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This paper deals with the circular pattern matching (CPM) problem, which appears as an interesting problem in many biological
contexts. CPM consists in finding all occurrences of the rotations of a patternP of length𝑚 in a textT of length 𝑛. In this paper,
we present SimpLiFiCPM (pronounced “Simplify CPM”), a simple and lightweight filter-based algorithm to solve the problem.We
compare our algorithm with the state-of-the-art algorithms and the results are found to be excellent. Much of the speed of our
algorithm comes from the fact that our filters are effective but extremely simple and lightweight.

1. Introduction

The classical pattern matching problem is to find all the
occurrences of a given pattern P of length 𝑚 in a text
T of length 𝑛, both being sequences of characters drawn
from a finite character set Σ. This problem is interesting
as a fundamental computer science problem and is a basic
requirement of many practical applications. The circular
pattern, denoted by C(P), corresponding to a given pattern
P = P

1
⋅ ⋅ ⋅P
𝑚
, is formed by connecting P

1
with P

𝑚
and

forming a sort of a cycle; this gives us the notion where
the same circular pattern can be seen as 𝑚 different linear
patterns, which would all be considered equivalent. In the
circular pattern matching (CPM) problem, we are interested
in pattern matching between the text T and the circular
patternC(P) of a given patternP.We can viewC(P) as a set
of 𝑚 patterns starting at positions 𝑗 ∈ [1 : 𝑚] and wrapping
around the end. In other words, in CPM, we search for all
“conjugates” (twowords𝑥, 𝑦 are conjugate if there exist words
𝑢, V such that 𝑥 = 𝑢V and 𝑦 = V𝑢) of a given pattern in a given
text.

The problem of circular pattern matching has been con-
sidered in [1], where an O(𝑛)-time algorithm is presented. A

naive solution with quadratic complexity consists in applying
a classical algorithm for searching a finite set of strings after
having built the trie of rotations ofP.The approach presented
in [1] consists in preprocessing P by constructing a suffix
automaton of the stringPP, by noting that every rotation of
P is a factor ofPP. Then, by feedingT into the automaton,
the lengths of the longest factors of PP occurring in T

can be found by the links followed in the automaton in
time O(𝑛). In [2], the authors have presented an optimal
average-case algorithm for CPM, by also showing that the
average-case lower bound for the (linear) pattern matching
of O(𝑛 log

𝜎
𝑚/𝑚) also holds for CPM, where 𝜎 = |Σ|.

Recently, in [3], the authors have presented two fast average-
case algorithms based on word-level parallelism. The first
algorithm requires average-case timeO(𝑛 log

𝜎
𝑚/𝑤), where𝑤

is the number of bits in the computer word. The second one
is based on a mixture of word-level parallelism and 𝑞-grams.
The authors have shown that with the addition of 𝑞-grams,
and by setting 𝑞 = O(log

𝜎
𝑚), an optimal average-case time

of O(𝑛 log
𝜎
𝑚/𝑚) can be achieved. Very recently in [4], the

authors have presented an efficient algorithm for CPM that
runs in O(𝑛) time on average. To the best of our knowledge,
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this is the fastest running algorithm for CPM in practice to
date.

Notably, indexing circular patterns [5] and variations
of approximate circular pattern matching under the edit
distancemodel [6] have also been considered in the literature.
Approximate circular pattern matching has also been studied
recently in [4, 7]. In this paper however, we focus on the exact
version of CPM.

Apart frombeing interesting from the pure combinatorial
point of view, CPM has applications in areas like geometry,
astronomy, computational biology, and so forth. For example,
the following application in geometry was discussed in [5].
A polygon may be encoded spelling its coordinates. Now,
given the data stream of a number of polygons, we may
need to find out whether a desired polygon exists in the
data stream. The difficulty in this situation lies in the fact
that the same polygonmay be encoded differently depending
on its “starting” coordinate and hence, there exist 𝑘 possible
encodings where 𝑘 is the number of vertices of the polygon.
Therefore, instead of traditional patternmatching, we need to
resort to problem CPM. This problem seems to be useful in
computer graphics as well and hencemay be used as a built-in
function in graphics cards handling polygon rendering.

CPM in fact appears in many biological contexts. This
type of circular pattern occurs in the DNA of viruses [9,
10], bacteria [11], eukaryotic cells [12], and archaea [13]. As
a result, as has been noted in [14], algorithms on circular
strings seem to be important in the analysis of organismswith
such structures. Circular strings have also been studied in
the context of sequence alignment. In [15], basic algorithms
for pairwise and multiple circular sequence alignment have
been presented. These results have later been improved in
[16], where an additional preprocessing stage is added to
speed up the execution time of the algorithm. In [17], the
authors also have presented efficient algorithms for finding
the optimal alignment and consensus sequence of circular
sequences under the Hamming distance metric.

Furthermore, as has been mentioned in [5], this problem
seems to be related to the much studied swap matching
problem (in CPM, the patterns can be thought of as having a
swap of two parts of it) [18] and also to the problem of pattern
matching with address error (the circular pattern can be
thought of as having a special type of address error) [19, 20].
For further details on the motivation and applications of this
problem in computational biology and other areas the readers
are kindly referred to [9–17] and references therein.

In this paper, we present SimpLiFiCPM (pronounced
Simplify CPM), which is a fast and efficient algorithm for the
circular pattern matching problem based on some filtering
techniques. In particular, we employ a number of simple and
effective filters to preprocess the given pattern and the text.
After this preprocessing, we get a text of reduced length on
which we can apply any existing state-of-the-art algorithms
to get the occurrences of the circular pattern. So, as the name
sounds, SimpLiFiCPM, in some sense, simplifies the search
space of the circular pattern matching problem.

We have conducted extensive experiments to compare
our algorithm with the state-of-the-art algorithms and the
results are found to be excellent. Our algorithm turns out

to be much faster in practice because of the huge reduction
in the search space through filtering. Also, the filtering
techniques we use are simple and lightweight but as can be
realized from the results extremely effective.

