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Single-trial prediction of reaction 
time variability from MEG brain 
activity
Ryu Ohata1,2,3, Kenji Ogawa1,4 & Hiroshi Imamizu1,3,5

Neural activity prior to movement onset contains essential information for predictive assistance for 
humans using brain-machine-interfaces (BMIs). Even though previous studies successfully predicted 
different goals for upcoming movements, it is unclear whether non-invasive recording signals 
contain the information to predict trial-by-trial behavioral variability under the same movement. 
In this paper, we examined the predictability of subsequent short or long reaction times (RTs) from 
magnetoencephalography (MEG) signals in a delayed-reach task. The difference in RTs was classified 
significantly above chance from 550 ms before the go-signal onset using the cortical currents in the 
premotor cortex. Significantly above-chance classification was performed in the lateral prefrontal and 
the right inferior parietal cortices at the late stage of the delay period. Thus, inter-trial variability in RTs 
is predictable information. Our study provides a proof-of-concept of the future development of non-
invasive BMIs to prevent delayed movements.

A delayed movement is inevitable regardless how we strive to make a fast reaction. Hence, predicting trial-by-trial 
variability in subsequent RTs plays a crucial role in preventing accidents due to the delayed reactions of operators. 
Neurons in the motor-related regions exhibit substantial activity both prior to and during movement execution, 
and this pre-movement activity is modulated by such parameters as the movement direction of a forthcoming 
movement1–3. Although most previous BMI studies successfully predicted intended goals from neuronal activity 
for neuroprosthetic control4,5, it remains unclear whether a delayed reaction can be predicted from pre-movement 
activity measured by a non-invasive recoding on a single-trial basis.

A number of previous studies have suggested that pre-movement activities in the premotor (PM), the primary 
motor (M1), the posterior parietal cortex (PPC) and the supplementary motor area (SMA) are involved in motor 
planning and the preparation for both stimulus-triggered and voluntary movements6–9. Although these areas 
probably include critical information for predictions, it is unknown whether non-invasive methods can detect 
subtle differences in neural activity among trials with variable RTs. An electrophysiological study in non-human 
primates showed the possibility of predicting inter-trial RT variability before movement onset10. Afshar  
et al.10, whose finding demonstrated that the population dynamics of dorsal PM neurons in monkeys predicted 
single-trial RTs in delayed-reach tasks, indicated that multi-dimensional activities in PM contain neural infor-
mation that enables the prediction of variability in subsequent RTs. Therefore we applied a pattern recognition 
approach, which has been used extensively in functional magnetic resonance imaging (fMRI) research11–14, to 
MEG signals to predict the differences in RTs before the go-signal onset.

In addition to the influence of preparation activity in the PM cortex, other factors might also cause a delayed 
movement. Such cognitive states as top-down attention15, maintaining an arousal state, and mental effort16,17 
associated with broad brain regions affect variability in behavioral performance. Thus, we hypothesized that the 
neural activities from several distinct regions over the entire cortical surface other than the PM cortex might 
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represent information that make RTs variable. To test our hypothesis, we examined the prediction performance 
in each anatomical region to reveal the dominant factors that influence subsequent RTs.

To explore the single-trial predictability of RT variability, we conducted multivariate classification analysis to 
discriminate between short- and long-RT trials. The cortical currents in separate brain regions were estimated 
from MEG sensor signals, which were subsequently used as the classifier’s input data. Consequently, differences in 
RTs were significantly predicted using the cortical activity in the left precentral area: from 550 and 250 ms before 
the go-signal onset in PM and M1, respectively. Furthermore, the lateral prefrontal and right inferior parietal cor-
tices showed significant classification accuracy of 250 to 0 ms prior to the go-signal onset. These results indicate 
that preparatory neural activity in PM contains information about variability in RTs even from the early stage of 
the preparation period. The cognitive factors in the fronto-parietal cortex are also related to subsequent RTs as the 
movement initiation gets closer. In summary, our study suggests that RT variability is predictable from cortical 
activity patterns in specific anatomical regions estimated from non-invasive recording signals.

