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A B S T R A C T   

The emergence of coronavirus disease (COVID-19) in China at the end of 2019 has caused a large global 
outbreak. COVID-19 is largely seen as a thrombotic and vascular disease targeting endothelial cells (ECs) 
throughout the body that can provoke the breakdown of central vascular functions. This explains the compli-
cations and multi-organ failure seen in COVID-19 patients including acute respiratory distress syndrome, car-
diovascular complications, liver damage, and neurological damage. Acknowledging the comorbidities and 
potential organ injuries throughout the course of COVID-19 is therefore crucial in the clinical management of 
patients. Here we discuss BPC 157, based primarily on animal model data, as a novel agent that can improve the 
clinical management of COVID-19. BPC 157 is a peptide that has demonstrated anti-inflammatory, cytopro-
tective, and endothelial-protective effects in different organ systems in different species. BPC 157 activated 
endothelial nitric oxide synthase (eNOS) is associated with nitric oxide (NO) release, tissue repair and angio-
modulatory properties which can lead to improved vascular integrity and immune response, reduced proin-
flammatory profile, and reduced critical levels of the disease. As a result, discussion of its use as a potential 
prophylactic and complementary treatment is critical. All examined treatments, although potentiality effective 
against COVID-19, need either appropriate drug development or clinical trials in humans to be suitable for 
clinical use.   

Background 

At present, few treatments have been demonstrated to reduce the 
burden of morbidity and mortality from COVID-19. There has been little 
convincing evidence on interventions that may prevent disease, reduce 
hospitalizations, and reduce the numbers of critical disease progression 
and death. COVID-19 is illustrated to begin with acute respiratory 
distress in the lungs that moves quickly to vascular networks throughout 
the gut, kidney, heart, and brain with associated platelet-endothelial 
dysfunction and abnormally rapid blood clotting. This can lead to se-
vere multisystemic end-organ damage such as neurological, cardiovas-
cular and gastrointestinal complications including ischemic stroke, liver 
damage, intracerebral hemorrhage, encephalopathies, renal failure, 
pulmonary hypertension, arterial thrombosis, and myocardial infarction 
[41,44,99]. This is underscored in common comorbidities of COVID-19 
e.g., obesity, hypertension, and diabetes, diseases characterized with 
disturbed EC integrity [16,65,66]. These risk factors and diseases are all 
related to cardiovascular complications and they account together for an 
overwhelming amount of global deaths and life years lost due to SARS- 
CoV-2 infection. A significant socioeconomic burden on societies and 
health care systems is the consequence of these leading risk factors. EC 

dysfunction and the ensuing clotting and inflammation is a common 
denominator responsible, at least in part, for the multiple and varied 
clinical outcomes seen in COVID-19 patients [16,36,41,65,66,68]. ECs 
are commonly known to be active participants in the regulation of blood 
fluidity, platelet aggregation, vascular tone, inflammation and angio-
genesis [53,55,77,93]. SARS-CoV-2 invades ECs via transmembrane 
angiotensin-converting enzyme 2 (ACE2) receptor, enabled by trans-
membrane protease, serine 2 (TMPRSS2) [44,68]. ECs as a target of 
SARS-CoV-2 results in damaged integrity of vessel barrier, induced 
oxidative stress and triggered inflammatory dynamics across different 
organ systems which promotes pro-coagulative state and excessive 
infiltration of cytokines and chemokines into multiple organs [41]. ECs 
provide a conduit for antigen transport for infected cells and immune- 
cell trafficking from infected organs to secondary lymphoid organs 
[9,51]. In deceased patients, SARS-CoV-2 was found in ECs in vessels of 
multiple tissues including lungs, brain stem, heart, liver, kidneys, and 
pancreas [9]. ECs as a target for SARS-CoV-2 contributes to infection 
manifestations including acute respiratory distress syndrome, strokes, 
cardiac injury, liver injury, frequent causes of mortality in COVID-19 
patients [26,65,66,68]. 