The rest of the paper is organized as follows. Section 2
gives a preliminary description of some terminologies and
concepts related to stringology that will be used throughout
this paper. In Section 3 we describe our filtering algorithms.
Section 4 presents the experimental results. Section 5 draws
conclusion followed by some future research directions.

2. Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string.
The length of a string 𝑤 is denoted by |𝑤|. The empty string
𝜖 is a string of length 0; that is, |𝜖| = 0. Let Σ+ = Σ

∗
− {𝜖}.

For a string 𝑤 = 𝑥𝑦𝑧, 𝑥, 𝑦, and 𝑧 are called a prefix, factor
(or, equivalently, substring), and suffix of 𝑤, respectively. The
𝑖th character of a string 𝑤 is denoted by 𝑤[𝑖] for 1 ≤ 𝑖 ≤ |𝑤|,
and the factor of a string 𝑤 that begins at position 𝑖 and ends
at position 𝑗 is denoted by 𝑤[𝑖 : 𝑗] for 1 ≤ 𝑖 ≤ 𝑗 ≤ |𝑤|. For
convenience, we assume 𝑤[𝑖 : 𝑗] = 𝜖 if 𝑗 < 𝑖. A 𝑘-factor is a
factor of length 𝑘.

A circular string of length𝑚 can be viewed as a traditional
linear string which has the leftmost and rightmost symbols
wrapped around and stuck together in some way. Under this
notion, the same circular string can be seen as 𝑚 different
linear strings, which would all be considered equivalent.
Given a string P of length 𝑚, we denote by P𝑖 = P[𝑖 :

𝑚]P[1 : 𝑖 − 1], 0 < 𝑖 < 𝑚, the 𝑖th rotation ofP andP0 = P.

Example 1. Suppose we have a pattern P = 𝑎𝑡𝑐𝑔𝑎𝑡𝑔.
The pattern P has the following rotations (i.e., conjugates):
P1 = 𝑡𝑐𝑔𝑎𝑡𝑔𝑎, P2 = 𝑐𝑔𝑎𝑡𝑔𝑎𝑡, P3 = 𝑔𝑎𝑡𝑔𝑎𝑡𝑐, P4 =

𝑎𝑡𝑔𝑎𝑡𝑐𝑔, P5 = 𝑡𝑔𝑎𝑡𝑐𝑔𝑎, and P6 = 𝑔𝑎𝑡𝑐𝑔𝑎𝑡.

Here we consider the problem of finding occurrences of a
pattern stringP of length 𝑚 with circular structure in a text
string T of length 𝑛 with linear structure. For instance, the
DNA sequence of many viruses has a circular structure. So
if a biologist wishes to find occurrences of a particular virus
in a carrier’s DNA sequence, which may not be circular, (s)he
must locate all positions in T where at least one rotation of
P occurs. This is the problem of circular pattern matching
(CPM).

We consider the DNA alphabet, that is, Σ = {𝑎, 𝑐, 𝑔, 𝑡}.
In our approach, each character of the alphabet is associated
with a numeric value as follows. Each character is assigned
a unique number from the range [1 ⋅ ⋅ ⋅ |Σ|]. Although this is
not essential, we conveniently assign the numbers from the
range [1 ⋅ ⋅ ⋅ |Σ|] to the characters of Σ following their inherent
lexicographical order. We use 𝑛𝑢𝑚(𝑥), 𝑥 ∈ Σ, to denote the
numeric value of the character 𝑥. So, we have 𝑛𝑢𝑚(𝑎) = 1,
𝑛𝑢𝑚(𝑐) = 2, 𝑛𝑢𝑚(𝑔) = 3, and 𝑛𝑢𝑚(𝑡) = 4. For a string 𝑆, we
use the notation 𝑆

𝑁
to denote the numeric representation of

the string 𝑆; 𝑆
𝑁
[𝑖] denotes the numeric value of the character

𝑆[𝑖]. So, if 𝑆[𝑖] = 𝑔 then 𝑆
𝑁
[𝑖] = 𝑛𝑢𝑚(𝑔) = 3. The concept of

circular strings and their rotations also applies naturally on
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their numeric representations as is illustrated in Example 2
below.

Example 2. Suppose we have a pattern P = 𝑎𝑡𝑐𝑔𝑎𝑡𝑔. The
numeric representation of P is P

𝑁
= 1423143. And this

numeric representation has the following rotations: P1
𝑁
=

4231431, P2
𝑁
= 2314314, P3

𝑁
= 3143142, P4

𝑁
= 1431423,

P5
𝑁
= 4314231, andP6

𝑁
= 3142314.

The problem we handle in this paper can be formally
defined as follows.

Problem 3 (circular pattern matching (CPM)). Given a pat-
tern P of length 𝑚 and a text T of length 𝑛 ≥ 𝑚, find all
factorsF ofT such thatF = P𝑖, for some 0 ≤ 𝑖 < 𝑚. And
if we haveF = P𝑖 for some 0 ≤ 𝑖 < 𝑚, then we say that the
circular patternC(P)matchesT at position 𝑖.

In the context of our filter-based algorithm the concept
of false positives and negatives is important. So, we briefly
discuss this concept here. Suppose we have an algorithm A
to solve a problemB. Now suppose that Strue represents the
set of true solutions for problem B. Further suppose that
A computes the set SA as the set of solutions for B. Now
assume that Strue ̸= SA. Then, the set of false positives can
be computed as follows: SA \ Strue, where “\” refers to the
set difference operation. In other words, the set computed
by A contains some solutions that are not true solutions
for problem B. And these are the false positives, because
SA falsely marked these as solutions (i.e., positive). On the
other hand, the set of false negatives can be computed as
follows: Strue \ SA. In other words, false negatives are those
members in Strue that are absent in SA. These are false
negatives because SA falsely marked these as nonsolutions
(i.e., negative).