Results
We recorded MEG sensor signals while the subjects conducted a finger-reaching task toward a single target 
(Fig. 1a). A delay period, during which subjects prepared their upcoming finger movements, separated the Cue 
period from the target presentation. Subjects were instructed to move their fingers at different speeds (fast or 
slow) depending on the instruction tones of cue sounds. Our experimental paradigm had the two speed con-
ditions to test the generalizability of a classifier across different speeds (see below) and to enhance the subjects’ 
concentration on this simple task with variations of the task setting. A session consisted of 60 trials (30 fast- and 
30 slow- speed trials). The fast- and slow-speed trials were randomly presented in a session. They were also asked 
to initiate their finger movements as quickly as possible after the target appearance.

We separately created RT distributions for the fast- and slow-speed conditions (e.g., two distributions in 
Fig. 1b) for individual subjects. We concatenated the trials from all the sessions for creating the distributions. A 
short- or long-RT label (1 or − 1) was attached to the trials belonging to the top or bottom 25% of the RT distribu-
tion, respectively. We trained a support vector machine (SVM) classifier to distinguish the long- or short-RT trials 
using the trials of one speed condition, and the classifier was tested with the trials of the other speed condition 
(two-fold leave-one-out cross-validation). This procedure enables us to test the generalizability of the classifiers 
across different speed conditions and to investigate factors for RT variability common to different movement 
conditions. The classification analysis was performed within subjects. The mean numbers of the trials used for 
classifier training were 98 (SD: 16) and 95 (18) in the fast- and slow-speed conditions, respectively. We evaluated 
the prediction performance to investigate whether the classification was significantly above chance using cortical 
currents prior to the go-signal onset.

Behavior results. We defined RT as the length of time from the target appearance to the movement onset. 
The mean RTs across subjects were 450.6 ms (SD: 69.6) for all the trials, 458.0 ms (81.6) in the fast-speed condi-
tion, and 443.5 ms (61.0) in the slow-speed condition. Note that no significant difference was identified between 
the two conditions across subjects (two-tailed t-test; t(14) =  0.40, p =  0.69). For individual subjects, four out of 
eight showed significant differences in RTs in the two speed conditions (Supplementary Fig. S1a). RTs in the 
fast-speed condition were significantly shorter than those in the slow-speed condition in one of the four sub-
jects, and the opposite pattern was observed in three subjects (see legend of Supplementary Fig. S1 for statistical 
details). This result indicates that the conditions had no consistent effect on the RTs. On the other hand, every 
subject showed a significantly higher maximum fingertip’s tangential velocity in the fast-speed condition than the 
slow-speed condition (Supplementary Fig. S1b). This result suggests that all subjects correctly applied the speed 
instructions in the two conditions.

Cortical current estimation. We estimated 3,197 ±  210 (mean ±  SD across subjects) single-current dipoles 
on the cortical surface. An inverse problem (projection from sensors to current sources) was solved by a hier-
archical Bayesian method using fMRI activity (one subject’s data in Supplementary Fig. S2) as a hierarchical 
prior18,19. Figure 2a shows the vertical and horizontal trajectories of the fingertip position for a single subject 
during the Cue, Delay and Move periods. Figure 2b shows the time courses of the estimated cortical currents of 
the dipoles (3,439 single-current dipoles for the subject) on the same timeline as the finger trajectory (Fig. 2a). 
They were aligned to the target onset (0 ms) and averaged across trials and sessions. Prominent changes in the 
currents were observed within the Cue (positive peak at − 1710 ms) and Move periods (positive peak at 295 ms). 
The maximum values of the peaks were detected at the dipoles in the right auditory cortex for the first peak and 
in the left primary motor cortex for the second peak (Fig. 2c). This result shows that the cortical currents related 
to this task’s execution were reliably estimated.