Here we focused on the stable gastric pentadecapeptide, BPC 157 as a 
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potential treatment for COVID-19 patients. BPC 157 is a peptide that has 
demonstrated anti-inflammatory, cytoprotective, and endothelium- 
protecting effects in different organ systems in various species. BPC 
157 has been reviewed as a likely mediator of Robert’s stomach cyto-
protection/adaptive cytoprotection and organoprotection model 
[73–74,79,80], (2018). BPC 157 is largely known as an antiulcer agent, 
shown to be effective in inflammatory bowel disease and multiple 
sclerosis clinical trials in humans with no side effects (PL 10, PLD 116, 
PLD 14736, Pliva, Croatia) [34,39,82,85,84,83]. Preclinical safety 
evaluation of BPC 157 has concluded it can act as a potential drug for 
treating various wounds [106]. In animal models, BPC 157 is a proven 
therapy to treat damage in various organ systems such as the gastroin-
testinal tract, cardiovascular system, central nervous system (CNS). BPC 
157 application reduced oxidative stress [7,20,23,59,103,104], allevi-
ated thrombosis [34,49,91] ameliorated endothelial injury 
[35,73,78,87,80] recovered disturbances in vasculature [7,73,103], has 
beneficial effects on inflammation, edema, wound healing in several 
organs [27,38,39,92,95] , regulated platelet function after challenge 
with aspirin, clopidogrel and cilostazol [21,50], and modulated nitric 
oxide (NO) systems [27,35,70,69,78,86,96]. Here we present the 
research regarding BPC 157 as a protective agent that exerts pleiotropic 
effects on organs targeted from COVID-19, particularly the heart, the 
liver, and the brain. 

Hypothesis 

Here we hypothesize BPC 157 to be a promising treatment for 
COVID-19 patients. Plausibly, BPC 157 may offer improved COVID-19 
outcomes by mitigating cytokine derailment and subsequent multi- 
organ failure based on its anti-inflammatory, cytoprotective, and 
endothelium-protecting effects (e.g., through BPC 157-eNOS in-
teractions). Furthermore, BPC 157 applications may obstruct viral 
replication, improve clinical and biochemical parameters, attenuate 
organ damage from the systemic alterations, provoked from SARS-CoV- 
2. 

Support for Hypothesis 

BPC 157 as an eNOS Promoter 

BPC 157 is predominately shown to interact eNOS, NO system, and 
counteracted the adverse effect of L-NAME (i.e., hypertension; lack of 
NO release in vitro) and L-arginine (i.e.,hypotension; NO over- release in 
vitro) [35,46,73–74,78]. BPC 157 applications have directly shown to 
modulate the vasomotor tone of an isolated aorta in a concentration- and 
NO-dependent manner via the activation of Src-Cav-1-eNOS pathway in 
rats. At higher concentrations, BPC 157 slightly increased vaso-
relaxation in the aorta independent from endothelial activation [35]. 
Severe cases of COVID-19 patients can lead to the loss of eNOS activity 
or eNOS uncoupling by adverse regulation of redox switches in eNOS 
and its up-/down-stream signaling molecules. Endothelial integrity and 
cellular defense requires eNOS function and its ability to generate NO 
[17,67]. Among the pleiotropic cardiovascular actions of eNOS, the 
stimulation of NO production underlies major mechanisms that exert 
anti-apoptotic, anti-inflammatory and oxidative/nitrative-suppressive 
effects. Ultimately, a pivotal vector that supports endothelial integrity 
and permeability. NO release is the most studied mediator in the mod-
ulation of vascular tone via relaxation of smooth muscle cells, has an 
antithrombotic role due to the attenuation of platelet activation and 
aggregation, regulates the migration and adhesion of leukocytes on EC, 
and inhibits vascular smooth muscle cell proliferation. NO deficiency is 
indicative of injured vessels; ultimately related to hypertension and 
thrombus formation frequently seen in severe COVID-19 patients. In 
practice, NO has shown to be clinically effective in the treatment of 
congenital heart disease, mitral valvular disease combined with pul-
monary hypertension and in orthotopic cardiac transplantation patients. 

Notably, eNOS function and activity in the endothelium is not the sole 
mechanism essential for vascular integrity and homeostasis. Nonethe-
less, this signaling pathway represents an attractive target for pharma-
cological therapy of COVID-19 and various cardiovascular diseases. 