3. Our Approach

As has been mentioned above, our algorithm is based on
some filtering techniques. Suppose we are given a patternP
and a text T. We will frequently and conveniently use the
expression “C(P)matchesT at position 𝑖” (or, equivalently,
“P circularly matches T at position 𝑖”) to indicate that one
of the conjugates ofPmatchesT at position 𝑖. We start with
a brief overview of our approach below.

3.1. Overview of SimpLiFiCPM. In SimpLiFiCPM, we first
employ a number of filters to compute a set N of indexes
of T such that C(P) matches T at position 𝑖 ∈ N. As will
be clear shortly, our filters are unable to compute the true set
of indexes and hence N may have false positives. However,
our filters are designed in such a way that there are no false
negatives. Hence, for all 𝑗 ∉ N, we can be sure that there
is no match. On the other hand, for all 𝑖 ∈ N, we may or
may not have a match; that is, we may have false positives.
So, after we have computed N, we compute T󸀠, a reduced
version of T concatenating all the factors F[𝑖 ⋅ ⋅ ⋅ 𝑖 + 𝑚 − 1],
𝑖 ∈ N, putting a special character $ ∉ Σ in between the

factors. One essential detail is as follows. There can be 𝑖,
𝑗 ∈ N such that 1 < 𝑗 − 𝑖 < 𝑝. In other words, there
can exist overlapping factors matching with C(𝑃). However,
this can be handled easily through simple bookkeeping as
will be evident from our algorithm in later sections. Clearly,
once we have computed the reduced text T󸀠 we can employ
any state-of-the-art algorithm to solve CPM onT󸀠 to get the
actual occurrences. So the most essential and useful feature
of SimpLiFiCPM is the application of filters to get a reduced
text on which any existing algorithm can be applied to solve
CPM.

3.2. Filters of SimpLiFiCPM. In SimpLiFiCPM, we employ
6 filters. In this section we describe these filters. We also
discuss the related notions and notations needed to describe
these filters. In what follows we describe our filters in the
context of two strings of equal length 𝑛, namely, P and T,
where the former is a circular string and the latter is linear.
We will devise and apply different functions on these strings
and present observations related to these functions which
in the sequel will lead us to our desired filter. The key to
our observations and the resulting filters is the fact that each
function we devise results in a unique output when applied
to the rotations of a circular string. For example, consider a
hypothetical functionX.Wewill always have the relation that
X(P) = X(P𝑖) for all 1 ≤ 𝑖 < 𝑛. Recall that P0 actually
denotes P. For the sake of conciseness, for such functions,
wewill abuse the notation a bit and useX(C(P)) to represent
X(P𝑖) for all 0 ≤ 𝑖 < |P|.

3.2.1. Filter 1. We define the function 𝑠𝑢𝑚 on a string P of
length 𝑚 as follows: 𝑠𝑢𝑚(P) = ∑

𝑚

𝑖=1
𝑃
𝑁
[𝑖]. Our first filter,

Filter 1, is based on this 𝑠𝑢𝑚 function. We have the following
observation.

Observation 1. Consider a circular string P and a linear
stringT both having length 𝑛. If C(P) matchesT, then we
must have 𝑠𝑢𝑚(C(P)) = 𝑠𝑢𝑚(T).

Example 4. Consider P = 𝑎𝑡𝑐𝑔𝑎𝑡𝑔𝑇 = 𝑡𝑔𝑎𝑡𝑐𝑔𝑎. As can be
easily verified, hereP circularlymatchesT. In fact thematch
is due to the conjugateP5. Now we haveT

𝑁
= 4314231 and

𝑠𝑢𝑚(T) = 18. Then, according to Observation 1, we must
have 𝑠𝑢𝑚(C(P)) = 18. This can indeed be verified easily.

Now consider another string T󸀠 = 𝑎𝑡𝑎𝑔𝑐𝑡𝑔, which is
slightly different from T. It can be easily verified that C(P)
does not matchT󸀠. Now,T󸀠

𝑁
= 1413243 and hence here also

we have 𝑠𝑢𝑚(T󸀠) = 18 = 𝑠𝑢𝑚(C(P)). This is an example of
a false positive with respect to Filter 1.

3.2.2. Filters 2 and 3. Our second and third filters, that is,
Filters 2 and 3, depend on a notion of distance between
consecutive characters of a string. The distance between
two consecutive characters of a string P of length 𝑚

is defined by 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(P[𝑖],P[𝑖 + 1]) = PN[𝑖] −

PN[𝑖 + 1], where 1 ≤ 𝑖 ≤ 𝑚 − 1. We define
𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃) = ∑

𝑚−1

𝑖=1
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(P[𝑖],P[𝑖 + 1]). We also

define an absolute version of it: 𝑎𝑏𝑠 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃) =
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∑
𝑚−1

𝑖=1
𝑎𝑏𝑠(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(P[𝑖],P[𝑖+1])), where 𝑎𝑏𝑠(𝑥) returns the

magnitude of 𝑥 ignoring the sign. Before we apply these two
functions on our strings to get our filters, we need to do a
simple preprocessing on the respective string, that is, P in
this case as follows. We extend the stringP by concatenating
the first character of P at its end. We use 𝑒𝑥𝑡(P) to denote
the resultant string. So, we have 𝑒𝑥𝑡(P) = PP[1]. Since
𝑒𝑥𝑡(P) can simply be treated as another string, we can easily
extend the notation and concept ofC(P) over 𝑒𝑥𝑡(P) andwe
continue to abuse the notation a bit for the sake of conciseness
as mentioned at the beginning of Section 3.2 (just before
Section 3.2.1).

Now we have the following observation which is the basis
of our Filter 2.

Observation 2. Consider a circular string P and a linear
stringT both having length 𝑛 and assume thatA = 𝑒𝑥𝑡(P)
and B = 𝑒𝑥𝑡(T). If C(P) matches T, then, we must
have 𝑎𝑏𝑠 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(C(A)) = 𝑎𝑏𝑠 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(B).
Note carefully that the function 𝑎𝑏𝑠 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒()has been
applied on the extended strings.