Prediction of RT differences. To explore the possibility of predicting RT variability, we first conducted 
classification analysis using the cortical activity in five regions that are functionally related to motor planning 
and preparation: PM, M1, SMA, the superior parietal lobule (SPL), and the inferior parietal lobule (IPL) in the 
left (contralateral to the hand being used) hemisphere (Fig. 3). We employed a sliding time window to investi-
gate whether the classification performance depends on the time to the go-signal onset20–22. Cortical currents 
were divided into 100-ms time windows with 25% overlap (25-ms steps). The classifiers were trained and tested 
using cortical currents that were temporally averaged within each time window. For all of the time windows, we 
determined the significance by both a two-tailed t-test and a group-level permutation test (see Methods). For 
multiple comparison corrections, a time-cluster-based approach was applied in which a cluster of time points 
was significant after the correction only when it had more than five consecutively significant time points23 (see 
Supplementary Methods: Time-cluster-based approach for multiple comparison correction). The rows of red dots 
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Figure 1. Delayed-finger reach task and classification analysis procedure. (a) Experimental paradigm of 
delayed-finger reach task in MEG experiment. Top panels indicate time series of images viewed by subjects on 
screen. Bottom figures illustrate postures and movements of their hands corresponding to each period. Subjects 
initiated finger movements toward a single target as quickly as possible after target presentation (go-signal). (b) 
Schematic illustration of classification analysis procedure. Trials in short- or long-RT groups, defined as bottom 
and top 25% from the concatenated trials from all sessions, were used for classification analysis. Classifiers 
were cross-validated using data in different speed conditions. Note that the RT distributions in this figure were 
obtained from all trials of a single subject (S1). RT ranges in fast-speed condition were 176–260 ms for short-RT 
group and 315–516 ms for long-RT group. Ranges in slow-speed condition were 217–285 ms for short-RT group 
and 337–515 ms for long-RT group.
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and green horizontal lines below each panel in Fig. 3 indicate the time at which the classification accuracy signifi-
cantly exceeded chance without and with multiple comparison correction, respectively. Consecutively significant 
time points were first observed at 550 ms (time window: 500–600 ms) and 250 ms (200–300 ms) before the target 
onset in PM and M1, respectively. In contrast, the classification performance in the three other regions did not 
reach a significant level before the go-signal onset.

Regarding the classification performance for individual subjects, we investigated significant time points above 
chance using a binomial test (p <  0.05) with a time-cluster-based approach (Supplementary Fig. S3). Although 
we obtained consecutively significant classification in PM during the delay period for seven out of eight subjects, 
its onsets were variable across subjects. The following were the onset timings for PM: Subject 1 (S1); − 400 ms, S2; 
no consecutively significant time points during the delay, S3; − 250 ms, S4; − 725 ms, S5; − 1300 ms, S6; − 575 ms, 
S7; − 225 ms, S8; − 50 ms. A possible reason for this variability in the onsets is that the information for discrim-
inating differences in subsequent RTs was not time-locked during the delay period. To quantitatively evaluate 
the variability in the onsets across subjects, we estimated 95% confidence intervals for the onset with a bootstrap 
method21,24 (see Supplementary Methods: 95% confidence interval estimation of onset of significant classifica-
tion by a bootstrap method). The following confidence intervals were found for the five regions: PM: − 589 to 
− 315 ms; M1: − 380 to − 46 ms; SMA: − 356 to 107 ms; SPL: − 90 to 154 ms; and IPL: − 113 to 107 ms. Note that 

Figure 2. Temporal dynamics of cortical currents for delayed-finger reach task. (a) Time courses of 
horizontal (blue) and vertical (red) positions of fingertip when a subject (S1) moved it toward target. Vertical 
solid line in gray shaded area denotes averaged movement onset ±  SD (304.0 ±  50.9 ms). (b) Time courses of 
cortical currents estimated by a hierarchical Bayesian method. One colored line represents cortical current 
from one source dipole. Time courses are aligned to target onset (0 ms) and averaged across trials and sessions. 
Vertical dashed and solid lines indicate end of cue period and target onset timing, respectively. (c) Absolute 
value of cortical currents rendered on inflated cortical surfaces sampled at 1710 ms before and 295 ms after 
target onset (corresponding to panel b). Black dots on surface denote vertices at which current dipoles were 
estimated.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:27416 | DOI: 10.1038/srep27416

the confidence intervals for PM and M1 did not exceed the go-signal timing. These results suggest that the classi-
fication performances for PM and M1 were certainly above chance during the delay period.

To confirm that our significant results were not due to factors unrelated to RT variability, we conducted three 
additional analyses. First, we assessed the influence of session-by-session difference on the classification results. 
This was done because we allocated a different number of trials to short- and long-RT labels in different ses-
sions in order to define each RT group as the top or bottom 25% of the RT distributions among the trials con-
catenated from all sessions. To exclude this influence, we incorporated a leave-one-session-out cross-validation 
procedure in our classification method (see Supplementary Methods: Classification method based on a 
leave-one-session-out cross-validation procedure). The classifier was trained using the trials in one speed con-
dition except for one session’s data and then tested using the left-out session’s data in the other speed condition 
(Supplementary Fig. S10). This procedure was repeated until all sessions’ data in each speed condition became test 
data. If the session-difference were a critical source of information for the classification in our previous analysis, 
this procedure would not obtain a significant classification performance. However, significant time points were 
obtained from 250 ms and 225 ms before the go-signal for PM and M1, respectively (Supplementary Fig. S4). This 
result confirmed that RT variability could be predicted even when excluding session-by-session differences in the 
number of short- and long-RT trials.