In addition to NO’s pivotal role in vasculature maintenance, NO has 
some anti-viral properties in the body. NO reportedly interferes with the 
interaction between coronavirus viral S-protein and its cognate host 
receptor, ACE-2 [4]. NO or its derivatives has shown to cause a reduction 
in viral RNA production in the early steps of viral replication, including 
coronaviruses based on various in vitro and in vivo studies [3,5,4,61,2]. 
Non-specific antiviral effects of NO have been reported in a variety of 
viral infections, including HIV, vaccinia virus, enterovirus and corona-
virus [31,63,29,107,2]. NO has several direct modes of action as an 
antiviral agent. NO is involved in viral enzyme inhibition through 
nitrosylation of viral proteins [14,32,33,72]. Specifically, NO-mediated 
S-nitrosylation of viral cysteine proteases and host serine protease, 
TMPRSS2 are both critical in viral cellular entry, and seem to be NO 
sensitive [32,33,40,47,65]modulation of viral-encoded transcription 
factors. NO inactivates the protease 3C, an enzyme essential for coro-
navirus replication and is considered an important therapeutic target for 
diseases caused by coronaviruses, including COVID-19. NO S-nitro-
sylated the cysteine residue in the active site of protease 3C, inhibiting 
protease activity and interrupting the viral life cycle [63,31,29]. NO- 
based therapies (e.g., inhaled NO) have demonstrated success in clin-
ical settings for the treatment of past respiratory viruses. and was shown 
to relieve the cardiopulmonary and vascular complications from SARS- 
CoV-2 infection [6,24]. Inhaled NO is suggested as a useful intervention 
for COVID-19 in multiple stages such as prevention or therapy, including 
prevention of infection, intervention of mild patients, alternative rescue 
treatment of moderate and severe patients, and adjuvant treatment of 
mechanically ventilated patients. While eNOS-derived NO has been 
shown to inhibit microbial growth from mycobacterium tuberculosis in 
the lymphatic system when the ECs represent the site of microbial in-
vasion [54], eNOS derived NO implications on COVID-19 patients has 
not been investigated. Theoretically, it is plausible BPC 157-eNOS/NO 
interactions may be an early treatment by lowering viral burden and 
attenuating platelet-endothelial dysfunction and associated thrombosis. 

BPC 157 Cardioprotective Applications in Animal Studies 

BPC 157 endothelial protective and cytoprotective effects have led to 
its investigation as an angio-modulatory agent in animal models. BPC 
157 administration has consistently supported blood vessel recruitment 
in response to blood vessel disturbances (i.e. perforation, obstruction, 
occlusion) [7,73,103]. BPC 157 has shown to prevent and resolve infe-
rior cava vein hypertension [25,103], pulmonary hypertension 
[27,86,97], disturbances in hepatic arteries [39,49,79], portal vein 
tributaries [25,49], deep vein thrombosis in rodents subjected to arterial 
clamping [49,104], reduced the duration of arrhythmias during hypoxia 
and reoxygenation in isolated guinea pig hearts [8], treated congestive 
heart failure in mice and rats subjected to doxorubicin, bupivacaine, and 
lidocaine induced cardiotoxicity [57,58,90,108]. Cardiac injury allevi-
ation from BPC 157 was measured in remediated heart beats i.e., ven-
tricular tachycardia, bradycardia, T-wave elevation, QTc prolongation 
and asystole in rats [57,58,90,108]. Further, BPC 157 in a single 
application, counteracted right heart failure induced by acute throm-
botic coronary occlusion in rats by reigning in increased P wave 
amplitude, tachycardia and ST-elevation [57,58,90,108]. BPC 157 also 
prevented pulmonary interstitial edema and reduced lymphocyte count 
and capillary congestion [25]. In the same vein, BPC 157 has shown to 
counteract lung lesions in rodent models [89]. This is notable, as these 
outcomes mimic the outcomes seen with acute respiratory distress 
syndrome evoked from SARS-CoV-2 [1,100]. In rats subjected to 
monocrotaline-induced pulmonary arterial hypertension BPC 157 ap-
plications prevented pulmonary hypertension and advanced pulmonary 
hypertension was rapidly attenuated and then completely eliminated 

S.A. Deek                                                                                                                                                                                                                                         



Medical Hypotheses 158 (2022) 110736

3

[97]. Moreover, Vukojevic et al. demonstrated BPC 157 application as a 
therapy Virchow’s triad in rats (e.g., the prevention and reversal of both 
caval hypertension and aortic hypotension; counteracted the effects and 
residual effects of tachycardia, thrombosis, and thrombocytopenia) 
[103]. These effects were, at least in part, carried out through increased 
Egr, Nos3, Srf, and Kras and decreased Egr1, Vegfr2, and Plcɣ [103]. 
Increased Nos3 and decreased Vegfr2, despite the strictly Vegfr2 pro-
moting effects of many growth factors and peptides, are discussed as 
therapeutic strategies for SARS-CoV-2 damage in the cardiovascular 
system [44]. Virchow’s triad has established overlap with the common 
complications in severe COVID-19 outcomes in patients such as endo-
thelial injury, hypercoagulability, and thromboembolic risk in COVID- 
19 patients [62]. The compiled findings suggest BPC 157, in animal 
models, is an effective therapy for disturbances in the cardiovascular 
system that are commonly seen in COVID-19 patients. These distur-
bances include venous thromboembolism and coagulopathy from in-
flammatory and vascular disturbances, myocardial damage, 
arrhythmias, and pulmonary embolisms and may enhance the therapy 
for acute respiratory distress syndrome. 