Example 5. Consider the same two strings of Example 4, that
is, P = 𝑎𝑡𝑐𝑔𝑎𝑡𝑔𝑇 = 𝑡𝑔𝑎𝑡𝑐𝑔𝑎. Here P circularly matches
T (due to the conjugate P5). Now consider the extended
strings and assume that A = 𝑒𝑥𝑡(P) and B = 𝑒𝑥𝑡(T).
We have T

𝑁
= 4314231. Hence B

𝑁
= 43142314. Hence,

𝑎𝑏𝑠 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(B) = 14. It can be easily verified that
𝑎𝑏𝑠 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(C(A)) is also 14.

Now consider another string T󸀠 = 𝑎𝑡𝑎𝑔𝑐𝑡𝑔 of the same
length, which is slightly different from T. It can easily be
checked that C(P) does not match T󸀠. However, assuming
thatB󸀠 = 𝑒𝑥𝑡(T󸀠)we find that 𝑎𝑏𝑠 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(B󸀠) is still
14. So, this is an example of a false positive with respect to
Filter 2.

Now we present the following related observation which
is the basis of our Filter 3. Note thatObservation 2 differs with
Observation 3 only through using the absolute version of the
function used in the latter.

Observation 3. Consider a circular string P and a linear
stringT both having length 𝑛 and assume thatA = 𝑒𝑥𝑡(P)
and B = 𝑒𝑥𝑡(T). If C(P) matches T, then, we must have
𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(C(A)) = 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(B). Note carefully
that the function 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒() has been applied on the
extended strings.
Example 6. Consider the same two strings of previous exam-
ples, that is, P = 𝑎𝑡𝑐𝑔𝑎𝑡𝑔𝑇 = 𝑡𝑔𝑎𝑡𝑐𝑔𝑎. Here P circularly
matches T (due to the conjugate P5). Now consider the
extended strings and assume that A = 𝑒𝑥𝑡(P) and B =

𝑒𝑥𝑡(T). We have T
𝑁
= 4314231. Hence B

𝑁
= 43142314.

Hence, 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(B) = 0. It can be easily verified that
𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(C(A)) is also 0.

Now consider another string T󸀠 = 𝑎𝑡𝑎𝑔𝑐𝑡𝑔 of the same
length, which is slightly different from T. It can easily be
checked that C(P) does not match T󸀠. However, assuming
that B󸀠 = 𝑒𝑥𝑡(T󸀠) we find that 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(B󸀠) is still 0.
So, this is an example of a false positive with respect to Filter
3.

3.2.3. Filter 4. Filter 4 uses the 𝑠𝑢𝑚() function used by Filter
1, albeit in a slightly different way. In particular, it applies the
𝑠𝑢𝑚() function on individual characters. So, for 𝑥 ∈ Σ we
define 𝑠𝑢𝑚

𝑥
(P) = ∑

1≤𝑖≤|P|,P[𝑖]=𝑥 𝑃𝑁[𝑖]. Now we have the
following observation.

Observation 4. Consider a circular string P and a linear
stringT both having length 𝑛. IfC(P)matchesT, then, we
must have 𝑠𝑢𝑚

𝑥
(C(P)) = 𝑠𝑢𝑚

𝑥
(T) for all 𝑥 ∈ Σ.

Example 7. Consider the same two strings of previous exam-
ples, that is, P = 𝑎𝑡𝑐𝑔𝑎𝑡𝑔𝑇 = 𝑡𝑔𝑎𝑡𝑐𝑔𝑎. Recall that P
circularly matches T (due to the conjugate P5). It is easy to
calculate that 𝑠𝑢𝑚

𝑎
(T) = 2, 𝑠𝑢𝑚

𝑐
(T) = 2, 𝑠𝑢𝑚

𝑔
(T) = 6,

and 𝑠𝑢𝑚
𝑡
(T) = 8. Hence according to Observation 4, the

individual sum values for all the conjugates of P must also
match this. It can be easily verified that this is indeed the case.

Now consider the other stringT󸀠 = 𝑎𝑡𝑎𝑔𝑐𝑡𝑔 of the same
length, which is slightly different from T. It can easily be
checked that C(P) does not match T󸀠. However, as we can
see, still we have 𝑠𝑢𝑚

𝑎
(T󸀠) = 2, 𝑠𝑢𝑚

𝑐
(T󸀠) = 2, 𝑠𝑢𝑚

𝑔
(T󸀠) =

6, and 𝑠𝑢𝑚
𝑡
(T󸀠) = 8. This is an example of a false positive

with respect to Filter 4.

Notably, a similar idea has been used by Kahveci et al.
in [21] for indexing large strings with a goal to achieve fast
local alignment of large genomes. In particular, for a DNA
string, Kahveci et al. compute the so-called frequency vector
that keeps track of the frequency of each character of theDNA
alphabet in the string.

3.2.4. Filter 5. Filter 5 depends onmodulo operation between
two consecutive characters. A modulo operation between
two consecutive characters of a string P of length 𝑚 is
defined as follows:𝑚𝑜𝑑𝑢𝑙𝑜(P[𝑖],P[𝑖 + 1]) = P

𝑁
[𝑖]%P

𝑁
[𝑖 +

1], where 1 ≤ 𝑖 ≤ 𝑚 − 1. We define 𝑠𝑢𝑚 𝑚𝑜𝑑𝑢𝑙𝑜(P)
to be the summation of the results of the modulo opera-
tions on the consecutive characters of P. More formally,
𝑠𝑢𝑚 𝑚𝑜𝑑𝑢𝑙𝑜(𝑃) = ∑

𝑚−1

𝑖=1
𝑚𝑜𝑑𝑢𝑙𝑜(P[𝑖],P[𝑖 + 1]). Now we

present the following observationwhich is the basis of Filter 5.
Note that this observation is applied on the extended versions
of the respective strings.