As a second issue for analysis, the number of single-current dipoles was different among the five motor-related 
regions (Supplementary Table S1). To examine whether the difference in the number of dipoles influenced classi-
fication performance among the regions, we conducted the same classification procedure by equalizing the num-
ber of dipoles across the regions. We randomly selected dipoles in each motor-related region at a number equal to 
that of the region with the smallest number of dipoles within individual subjects. For example, we used 26 dipoles 

Figure 3. Classification performance in functionally selected areas. Time courses of classification accuracies 
in left PM, M1, SMA, SPL and IPL from start of Delay period (− 1300 ms) to 100 ms after target onset. Accuracies 
for individual subjects (thin gray solid lines) were averaged over all subjects (thick black solid lines). Blue 
shaded area denotes SEM across subjects. Rows of red dots indicate significant time points (n =  8, both 
two-tailed t-test p <  0.05 and group-level permutation test p <  1 ×  10−4), and green horizontal lines show 
consecutively significant time points corrected by a time-cluster-based approach.
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randomly selected in each region for Subject 1 data because the smallest number of dipoles in a single region 
was 26 (SMA; see Supplementary Table S1) among the five regions. We repeatedly conducted the selection and 
classification procedures 100 times to obtain accuracy that was less biased by random selection. Consequently, 
the onsets of consecutively significant classification for PM and M1 were observed at 250 ms and 225 ms before 
the go-signal, respectively (Supplementary Fig. S5). The classification accuracy in the other three regions did not 
reach the significant level before the go-signal onset, similarly to the results without equalization of the number 
of dipoles. PM and M1 showed above-chance accuracy before the go-signal onset even if the number of dipoles 
were equalized, suggesting that the activity in PM and M1 certainly contains the predictive information of RT 
variability within the motor-related regions.

Finally, to confirm that our successful classification of cortical currents was not due to a systematic artifact 
caused by the estimation of cortical currents from the MEG sensor signals, we conducted RT classification using 
the MEG signals of all sensors as input data. The classification accuracy significantly exceeded chance from 350 ms 
before the target onset (Supplementary Fig. S6). Thus, even the sensor signals, from which the cortical currents 
were estimated, have information to predict RT variability before the go-signal onset. That is, the above-chance 
accuracy using the cortical currents was not due to the artifacts yielded by the source current estimation.

Classification performance in separate brain regions of whole brain. Next, we explored the areas 
that show significant prediction performance before the go-signal onset among the anatomical regions of the 
whole brain. We conducted classification analysis using the cortical currents within 80 individual ROIs defined 
by the automated anatomical labeling (AAL) atlas25. Figure 4 shows the classification accuracies averaged across 
subjects, color-coded and overlaid on the inflated cortical surface from 900 to 0 ms prior to the target onset in 
100-ms steps. The figure shows only those regions in which the classification accuracies were significantly above 
chance. The accuracy in the left central area, consisting of pre and postcentral gyri (enclosed by the white curve 
in Fig. 4, see left hemisphere at 0 ms), showed a significant level from 500 ms before the target onset. High accu-
racies were also observed in several other regions. We investigated the time courses of the classification accu-
racy for each AAL map region and consecutively significant above-chance classification during the delay periods 
(Table 1). The lateral prefrontal cortex (Frontal_Sup_L/R, Frontal_Mid_L/R) and the right inferior parietal cortex 
(Parietal_Inf_R, SupraMarginal_R) showed continuous above-chance accuracy from the late stage of the delay 
period (the earliest onset was 250 ms before the target appearance for Frontal_Sup_L). In contrast, we obtained 
significant accuracy in the left superior temporal area (Temporal_Sup_L) at the early stage of the delay period, 
which was between − 725 and − 625 ms. These results indicate that various regions other than those related to 
motor planning/preparation influence trial-by-trial variable RTs. Note that due to the different number of dipoles 
estimated in different ROIs, we were not able to compare the classification accuracy among these regions; how-
ever, our purpose was to explore regions from which the variability of RT can be predicted before the go-signal.