BPC 157 Lung and Liver Applications 

Liver damage is associated with outcomes in COVID-19 patients 
[37,60,105]. Data from observational studies illustrates the association 
between comorbid chronic liver disease, acute liver injury and inflam-
mation, In COVID-19 patients, cytokine production and elevated ele-
vations in liver enzymes aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), alkaline phosphatase (ALP), lactic dehydroge-
nase (LDH), creatine kinase (CK), gamma-glutamyl transferase (GGT), 
and bilirubin levels and outcomes of COVID-19 hospitalized patients 
[15,37,60,105]. BPC 157 applications have persistently demonstrated 
favorable outcomes in the liver by resolving gastrointestinal lesions, bile 
duct ligation, liver lesions and hepatic encephalopathy in rodent models 
[25,38,39,56,70,69,76,87]. Interestingly, there is an observed rela-
tionship between liver damage and chronic lung disease [13,52,75]. 
Kolovrat et al. reinforced this notion, by using BPC 157 therapy in rats 
subjected to Pringle maneuver i.e., portal triad obstruction where BPC 
157 rapidly activated portacaval shunt, normalized arterial and 
disturbed blood pressure, counteracted formation of blood clots and 
cardiac rhythm changes and counteracted gastrointestinal mucosal 
lesion and lung lesions [49]. Further, in rats mice subjected to conges-
tive heart failure, 4 week administration of BPC 157 counteracted raised 
serum liver enzyme values ALT, AST, ALP, LDH, CK in ug dosage of BPC 
157 in rats [57]. Likewise, in research investigating BPC 157 on liver 
lesions, BPC 157 counteracted increased liver enzymes AST, ALT, ALP, 
[20,76], and GGT and total bilirubin [39,76,79] as well as decreased IL- 
6, TNF-α, IL-1β levels in liver tissue [76]. In summary, BPC 157 has 
shown to reign in inflammatory cytokines and promote function in both 
the lung and liver in animal models, and may recover damage from 
inflammation and cytokine release in these organs provoked from 
COVID-19 [12,22,30,45]. 

BPC 157 Neuroprotective Applications in Animal Models 

COVID-19 can cause profound molecular changes induced by 
inflammation in the brain. More specifically, induced significant cyto-
kine and chemokine production, infiltration of peripheral immune cells, 
edema, increased blood–brain barrier (BBB) permeability and break-
down [64]. This leads to neurological complications frequently seen in 
COVID-19 patients include encephalopathies, strokes, peripheral nerve 
damage [19,32,64]. BPC 157 has demonstrated beneficial effects on 
CNS, an organ system with established vulnerability to SARS-CoV-2 
onset [11,43,64,94,95]. BPC 157 can act through different vasoactive 
pathways and systems that promote hippocampal neuron survival and 
growth that has demonstrated bidirectional effects on the gut-brain axis. 
In rodent models BPC 157 reduced both immediate and delayed damage 

induced by brain trauma [95,104] counteracted brain lesions from 
cuprizone [48,85] counteracted brain encephalopathies from alcohol 
usage (acute and chronic) [70,69,87], NSAIDs, and insulin overdose 
[38,85]. In operated rats subjected to bilateral carotid artery occlusion, 
BPC 157 remedied both early and delayed neural hippocampal damage, 
resolved ischemia/reperfusion injuries in rats and consequently theo-
rized as a therapeutic intervention for stroke [104]. This therapeutic 
effect of BPC 157 was observed to be carried out by elevated Egr1, Akt1, 
Kras, Src, Foxo, Srf, Vegfr2, Nos3, and Nos1, and decreased Nos2, NF-κB 
[104]. Increased expression of Nos3, Nos1, and decreased expression of 
Nos2, NF-κB have all been theorized as strategic therapeutic targets in 
mitigating COVID-19 effects on the brain [64]. NO released by Nos3 and 
Nos1 scavenges oxygen free radicals, inhibits the expression of adhesion 
molecules, and regulates platelet aggregation and lymphocyte adhesion 
in the brain [42,98]. Furthermore, BPC 157 applications decreased NF- 
κB, Nos2 gene expression and decreased pro-inflammatory gene Cox-2 in 
intestinal, liver and brain lesions in rats [20,56]. These decreases are 
implicated with reduced binding of TNF-α release. Modulating NF-κB, 
Nos2 and inhibiting TNF-α, Cox-2 release have been targets that can 
derail the inflammatory cytokine buildup seen in COVID-19 patients 
[30,102]. These functions are important for cerebral microvascular tone 
regulation, BBB integrity, and procoagulant stimulation [18,88]. 
Further, BPC 157 has shown to modulate neurotransmitter systems such 
as dopaminergic [82], serotonergic [94], GABAergic [43], and opioid 
systems [10]. Reestablishing homeostasis in these neurotransmitter 
systems allows better resilience for COVID-19 patients. Together these 
findings suggest BPC 157 applications may relieve the neuro-
inflammatory and cerebrovascular complications from COVID-19 such 
as encephalopathies, strokes, peripheral nerve damage, inflammation of 
the brain. These mechanisms are considered therapeutic targets in the 
management and treatment of patients with COVID-19. 