Observation 5. Consider a circular string P and a linear
stringT both having length 𝑛 and assume thatA = 𝑒𝑥𝑡(P)
and B = 𝑒𝑥𝑡(T). If C(P) matches T, then, we must have
𝑠𝑢𝑚 𝑚𝑜𝑑𝑢𝑙𝑜(C(A)) = 𝑠𝑢𝑚 𝑚𝑜𝑑𝑢𝑙𝑜(B). Note carefully that
the function 𝑠𝑢𝑚 𝑚𝑜𝑑𝑢𝑙𝑜() has been applied on the extended
strings.

Example 8. Consider the same two strings of previous
examples, that is, P = 𝑎𝑡𝑐𝑔𝑎𝑡𝑔𝑇 = 𝑡𝑔𝑎𝑡𝑐𝑔𝑎. Recall that
P circularly matches T (due to the conjugate P5). Now
consider the extended strings and assume that A = 𝑒𝑥𝑡(P)
and B = 𝑒𝑥𝑡(T). We have T

𝑁
= 4314231. Hence B

𝑁
=

43142314. Hence, 𝑠𝑢𝑚 𝑚𝑜𝑑𝑢𝑙𝑜(B) = 5. Now according to
Observation 5, we must also have 𝑠𝑢𝑚 𝑚𝑜𝑑𝑢𝑙𝑜(C(A)) = 5.
This is indeed true.
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(1) procedure 𝐸𝐶𝑃𝑆 𝐹𝑇(P[1 :𝑚])
(2) define five varibles for Observations 1, 2, 3, 5, and 6
(3) define an array of size 4 for Observation 4
(4) define an array of size 4 to keep fixed value of A, C, G, T
(5) 𝑠 ← P[1 :𝑚]P[1]
(6) initialize all defined variables to zero
(7) initialize fixed array to {1, 2, 3, 4}
(8) for 𝑖 ← 1 to |𝑠| do
(9) if 𝑖 ̸= |𝑠| then
(10) calculate different filtering values via Observations 1 and 4 and make a running sum
(11) end if
(12) calculate different filtering values via Observations 2, 3, 5, and 6 and make a running sum
(13) end for
(14) return all observations values
(15) end procedure

Algorithm 1: Exact circular pattern signature using Observations 1–6 in a single pass.

Now consider another string T󸀠 = 𝑡𝑔𝑎𝑔𝑎𝑡𝑐 of the same
length, which is different from T. It can easily be checked
thatC(P) does not matchT󸀠. However, assuming thatB󸀠 =
𝑒𝑥𝑡(T󸀠) we find that 𝑠𝑢𝑚 𝑚𝑜𝑑𝑢𝑙𝑜(B󸀠) is still 5. So, this is an
example of a false positive with respect to Filter 5.

3.2.5. Filter 6. In Filter 6 we employ the 𝑥𝑜𝑟() operation. A
bitwise exclusive-OR (𝑥𝑜𝑟()) operation between two consec-
utive characters of a stringP of length𝑚 is defined as follows:
𝑥𝑜𝑟(P[𝑖],P[𝑖+1]) = P

𝑁
[𝑖]∧P

𝑁
[𝑖+1], where 1 ≤ 𝑖 ≤ 𝑚−1.

We define 𝑠𝑢𝑚 𝑥𝑜𝑟(P) to be the summation of the results
of the xor operations on the consecutive characters of P.
More formally, 𝑠𝑢𝑚 𝑥𝑜𝑟(𝑃) = ∑

𝑚−1

𝑖=1
𝑥𝑜𝑟(P[𝑖],P[𝑖+1]). Now

we present the following observation which is the basis of
Filter 6. Note that this observation is applied on the extended
versions of the respective strings.

Observation 6. Consider a circular string P and a linear
stringT both having length 𝑛 and assume thatA = 𝑒𝑥𝑡(P)
and B = 𝑒𝑥𝑡(T). If C(P) matches T, then, we must have
𝑠𝑢𝑚 𝑥𝑜𝑟(C(A)) = 𝑠𝑢𝑚 𝑥𝑜𝑟(B). Note carefully that the
function 𝑠𝑢𝑚 𝑥𝑜𝑟() has been applied on the extended strings.

Example 9. Consider the same two strings of previous
examples, that is, P = 𝑎𝑡𝑐𝑔𝑎𝑡𝑔𝑇 = 𝑡𝑔𝑎𝑡𝑐𝑔𝑎. Recall that
P circularly matches T (due to the conjugate P5). Now
consider the extended strings and assume that A = 𝑒𝑥𝑡(P)
and B = 𝑒𝑥𝑡(T). We have T

𝑁
= 4314231. Hence B

𝑁
=

43142314. Hence, 𝑠𝑢𝑚 𝑥𝑜𝑟(B) = 28. Now according to
Observation 5, we must also have 𝑠𝑢𝑚

𝑥
𝑜𝑟(C(A)) = 28. As

can be verified easily, this is indeed the case.
Now consider another string T󸀠 = 𝑔𝑡a𝑔𝑎𝑡𝑐 of the same

length, which is different from T. It can easily be checked
thatC(P) does not matchT󸀠. However, assuming thatB󸀠 =
𝑒𝑥𝑡(T󸀠) we find that 𝑠𝑢𝑚 𝑥𝑜𝑟(B󸀠) is still 28. So, this is an
example of a false positive with respect to Filter 5.

3.2.6. Discussion with respect to [8]. At this point a brief
discussion with respect to our preliminary work in [8] is in

order. To reduce the textT, we also employed six filters in [8].
While Filter 1 and Filter 4 remain identical, in SimpLiFiCPM,
we have changed and improved Filters 2, 3, 5, and 6 to get
better results. In particular, we have introduced the concept
of extended string here and modified the filters accordingly.
Much of the efficiency of these new filters comes from the
fact that in the preliminary version, without the extended
strings, we had to deal with a set of values as the output of
the functions creating a small bottleneck. On the contrary,
SimpLiFiCPM now needs to deal with only one value as
the output of the functions of Filters 2, 3, 5, and 6. This
makes SimpLiFiCPM even faster than its predecessor. This
is evident from the experimental results presented later.
Notably, this has essentially brought some more changes in
the overall algorithm. In particular in the searching phase of
the algorithm we now need to adapt accordingly to apply the
corresponding filters on the extended strings. But the overall
improvement outweighs this extra work by a long margin.