Discussion
Neurophysiological studies suggest that neural activity during the preparatory period is a crucial source of behav-
ioral variability10,26,27. Our MEG study demonstrates that pre-movement signals contain significant information 
to predict whether long or short RTs occur in the forthcoming movements. To the best of our knowledge, no study 
has successfully predicted RT variability across trials from non-invasive recording signals. A classifier trained by 
using the cortical currents in PM, which is observed to be mainly correlated with trial-by-trial RT variability 
in primate studies10,27, exhibited significant above-chance performance from 550 ms before the go-signal onset 
(Fig. 3). In addition, activity in the lateral prefrontal and right inferior parietal cortices yielded high classification 
accuracy from the late stage of the preparation period (Fig. 4 and Table 1). Thus, MEG signals covering the entire 
cortical surface provide useful information for exploring the relationship between pre-movement neural activities 
and subsequent RTs over a wide range of brain areas.

Trial-by-trial neural variability in the left precentral area, consisting of PM and M1, is the dominant factor 
for the differences in RTs (Fig. 3). Neurons not only in PM but also in the parietal region encode the planned 
movements, and the recorded activities were utilized to control neuroprosthetic devices28. However, the predic-
tion performance in the left parietal regions did not reach a significant level during the delay period (Fig. 3). This 
result suggests that since the neurons code the goals of the intended movements, not all of them can represent 
the movement onset variability. Our result is consistent with a recent neurophysiological study. Michaels et al.27 
demonstrated that activity in the macaque premotor cortex (hand area: F5) explained a larger portion of the 
variability in RTs than in the parietal cortex (anterior intraparietal area) during a delayed grasping task27. Even 
though both regions are involved in planning the grasping movement, only the pre-movement activity in the 
premotor cortex dominantly affects the trial-by-trial variability in RTs.

The right inferior parietal cortex showed significant above-chance performance immediately before the 
go-signals (Fig. 4 and Table 1). Pre-movement activity in the inferior parietal cortex is involved in the conscious 
intention to move as well as the motor preparation process29. Robust motor intention cannot always be main-
tained during the delay period in every trial. Our study suggests that the ready to move mental state (conscious 
intention) is another factor that affects reaction times.

Neural activity related to motor preparation isn’t the only factor that predicts differences in subsequent RTs. 
Both sides of the lateral prefrontal cortex also contributed to predictions in the late stage of the delay period, 
which is 250 to 0 ms before the go-signal onset (Fig. 4 and Table 1). Many studies suggest that the prefrontal and 
parietal cortices are the essential components of top-down attentional networks30,31. In particular, the involve-
ment of fronto-parietal activity in sustained attention during the delay period is essential for quick reactions. 
Meta-analysis of neuroimaging studies suggested that the right lateral prefrontal cortex and the inferior part 
of the parietal areas (the intraparietal sulcus and the temporoparietal junction) promote the sustained atten-
tion required for vigilance tasks32. In addition, persistent activity in the lateral prefrontal cortex was found in 
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Figure 4. Classification accuracies in separate regions over entire cortical surface. Averaged classification 
accuracies were calculated in 80 AAL map regions and overlaid on cortical surface from 900 to 0 ms before 
target onset in 100-ms steps. Regions were colored only when their classification accuracies were significantly 
above chance (n =  8, both two-tailed t-test p <  0.05 and group-level permutation test p <  1 ×  10−4). Arrows 
denote flow of time during delay period. Upper panel in each time window shows upper-left side of cerebral 
hemispheres while lower panel shows upper-right side.