Limitations 

BPC 157 is a clinical infant with a limited number of published 
clinical trials in humans, and is investigated among a limited number of 
labs. Many of the cited studies have not considered potential negatives 
associated with the use of BPC 157, as well as no clear conflicts in 
literature-based ideas being seen. The reviewed research is limited in 
terms of microscopic level measures in various investigations. As a 
result, the scope of BPC 157 efficacy is incomplete. At present, the 
majority of studies are predominantly limited to mostly animal models 
and the efficacy of BPC 157 in humans has not been explored exten-
sively. Since there are obvious differences between rodent and human 
physiology, caution needs to be practiced in extrapolating the efficacy of 
novel agents to clinical applications in humans. However, it should be 
underscored BPC 157 is a peptide derived from human gastric juices, 
and its stability and protective effect of BPC 157 has been widely re-
ported. The emphasis about the relative paucity of the BPC 157 in 
human clinical data should not be not be discounted [28,74,83,81]. BPC 
157 was proved to be efficacious and safe in the available clinical trials 
in humans for inflammatory bowel disease, mild to moderate ulcerative 
colitis (PL-10, PLD-116, PL14736, Pliva, Croatia) [101,71]. A multi-
center, randomized, double blind, placebo-controlled phase II study of 
PL 14,736 enema in the treatment of mild-to-moderate ulcerative colitis 
as well as in the experimental rats’ studies [23]. It has been established 
to have a very safe profile (LD1 could be not achieved, no side effects in 
clinical trials) [71,74], 2020). This point has been recently reinforced, in 
preclinical safety evaluation of BPC 157 in both chronic and acute ap-
plications [106]. Therefore, some level of safety in human subjects can 
be assumed. 

Conclusion 

BPC 157 proposes many potential effects to treat a range of condi-
tions. Notably, BPC 157-eNOS interactions represents an attractive 
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therapeutic target that has not yet been pharmacologically employed in 
COVID-19 patients. Furthermore, BPC 157 plays a role in several bio-
logical gene expressions and has demonstrated pleiotropic immuno-
modulatory properties that have proven extensive beneficial effects in 
animal models, resolving both localized and systemic damage of soft 
tissues. BPC 157 has persistently exhibited anti-arrhythmic, endothelial- 
protective and anti-inflammatory effects and has shown to prevent and 
reverse thrombosis formation, maintain platelet function, alleviate pe-
ripheral vascular occlusion disturbances in animal models. All attrib-
uting factors to COVID-19 outcomes. As a result, BPC 157 poses as a 
necessary candidate in need of extensive investigation in preventing 
severe COVID-19. In animal models, BPC 157 has improved liver 
enzyme profile and disturbances, lung disturbances, cardiovascular 
disturbances, cerebrovascular disturbances and promoted homeostasis 
among neurotransmitter systems. All common complications in COVID- 
19 patients that can lead to morbidity or long-haul COVID-19. Although 
in vivo studies of animal models revealed a broad range of protective 
effects of BPC 157, clinical trials in humans are relatively limited and are 
necessary to appraise the potential efficacy and scope of BPC 157 in 
clinical settings for COVID-19. Currently there is insufficient data to 
conclude either for or against the use of BPC 157 for the treatment of 
COVID-19 in humans. Nevertheless, all the studies to date that have 
tested BPC 157 have demonstrated substantial positive healing effects 
for various injury types in various organ systems. Theoretically, in early 
stages of the infection, BPC 157 may obstruct viral replication, improve 
blood vessel integrity, and suppress the onset of virus-induced cytokine 
cascades. In late stages of the disease, it may facilitate recovery of 
damaged tissues from severe COVID-19. In addition, BPC 157 as a 
therapeutic intervention may be a tool to further delineate the rela-
tionship between cerebrovascular, cardiovascular, liver and lung 
toxicity seen in COVID-19 infections. Future clinical trials are needed to 
prove the potential therapeutic use of BPC 157 in COVID-19 patients. 
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