of action. Nevertheless, we found that the prediction accuracy could be

further improved by choosing drugs and metabolic conditions representative of different clas-

ses in the training set.

For predicting interactions in A. baumannii using the orthology mapping approach, ortho-

logous genes in E. coli were obtained from OrtholugeDB. 1633 genes were predicted to be

orthologs of A. baumannii among the E. coli genes based on the reciprocal-best-BLAST-hit

procedure.

The top genes predicted by MAGENTA to account for 75% of the model’s predictive ability

were used for pathway enrichment analysis. KEGG annotations for E. coli were downloaded

using the R Bioconductor GAGE Package. All statistical tests of correlation and overlap, and

Multi-dimensional scaling analysis were performed in MATLAB. The MATLAB implementa-

tion of MAGENTA along with associated experimental data are provided as supplementary

materials.

Alternate metrics to evaluate predictive ability of MAGENTA

Area under the receiver-operating characteristics curve (AUC). We also assessed the

overall accuracy of MAGENTA by calculating the sensitivity (the true positive rate) and speci-

ficity (true negative rate) of the predictions, and by measuring the area under the receiver-

operating characteristics curve (AUC). In a ROC curve, Sensitivity is plotted against the Speci-

ficity for different cut-offs for synergy or antagonism predicted by the model. To calculate

these parameters, predictions and experimental observations were grouped into synergistic/

antagonistic categories. The significance of the consistency was compared with a null model to

assess statistical significance. The null model was obtained through 1,000 random permuta-

tions from the training data set and p-values were determined using a t-test.

We have performed this analysis with both an absolute cut off for experimentally observed

synergy and antagonism (i.e. FIC < -0.2 for Synergy and FIC > 0.2 for Antagonism), and a
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relative cut offs (top and bottom 10%) for each dataset. MAGENTA performs equally well

with both approaches. This suggests that MAGENTA predicts both relative order and the mag-

nitude of change.

MAGENTA quantitatively predicted drug interactions with high sensitivity and specificity,

significantly better than random, and with equal accuracy for both synergy and antagonism.

For the three-way interaction predictions, MAGENTA achieved an AUC of 0.72 (p-

value = 0.06) and 0.85 (p-value = 0.03) for top 10% (< -0.07) and hard threshold of -0.2 respec-

tively for synergistic combinations. The corresponding values for antagonism were 0.76 (p-

value = 0.01) and 0.8 (p-value = 0.002) for top 10% (> 0.9) and hard threshold of +0.2 respec-

tively (S7 Fig).

Similarly, MAGENTA achieved a significantly high accuracy for predicting synergistic and

antagonistic interactions in Glycerol media and for predicting interaction outcomes in A. bau-
mannii (S7 Fig).

Comparison of mean and distribution of predicted and experimental interaction

scores. Since correlation and ANOVA metric are insensitive to the range of the two variables

that are being compared, we also assessed the similarity of the overall mean and distributions

of the predicted and experimental interaction scores to benchmark the accuracy of

MAGENTA. Comparison of the distribution of interaction scores in glycerol media suggests

that MAGENTA can accurately predict the underlying distribution. There was no difference

between the two distributions as assessed by t-test (p-value = 0.94) or non-parametric KS test

(p-value = 0.3). The overall mean of MAGENTA predictions was similar to the experimental

measurements (S8 Fig). Similarly, interaction predictions for Acinetobacter had a similar dis-

tribution to that of the experimental data. There was no difference between the two distribu-

tions as assessed by t-test (p-value = 0.44) or non-parametric KS test (p-value = 0.94) (S8 Fig).

For the three-way drug interaction predictions, MAGENTA was trained on interaction data

from our prior study which used alpha scores instead of FIC to quantify the interactions. Alpha

scores have a larger range and variance (variance = 2.02 and 0.12, mean = 1.13 and 0.28, for alpha

scores and FIC scores in LB media). To control for the differences in distribution, we re-scaled the

output predictions to have the same distribution as FIC scores from LB media. This transforma-

tion doesn’t change the order of our predicted scores, hence we got the same correlation, but the

mean and distribution were more similar to the experimental data (S8 Fig). Since predictions in

glycerol media and in A. baumannii were trained on both alpha and FIC scores generated as train-

ing data in this study, the distribution was similar to the experimental set, which was measured

using the FIC metric. Therefore, MAGENTA captures both range and order if it is trained and

tested using the same metrics. In cases where different metrics are used, the relative order of

MAGENTA predictions are conserved i.e. interactions predicted to be most synergistic will be

most synergistic across other metrics used for experimental quantification.

Comparison with three-way interaction predictions using pairwise interaction data.