Region
Number of 

vertices (SD)
Consecutively 

significant time points

L Precentral 48 (7.6) − 550~− 450, − 275~0

R Precentral 46 (8.7) − 175~0

L Postcentral 60 (6.8) − 325~0

L Frontal Sup 49 (6.1) − 250~− 150

R Frontal Sup 58 (3.7) − 100~0

L Frontal Mid 69 (10) − 100~0

R Frontal Mid 80 (12) − 175~0

R Parietal Inf 21 (5.3) − 100~0

R SupraMarginal 32 (8.5) − 100~0

L Temporal Sup 32 (6.7) − 725~− 625, − 125~0

Table 1.  AAL areas, number of vertices with SD, and consecutive time points exhibiting significant above-
chance accuracies.
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delayed motor tasks, suggesting that it is involved in the working memory that stores upcoming motor plans33–35. 
Although the target was presented in only one direction, subjects had to prepare two movement speeds in our 
experimental paradigm. Retaining appropriate motor plans during delay periods is one influential factor of RT 
variability. Thus, top-down control in the fronto-parietal cortex relevant to sustained attention and the mainte-
nance of motor plans are critical clues to predict delayed responses.

Although some studies applied multivariate pattern classification to MEG signals to obtain the temporal 
dynamics of neural representation20–22,24, few have used cortical currents after solving the inverse problem as the 
classifier’s input data. Our current estimation method successfully separated the cortical currents from a mixture 
of MEG sensor signals originating from many regions for precise anatomical segmentation of the current sources. 
This separation allowed us to investigate the classification accuracies calculated from the cortical current patterns 
within separate brain regions. The effectiveness of using estimated cortical currents in previous studies improved 
the estimation accuracy for the reconstruction of computer cursor movements36, finger movements37 and muscle 
activities38.

Two of our additional analyses described below suggest that a multivariate pattern of single-current dipoles, 
which is the relative variation in the source current value, contains the information for the discrimination of 
short and long RTs. First, to investigate the characteristics of PM currents that allow the classifier to make a 
correct prediction, we compared the within-subject cortical currents averaged across the dipoles in PM for short 
vs. long RTs (Supplementary Fig. S7). The current values in several subjects were significantly different between 
the short- and long-RT groups during the delay period (two-tailed t-test; p <  0.05). However, the classifier, which 
was trained using the currents at which we identified significant differences in the current values, did not always 
achieve above-chance levels (binomial test; p <  0.05). This fact suggests that the magnitude of the spatially aver-
aged activity is not the main factor that enables us to predict RT variability.

To examine whether specific regions in PM are associated with short or long RTs, we investigated the dipole 
bias map that displayed either positive or negative signs of the product of the weights and the currents averaged 
across the training data (Supplementary Fig. S8). Note that the training data have the same number of trials for 
short as for long RTs when calculating the dipole bias map. A map was made for each subject. The sign of the 
product represents the bias of each dipole toward short- or long-RT groups; a dipole with a positive sign con-
tributes to the classification of a trial as a short-RT group, while a dipole with a negative sign contributes to the 
classification of a trial as a long-RT group. We used the weights and currents at 50 ms before the go-signal onset 
when significantly above-chance accuracy (binomial test: p <  0.05) was obtained in most of the subjects (six out of 
eight; see PM panel in Supplementary Fig. S3). Consequently, we observed intermingled patterns in every subject, 
which supports the idea that the information was hidden in a complex pattern of cortical currents.

For future BMI applications, we have to solve at least three major problems before implementing an online 
prediction system to monitor brain states for warnings about delayed responses. First, we must improve the pre-
diction performance because the classification accuracy was not very high (62.0% at the go-signal onset for PM). 
Second, we must take into account the variable onsets of consecutively significant classifications across subjects. 
This fact might require the development of a prescreening system to limit users to people whose RTs are accu-
rately predicted from the early stage of the preparation period. Finally, our method must be tested with a portable 
measurement system, such as electroencephalography. However, our study provides a proof-of-concept of the 
future development of non-invasive BMIs to prevent delayed movements.

In summary, trial-by-trial variability in RTs can be predicted from the early stage of the preparation period. 
We showed that not only preparatory activity in the motor cortex but also the cognitive and conscious states in 
the fronto-parietal regions probably influence subsequent RTs. Although most previous BMI studies assumed 
that motor information must be decoded as a control signal for prosthetic devices4,5,39,40, our results indicate that 
utilizing pre-movement non-invasive neural activity might prevent delayed reactions that often lead to serious 
human error16,17.

Methods
Participants. Nine right-handed males (22–45 years of age) participated in our experiment. All par-
ticipants gave informed written consent. The study was approved by the Ethics Committee at Advanced 
Telecommunication Research Institute International (www.atr.jp), and the experimental protocol was carried out 
in accordance with the latest version of the Declaration of Helsinki.