3.3. Circular Pattern Signature Using the Filters. In this sec-
tion, we discuss an O(𝑚)-time algorithm that SimpLiFiCPM
uses to compute the signature of the circular pattern C(P)
corresponding to pattern P of length 𝑚. This signature is
used at a later stage to filter the text. Here, we need five
variables to save the output of the functions used for Filters
1, 2, 3, 5, and 6 (based on Observations 1, 2, 3, 5, and 6). And
we need a list of size 4 to save the values of the function used
in Filter 4 (Observation 4). We start with the extended string
𝑒𝑥𝑡(P) = P[1 : 𝑚]P[1] and compute the values according
to Observations 1 to 6. The algorithm will iterate𝑚 + 1 times
and hence the overall runtime of the algorithm is O(𝑚). The
algorithm is presented in Procedure𝐸𝐶𝑃𝑆 𝐹𝑇 (Algorithm 1).

3.4. Reduction of Search Space in the Text. Now we present
anO(𝑛) runtime algorithm that SimpLiFiCPMuses to reduce
the search space of the text applying the six filters presented
above. It takes as input the patternP[1 : 𝑚] of length𝑚 and
the textT[1 : 𝑛] of length 𝑛. It calls Procedure𝐸𝐶𝑃𝑆 𝐹𝑇with
P[1 : 𝑚] as parameter and uses the output. It then applies
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(1) Procedure 𝑅𝑆𝑆 𝐹𝑇(T[1 : 𝑛],P[1 :𝑚])
(2) call ECPS FT(P[1 :𝑚])
(3) save the return value of Observations 1 : 6 for further use here
(4) define an array of size 4 to keep fixed value of A, C, G, T
(5) initialize fixed array to {1, 2, 3, 4}
(6) 𝑙𝑎𝑠𝑡𝐼𝑛𝑑𝑒𝑥 ← 1

(7) for 𝑖 ← 1 to𝑚 do
(8) calculate different filtering values inT[1 : 𝑚] via Observations 1–6 and make a running sum
(9) end for
(10) if 1–6 observations values ofP[1 :𝑚] vs 1–6 observations values ofT[1 :𝑚] have a match then
(11) ⊳ Found a filtered match
(12) Output to fileT[1 : 𝑚]
(13) 𝑙𝑎𝑠𝑡𝐼𝑛𝑑𝑒𝑥 ← 𝑚

(14) end if
(15) for 𝑖 ← 1 to 𝑛 − 𝑚 do
(16) calculate different filtering values inT[1 :𝑚] via Observations 1–6 by subtracting 𝑖th value along with

wrapped value and adding (𝑖 + 𝑚)th value and new wrapped value to the running sum
(17) if 1–6 filtering values ofP[1 :𝑚] vs 1–6 filtering values ofT[𝑖 + 1 : 𝑖 + 𝑚] have a match then
(18) ⊳ Found a filtered match
(19) if 𝑖 > 𝑙𝑎𝑠𝑡𝐼𝑛𝑑𝑒𝑥 then
(20) Output an end marker $ to file
(21) end if
(22) if 𝑖 + 𝑚 > 𝑙𝑎𝑠𝑡𝐼𝑛𝑑𝑒𝑥 then
(23) if 𝑖 < 𝑙𝑎𝑠𝑡𝐼𝑛𝑑𝑒𝑥 then
(24) 𝑗 ← 𝑙𝑎𝑠𝑡𝐼𝑛𝑑𝑒𝑥 + 1

(25) else
(26) 𝑗 ← 𝑖 + 1

(27) end if
(28) Output to fileT[𝑗 : 𝑖 + 𝑚]
(29) lastIndex← 𝑖 + 𝑚

(30) end if
(31) end if
(32) end for
(33) end procedure

Algorithm 2: Reduction of search space in a text string using Procedure ECPS FT.

the same technique that is applied in Procedure 𝐸𝐶𝑃𝑆 𝐹𝑇
(Algorithm 1). We apply a sliding window approach with
window length of 𝑚 and calculate the values applying the
functions according to Observations 1–6 on the factor of T
captured by the window. Note that, for Observations 2, 3, 5,
and 6, we need to consider the extended string and hence the
factor ofTwithin the window need be extended accordingly
for calculating the values. After we calculate the values for
a factor of T, we check it against the returned values of
Procedure 𝐸𝐶𝑃𝑆 𝐹𝑇. If it matches, then we output the factor
to a file. Note that, in case of overlapping factors (e.g., when
the consecutive windows need to output the factors to a
file), Procedure 𝐸𝐶𝑃𝑆 𝐹𝑇 outputs only the nonoverlapped
characters. And Procedure𝐸𝐶𝑃𝑆 𝐹𝑇 uses a $marker tomark
the boundaries of nonconsecutive factors, where $ ∉ Σ.

Now note that we can compute the values of consecutive
factors of T using the sliding window approach quite effi-
ciently as follows. For the first factor, that is, T[1 ⋅ ⋅ ⋅ 𝑚], we
exactly follow the strategy of Procedure 𝐸𝐶𝑃𝑆 𝐹𝑇. When it
is done, we slide the window by one character and we only
need to remove the contribution of the leftmost character
of the previous window and add the contribution of the

rightmost character of the new window. The functions are
such that this can be done very easily using simple constant
time operations. The only other issue that needs to be taken
care of is due to the use of the extended string in four of the
filters. But this too does not need more than simple constant
time operations. Therefore, overall runtime of the algorithm
is O(𝑚) +O(𝑛 −𝑚) = O(𝑛). The algorithm is presented in the
form of Procedure 𝑅𝑆𝑆 𝐹𝑇 (Algorithm 2).