To benchmark the accuracy of model predictions for three-way interactions without using

chemogenomics data, we used pairwise combinations of underlying drugs to predict triplet

combinations. Averaging pairwise interactions has been used previously to make successful

predictions for 3-way interactions [35,36]. The advantage of MAGENTA is that it can make

predictions for combinations with new drugs that it was not trained on using chemogenomics

data. In our case, three of 8 the tested drugs are not part of the training set. Hence, out of the

56 triplet combinations, only 10 triplets can be predicted using pairwise data in the training

set. The 10 predictions by averaging correlated with the 3-way data with R = 0.74 (p = 0.01).

MAGENTA predictions for 3-way combinations also correlated significantly with experimen-

tal values for the 56 combinations with R = 0.57 (p< 10−6). Using our training data from our

prior study involving interactions between 19 drugs and chemogenomics data for 72 drugs,

Metabolism And GENomics-based Tailoring of Antibiotic regimens (MAGENTA)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006677 December 31, 2018 18 / 24

https://doi.org/10.1371/journal.pcbi.1006677


MAGENTA can provide predictions for 59,640 3-way combinations, while averaging provides

predictions for only 969 3-way combinations. While, the averaging method has a slightly

higher correlation than MAGENTA, the number of interactions predicted by MAGENTA is

an order of magnitude higher than the averaging method. Therefore, in contrast to the averag-

ing method, MAGENTA can predict a significantly larger number of interactions, can predict

drug interaction changes in different metabolic conditions, and provides biological insight on

the observed interaction.

Finally, we used a null model to benchmark the accuracy of MAGENTA triplet predictions.

We split the model predictions and experimental data as synergistic (log2(FIC) < -0.2),

neutral or antagonistic (> 0.2). We generated a null model based on random sampling from a

trinomial distribution derived from the training set. We compared MAGENTA predictions

with 10,000 random predictions with the same trinomial distribution as the training set.

MAGENTA had a significantly higher accuracy than expected from a null model (p-value = 1

x 10−7).

Supporting information

S1 Fig. The Integration of multiple chemogenomic profiles in MAGENTA. To re-scale the

scores for a multi-drug combination, we normalize them by the number of drugs in a combi-

nation in order to achieve the same units as the model defined for two drugs. The multiplier

(2/3) used in the above figure is the scaling factor used for a three-drug combination. In gen-

eral, the scores are multiplied by 2/N where N is the number of drugs in a combination.

MAGENTA then compares the joint chemogenomic profile with the drug interaction score to

identify genes predictive of drug interaction outcome.

(TIF)

S2 Fig. Multi-dimensional scaling analysis shows that the chemogenomic profiles of meta-

bolic conditions differ from the profiles of drugs. The profiles of metabolic conditions are

shown in red. The outlier ethanol is clustered with drugs because it also causes cellular stress

in addition to being a nutrient. Pearson’s correlation was used as the distance metric for visual-

ization.

(TIF)

S3 Fig. MAGENTA accurately predicts multi-drug interaction outcomes. We assessed

MAGENTA predictions using the Anova statistic. Experimental interaction scores were classi-

fied as strongly synergistic (log-FIC < -0.2, N = 2), neutral or antagonistic (log-FIC > 0.2,

N = 45). The box plot shows the predicted interaction scores by MAGENTA for each of these

three classes. Comparison of predicted scores with the experimental scores revealed that the

predicted scores differed significantly between the three classes (Anova p-value = 0.0003).

(TIF)

S4 Fig. Overview of the steps to predict drug interactions using MAGENTA.

(TIF)

S5 Fig. Testing MAGENTA’s predictive ability through tenfold cross-validation. In tenfold

cross-validation, 10% of all interactions used for training MAGENTA in LB, Glucose and

Glycerol media were randomly removed, and their interaction scores were predicted by the

MAGENTA based on information from the remaining 90% of the interactions. The plot

shows that MAGENTA accurately predicted interaction outcomes in all ten rounds of cross

validation (mean rank correlation R = 0.71)

(TIF)
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S6 Fig. Distribution of interaction outcomes across the three media conditions shows the

shift towards synergy in glucose and glycerol conditions.