Task procedure. The subjects moved their right index fingers toward a target in a delayed-reach task. Their 
forearms were fixed to a bed, and their finger joints were immobilized by a brace that only allowed wrist move-
ments. A motion tracking marker of a position recording system (Radish 3D; Library Inc., Japan) was attached to 
their right index fingertip. The marker position was recorded at a sampling frequency of 60 Hz. The sampling rate 
was increased to 1 kHz using spline interpolation to equalize the rate of the sampled MEG data. RT was defined 
as the time length from the target appearance to the movement onset, which was set to the first time at which the 
fingertip’s tangential velocity exceeded 5% of the maximum velocity.

The trials began with a screen on which only a fixation cross was visible (timeline in Fig. 1a). After a 1500-ms 
Ready period, a high (880 Hz) or a low (440 Hz) instruction tone was presented for 500 ms (Cue period). The high 
or low tones indicated the fast- or slow-speed movements required in subsequent movements. Correspondence 
between the tone and speed conditions was counterbalanced across subjects. A target appeared above the fixation 
cross after a 1300-ms Delay period. Subjects initiated a finger movement as quickly as possible within the next 
2000-ms Movement period. 200 ms after reaching the fingertip at the target circle, a feedback instruction (good, 
fast, or slow based on finger movement speed; see “Feedback instruction” in Supplementary Methods) was pre-
sented for a 1000-ms Feedback period. They returned the cursor to the starting position and kept it within the 
next 3000-ms Rest period. A session consisted of 60 trials (30 fast- and 30 slow-speed trials). Fast- and slow-speed 
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trials were randomly presented in a session. Subjects underwent six to nine sessions in the MEG experiment. 
We simultaneously recorded electrooculography (EOG) to detect blinks and eye movements. Eye movements 
(including blinks) were not allowed from the beginning of the Cue periods to the end of the Feedback periods.

The fMRI sessions were composed of alternating blocks of execution (21.2 s) and rest periods (15 s). In the 
former, subjects conducted four trials, all of which were identical to those in the MEG experiment except that the 
movement period was fixed to 1.5 s. In the latter, Rest was presented on the screen for the first 2 s, and subjects 
fixed their eyes on the fixation cross that was presented for the remaining 13 s without finger movements. Each 
subject performed two sessions of fifteen blocks.

MEG data acquisition and preprocessing. A whole-head 400-channel system (PQ1400RM; Yokogawa 
Electric Co., Japan), which consists of a 210-channel axial gradiometer and a 190-channel planar gradiometer, 
was used for MEG recording at a sampling rate of 1 kHz. Only the axial gradiometer data were used in the analy-
ses. We subtracted the environmental noise estimated from the reference magnetometer signals from the neuro-
physiological signals using time-shift Principled Component Analysis41. The signals were then band-pass-filtered 
from 0.1 to 90 Hz and downsampled at 200 Hz. For each trial, the signal value was adjusted so that the mean value 
from 2000 to 1800 ms before the target onset became zero (baseline interval) because the influence of the activity 
evoked by the finger movements is the lowest immediately before the Cue period in comparison to the other 
periods. Trials and sensors were excluded from further analysis according to the trial and sensor rejection criteria 
(see “Trial and sensor rejection criteria” in Supplementary Methods). One subject was excluded from analysis due 
to an insufficient number of trials (fewer than 50% of the total trials) after rejection of the noisy trials. Thus, the 
mean number of the remaining trials and sensors were 386 (SD: 66) and 206 (SD: 9.6), respectively.

fMRI data acquisition and preprocessing. We used a 3 Tesla Magnetom Verio scanner (Siemens, 
Germany) to obtain the blood oxygen level-dependent (BOLD) contrast function images. The images, weighted 
with the apparent transverse relaxation times, were obtained with an echo planar imaging (EPI) sequence. 190 
scans were acquired in each session with a gradient echo EPI sequence under the following scanning parameters: 
repetition time, 3 s; echo time, 30 ms; flip angle, 80°; voxel size, 3 ×  3 ×  3 mm; matrix, 64 ×  64 mm; 47 axial slices; 
and thickness, 3 mm without gaps. T1-weighted structure images were obtained with 1 ×  1 ×  1 mm resolution 
with a gradient echo sequence (repetition time, 2250 ms; echo time, 3.06 ms; flip angle, 9°; matrix, 256 ×  256; 208 
axial slices; and thickness, 1 mm without gap).