3.5. The Combined SimpLiFiCPM Algorithm. In this section
we combine the algorithms presented so far and present the
complete view of SimpLiFiCPM. We have already described
the two main components of SimpLiFiCPM, namely, Pro-
cedure 𝐸𝐶𝑃𝑆 𝐹𝑇 and Procedure 𝑅𝑆𝑆 𝐹𝑇, that in fact calls
the former. Now Procedure 𝑅𝑆𝑆 𝐹𝑇 provides a reduced text
T󸀠 (say) after filtering. At this point SimpLiFiCPM can use
any algorithm that can solve CPM and apply it over T󸀠

and output the occurrences. Now, suppose SimpLiFiCPM
uses algorithm A at this stage which runs in O(𝑓(|T󸀠|))
time.Then, clearly, the overall running time of SimpLiFiCPM
is O(𝑛) + O(𝑓(|T󸀠|)). For example, if SimpLiFiCPM uses
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Table 1: An example simulation of SimpLiFiCPM.

Iteration Local total sum abs sum Actual sum Local individual
sum [0 : 4] modulas sum xor sum Does it match

with pattern? Output file

1 18 14 0 {2, 2, 6, 8} 5 28 YES tgatcga
2 15 12 0 {3, 2, 6, 4} 4 18 NO $
3 13 8 0 {4, 2, 3, 4} 3 14 NO
4 15 8 0 {3, 2, 6, 4} 6 18 NO
5 15 8 0 {3, 2, 6, 4} 6 18 NO
6 14 10 0 {4, 0, 6, 4} 5 18 NO
7 12 6 0 {5, 0, 3, 4} 4 14 NO
8 15 12 0 {4, 0, 3, 8} 5 24 NO
9 16 12 0 {3, 2, 3, 8} 5 28 NO
10 18 10 0 {2, 2, 6, 8} 6 24 NO
11 16 14 0 {3, 2, 3, 8} 4 24 NO
12 16 14 0 {3, 2, 3, 8} 4 24 NO
13 18 14 0 {2, 2, 6, 8} 5 28 YES atcgatg

the linear time algorithm of [1], then clearly the overall
theoretical running time of SimpLiFiCPM will be O(𝑛).

In our implementation however we have used the recent
algorithm of [4], which is a linear time algorithm on average
and the fastest algorithm in practice to the best of our
knowledge. In particular, in [4], the authors have presented
an approximate circular string matching algorithm with 𝑘-
mismatches (ACSMF-Simple) via filtering. They have built
a library for ACSMF-Simple algorithm. The library is freely
available and can be found in [22]. In this algorithm, if we
set 𝑘 = 0, then ACSMF-Simple works for the exact matching
case. In what follows, we will refer to this algorithm as
ACSMF-SimpleZero𝑘. We have implemented SimpLiFiCPM
using ACSMF-SimpleZero𝑘; that is, we have used ACSMF-
Simple algorithm simply by putting 𝑘 = 0.

3.6. An Illustrative Example. Now that we have fully
described SimpLiFiCPM, in this section we present the
simulation of SimpLiFiCPM on a particular example. We
only show the simulation up to the output of Procedure
𝑅𝑆𝑆 𝐹𝑇, that is, the output of the reduced text, because
afterwards we can employ any state-of-the-art algorithm
within SimpLiFiCPM. Consider a pattern P = 𝑎𝑡𝑐𝑔𝑎𝑡𝑔.
The values computed by Procedure 𝐸𝐶𝑃𝑆 𝐹𝑇 according
to Observations 1 through 6 are as follows, respectively:
𝑙𝑜𝑐𝑎𝑙 𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 = 18, 𝑎𝑏𝑠 𝑠𝑢𝑚 = 14, 𝑎𝑐𝑡𝑢𝑎𝑙 𝑠𝑢𝑚 = 0,
𝑙𝑜𝑐𝑎𝑙 𝑖𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚[0 : 4] = {2, 2, 6, 8},𝑚𝑜𝑑𝑢𝑙𝑎𝑠 𝑠𝑢𝑚 = 5,
and 𝑥𝑜𝑟 𝑠𝑢𝑚 = 28.

Again consider a text stringT = 𝑡𝑔𝑎𝑡𝑐𝑔𝑎𝑎𝑎𝑔𝑡𝑎𝑎𝑡𝑐𝑔𝑎𝑡𝑔$.
For the first sliding window we need to calculate the obser-
vation values from T[1 : 7]. The observation values
according to Procedure 𝑅𝑆𝑆 𝐹𝑇 are as follows forT[1 : 7]:
𝑙𝑜𝑐𝑎𝑙 𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 = 18, 𝑎𝑏𝑠 𝑠𝑢𝑚 = 14, 𝑎𝑐𝑡𝑢𝑎𝑙 𝑠𝑢𝑚 = 0,
𝑙𝑜𝑐𝑎𝑙 𝑖𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚[0 : 4] = {2, 2, 6, 8},𝑚𝑜𝑑𝑢𝑙𝑎𝑠 𝑠𝑢𝑚 = 5,
and 𝑥𝑜𝑟 𝑠𝑢𝑚 = 28.

The length of T is 19. And the length of P is 7. So, the
algorithm iterates exactly 19−7+1 = 13 times. Each iteration
is illustrated in Table 1.

4. Experimental Results

We have implemented SimpLiFiCPM and conducted exten-
sive experiments to analyze its performance. We have coded
SimpLiFiCPM in C++ using a GNU compiler with General
Public License (GPL). Our code is available at [23]. As
has been mentioned already above, our implementation of
SimpLiFiCPM uses the ACSMF-SimpleZero𝑘 [4]. ACSMF-
Simple [4] has been implemented as library functions in
the C programming language under GNU/Linux operating
system. The library implementation is distributed under the
GNU General Public License (GPL). It takes as input the
patternP of length𝑚, the textT of length 𝑛, and the integer
threshold 𝑘 < 𝑚 and returns the list of starting positions of
the occurrences of the rotations ofP inTwith 𝑘-mismatches
as output. In our case we use 𝑘 = 0.