(TIF)

S7 Fig. Sensitivity vs specificity curves for MAGENTA predictions of synergy and antago-

nism. Sensitivity measures the true positive rate, which is the fraction of true positive interac-

tions correctly identified; specificity measures the true negative rate. the area under the ROC

curve (AUC) values were determined by the prefcurve function in MATLAB, which measures

sensitivity and specificity of model predictions over a range of thresholds. A and B. Predictions

of synergy and antagonism for Triplet combinations using relative threshold (Panel A) and

hard threshold (Panel B). AUC synergy = 0.72 (p-value = 0.06) and 0.85 (p-value = 0.03) for

top 10% (< -0.07) and hard threshold of -0.2 respectively. AUC antagonism = 0.76 (p-value =

0.01) and 0.8 (p-value = 0.002) for top 10% (> 0.9) and hard threshold of +0.2 respectively. C

and D. Predictions of synergy and antagonism in Glycerol media using relative threshold

(Panel C) and hard threshold (Panel D). AUC synergy = 0.77 (p-value = 0.02) and 0.78 (p-

value = 3.5 x 10−4) for top 10% (< -0.88) and hard threshold of -0.2 respectively. AUC antago-

nism = 0.79 (p-value = 0.019) and 0.86 (p-value = 5 x 10−6) for top 10% (> 0.78) and hard

threshold of +0.2 respectively. E and F. The ROC curves for predictions in A. baumannii using

relative (panel E) and absolute threshold (panel F) for synergy and antagonism. AUC syn-

ergy = 0.94 (p-value = 0.002) and 0.81 (p-value = 0.0003) for top 10% (< -0.95) and hard

threshold of -0.2 respectively. AUC antagonism = 0.74 (p-value = 0.01) and 0.69 (p-value =

0.16) for top 10% (> 0.44) and hard threshold of +0.2 respectively. P-values were estimated by

comparison with 1,000 random permutations from the training data set using a t-test.

(TIF)

S8 Fig. Distribution of predicted and experimental interaction outcomes shows that

MAGENTA can accurately predict the overall distribution. Comparison with non-paramet-

ric KS test shows that there was no significant difference between the two predicted and

observed distributions (p-value > 0.05). A. Distribution of interaction outcomes for

MAGENTA and experimental observation for three-way combinations after normalization of

output predictions. B. Distribution of interaction outcomes for MAGENTA and experimental

observation in glycerol media. C. Distribution of interaction outcomes for MAGENTA and

experimental observation in A. baumannii.
(TIF)

S9 Fig. The drug-drug interaction landscape of M. tuberculosis and S. aureus. The heat

maps show the predicted impact of 9 distinct metabolic environments on the interaction out-

comes of 2556 pairwise drug combinations (synergy (red), antagonism (blue)). The drug com-

binations and metabolic conditions are clustered based on similarity. Panel a and b shows the

corresponding interaction scores for M. tuberculosis and S. aureus respectively.

(TIF)

S10 Fig. Correlation between replicates for the experimental drug interaction screens. The

rank correlation and the corresponding p-value are shown in each plot. We used the arithme-

tic average of two replicates as the drug interaction score for each pair.

(TIF)

S11 Fig. Correlation between replicates for the E. coli drug interaction dataset given in Fig

1. Choosing IC 50–80 (i.e. 50–80% inhibition) gives highly reproducible interaction scores;

hence we used IC70 for calculating interaction scores.

(TIF)
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S12 Fig. The plot shows the agreement between interaction scores obtained using different

IC levels in the E. coli drug interaction data set. Choosing IC 50–80 gives robust interaction

scores with correlation R > 0.8.

(TIF)

S1 Table. Top 10 genes used by MAGENTA model to make predictions in new media con-

ditions.

(PDF)

S2 Table. Top 10 genes used by MAGENTA model to make triplets predictions.

(PDF)

S3 Table. Top 10 pathways used by MAGENTA model to make triplets predictions.

(PDF)

S4 Table. Top 10 pathways enriched in the chemogenomic profile of glucose media relative

to the rest of the genes in the chemogenomics data.

(PDF)

S5 Table. Conservation of top predictive genes in MAGENTA (319 genes that explain 75%

of predictive ability) between E. coli and A. baumannii. The table shows enriched pathways

among the genes that were not conserved in A. baumanni (table A) and those that were con-

served (table B). Top 10 pathways sorted based on p-value are shown (hypergeometric p-

value < 0.05).

(PDF)

S6 Table. Drug combinations that showed robust synergy across all metabolic conditions

in E. coli and A. baumannii. Analysis of 2556 drug combinations revealed 19 combinations in

A. baumannii and 119 combinations in E. coli listed above that showed synergy across all the

growth conditions (Interaction score < -0.5).

(PDF)

S7 Table. Drug combinations that showed robust synergy across all metabolic conditions

in M. tuberculosis and S. aureus. Analysis of 2556 drug combinations revealed 113 combina-

tions in M. tuberculosis and 108 combinations in S. aureus listed above that showed synergy

across all the growth conditions (Interaction score< -0.5).

(PDF)

S1 Text. Contents in supplementary dataset.

(PDF)
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