The fMRI data were analyzed using SPM8 (Wellcome Trust Centre for Neuroimaging, London, UCL) on 
Matlab. We discarded the first three volumes of the images in each session to allow for T1 equilibration. The 
remaining image volumes were realigned to the first image to correct for head movements. The data were spa-
tially normalized to the Montreal Neurological Institute (MNI) (Montreal, Quebec, Canada) reference brain and 
resliced to a 2-mm isotopic voxel size. The data were smoothed spatially with a 6-mm full-width at half-maximum 
Gaussian kernel. The voxel time series were high-pass filtered with a cutoff frequency of 128 s to remove slowly 
varying trends.

Statistical parametric maps of t statistics were calculated for each subject. The box-car functions were con-
volved with a canonical hemodynamic response function in SPM8 to yield regressors in a general linear model. 
We used SPM contrast to compare the estimated parameters (execution - rest) to yield t-maps (p <  0.001, 
uncorrected).

Cortical current estimation using a hierarchical Bayesian method. To map the current dipoles on 
the cortical surface, we constructed a polygon model of the cortical surface based on MR structure images using 
FreeSurfer software42. Based on previous studies37,38, two types of parameters, a variance magnification param-
eter (m0) and a confidence parameter (γ 0), were set at 100 and 10 for the estimation using fMRI prior informa-
tion18,19. In the estimation, we incorporated the artifact dipoles that were located at the center of the heart and 
the carotid arteries to remove the effect of artifacts by heart beats, the right shoulder and wrist joints to discard 
artifacts by muscle activities caused by finger movements, and the left and right eyeballs to remove artifacts by 
eye movements43,44.

Inverse filters were estimated for 59 divided time windows (100-ms long, 50-ms overlap) from 2 s before to 1 s 
after timing the target appearance. We separately calculated an inverse filter for each time window. In the overlap 
periods, they were concatenated sequentially.

Multivariate pattern classification on MEG data. Short- or long-RT trials were classified using a lin-
ear SVM implemented in LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) with default parameters (a fixed 
regularization parameter C =  1)45. For individual subjects, we separately concatenated the trials of all sessions for 
the two speed conditions and defined the short- and long-RT classes as the bottom 25% and the top 25% from 
the concatenated trials in each speed condition. The SVM classifier was trained to discriminate the short- or 
long-RT-group trials in the fast-speed condition and tested in the slow-speed condition and vice versa (Fig. 1b).

To investigate the time course of the classification accuracy, we trained a new classifier and tested it for each 
100-ms time window with 25% overlap (sliding time window decoding). The cortical currents within each time 
window were temporally averaged. We evaluated the statistical significance for classification accuracy by com-
bining the parametric and nonparametric methods. First, we conducted two-tailed t-tests to determine whether 
the classification accuracy significantly exceeded chance level (50%) with a threshold of p <  0.05 at each time 
point. Second, we conducted a group-level permutation test46. The classification accuracy was computed with the 
surrogate data in which the relationship between the labels and the data was shuffled. After repeating this pro-
cedure 100 times for each subject, we randomly sampled 104 combinations of the data of eight subjects. We then 
averaged the classification accuracy for each combination to create an empirical distribution and investigated 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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whether the classification accuracy with correct labeling exceeded the 9,999th percentile of the distribution (i.e., 
p =  1 ×  10−4). This threshold followed a previous study46. The mean threshold (classification accuracy) for the PM 
averaged across the time points during the delay was 55.3%. For multiple comparison corrections, we applied a 
time-cluster-based approach. A time point was considered significant only when it was a member of a cluster of 
at least five consecutively significant time points (see Supplementary Methods).

Definitions of regions of interest (ROIs). First, we examined the classification performance in the five 
functionally selected areas: PM, M1, SMA, SPL, and IPL. These areas were anatomically defined with the AAL 
atlas25 and the Brodmann areas that are included in the WFU PickAtlas47. PM and M1 were defined as Broadmann 
area 6 excluding the SMA of the AAL atlas and Broadmann area 4. Three other areas were determined by AAL 
(Supp_Motor_Area_L, Parietal_Sup_L, and Parietal_Inf_L). Furthermore, we defined 80 ROIs based on the AAL 
atlas in the cortical surface and examined the classification accuracies in each ROI.
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