We have used real genome data in our experiments as the
text string, T. This data has been collected from [24]. Here,
we have taken 299MB of data for our experiments. We have
generated random patterns of different length by a random
indexing technique in these 299MB of text string.

We have conducted our experiments on a PowerEdge
R820 rack serve PC with 6-core Intel Xeon processor E5-
4600 product family and 64GB of RAM under GNU/Linux.
With the help of the library used in [4], we have compared
the running time of our preliminary work in [8] (referred to
as Filter-CPM henceforth), ACSMF-SimpleZero𝑘 of [4], and
SimpLiFiCPM. Table 2 reports the elapsed time and speed-
up comparisons for various pattern sizes (500 ≤ 𝑚 ≤ 3000).
As can be seen from Table 2, Filter-CPM [8] runs faster than
ACSMF-SimpleZero𝑘 in all cases. And in fact Filter-CPM [8]
achieves a minimum of twofold speed-up for all the pattern
sizes. Again, referring to the same table, SimpLiFiCPM runs
even faster thanACSMF-SimpleZero𝑘 in all cases. And in fact
SimpLiFiCPM achieves aminimumof threefold speed-up for
all the pattern sizes.

In order to analyze and understand the effect of our
filters we have run a second set of experiments as follows.
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Table 2: Elapsed time (in seconds) of and speed-up comparisons among Filter-CPM [8], ACSMF-SimpleZero𝑘 [4], and SimpLiFiCPM on a
text of size 299MB.

𝑚
Elapsed time (s) of

ACSMF-SimpleZero𝑘
Elapsed time (s) of

Filter-CPM

Speed-up:
ACSMF-SimpleZero𝑘
versus Filter-CPM

Elapsed time (s) of
SimpLiFiCPM

Speed-up:
ACSMF-SimpleZero𝑘
versus SimpLiFiCPM

500 5.938 3.025 2 1.167 5
550 7.914 3.068 3 1.456 5
600 7.691 3.06 3 1.364 6
650 7.836 3.074 3 1.006 8
700 7.739 3.072 3 1.028 8
750 7.82 3.051 3 1.073 7
800 7.839 3.209 2 1.04 8
850 8.382 3.053 3 1.055 8
900 7.646 3.055 3 1.278 6
950 7.876 3.049 3 1.402 6
1000 7.731 3.067 3 1.216 6
1600 7.334 3.206 2 1.182 6
1650 8.239 3.063 3 0.969 9
1700 7.572 3.059 2 1.18 6
1750 5.968 3.066 2 1.144 5
1800 7.551 3.064 2 1.179 6
1850 7.407 3.079 2 1.086 7
1900 7.861 3.225 2 1.126 7
1950 7.339 3.073 2 1.028 7
2000 7.814 3.062 3 1.118 7
2050 5.969 3.057 2 1.988 3
2100 5.173 3.036 2 1.187 4
2150 5.317 3.027 2 1.919 3
2200 6.032 3.168 2 1.927 3
2250 5.009 3.073 2 1.895 3
2300 5.029 3.024 2 1.891 3
2350 5.041 3.047 2 1.887 3
2400 6.036 3.046 2 1.91 3
2450 6.04 3.037 2 1.886 3
2500 7.046 3.029 2 1.976 4
2550 7.042 3.037 2 1.987 4
2600 8.043 4.029 2 2.883 3
2650 8.049 4.03 2 2.884 3
2700 8.031 4.183 2 2.892 3
2750 8.039 4.044 2 2.882 3
2800 9.026 4.067 2 2.886 3
2850 9.154 4.036 2 2.901 3
2900 10.049 4.045 2 3.134 3
2950 11.044 5.052 2 3.876 3
3000 12.044 6.039 2 3.9 3

We have run experiments on three variants of SimpLiFiCPM
where the first variant (SimpLiFiCPM-[1 ⋅ ⋅ ⋅ 3]) only employs
Filters 1 through 3, the second variant (SimpLiFiCPM-
[1 ⋅ ⋅ ⋅ 4]) only employs Filters 1 through 4, and finally the third
variant (SimpLiFiCPM-[1 ⋅ ⋅ ⋅ 5]) employs Filters 1 through 5.

Table 2 reports the elapsed time and speed-up comparisons
considering various pattern sizes (500 ≤ 𝑚 ≤ 2000)

for ACSMF-SimpleZero𝑘 and the above-mentioned three
variants of SimpLiFiCPM. As can be seen from Table 3,
ACSMF-SimpleZero𝑘 is able to beat SimpLiFiCPM-[1 ⋅ ⋅ ⋅ 3]
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in a number of cases. However, SimpLiFiCPM-[1 ⋅ ⋅ ⋅ 4] and
SimpLiFiCPM-[1 ⋅ ⋅ ⋅ 5] significantly run faster than ACSMF-
SimpleZero𝑘 in all cases.

5. Conclusions

In this paper, we have employed some effective lightweight
filtering technique to reduce the search space of the circular
pattern matching (CPM) problem. We have presented Sim-
pLiFiCPM, an extremely fast algorithm based on the above-
mentioned filters.We have conducted extensive experimental
studies to show the effectiveness of SimpLiFiCPM. In our
experiments, SimpLiFiCPM has achieved a minimum of
threefold speed-up compared to the state-of-the-art algo-
rithms. Much of the speed of our algorithm comes from the
fact that our filters are effective but extremely simple and
lightweight. The most intriguing feature of SimpLiFiCPM
is perhaps its capability to plug in any algorithm to solve
CPM and take advantage of it. We are now working towards
adapting the filters so that it could work for the approximate
version of CPM.
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