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Abstract: One of the common types of cancer for women is ovarian cancer. Still, at present, there are no
drug therapies that can properly cure this deadly disease. However, early-stage detection could boost
the life expectancy of the patients. The main aim of this work is to apply machine learning models
along with statistical methods to the clinical data obtained from 349 patient individuals to conduct
predictive analytics for early diagnosis. In statistical analysis, Student’s t-test as well as log fold
changes of two groups are used to find the significant blood biomarkers. Furthermore, a set of machine
learning models including Random Forest (RF), Support Vector Machine (SVM), Decision Tree (DT),
Extreme Gradient Boosting Machine (XGBoost), Logistic Regression (LR), Gradient Boosting Machine
(GBM) and Light Gradient Boosting Machine (LGBM) are used to build classification models to
stratify benign-vs.-malignant ovarian cancer patients. Both of the analysis techniques recognized that
the serumsamples carbohydrate antigen 125, carbohydrate antigen 19-9, carcinoembryonic antigen
and human epididymis protein 4 are the top-most significant biomarkers as well as neutrophil ratio,
thrombocytocrit, hematocrit blood samples, alanine aminotransferase, calcium, indirect bilirubin,
uric acid, natriumas as general chemistry tests. Moreover, the results from predictive analysis suggest
that the machine learning models can classify malignant patients from benign patients with accuracy
as good as 91%. Since generally, early-stage detection is not available, machine learning detection
could play a significant role in cancer diagnosis.

Keywords: ovarian cancer; benign ovarian tumors; tumor marker; machine learning; statistical
analysis

1. Introduction

One of the familiar types of malignancy, ovarian cancer (OC), is the seventh most
well-known cancer among females, which has a 2.7% lifetime risk factor [1]. Ovarian cancer
represents 2.5% of all malignancies among females; however, 5% of the malignant cases die
due to low survival rates. This is generally attributed to the late-stage diagnosis and lack of
early symptoms [2]. Ovarian cancers are chemo-sensitive, and they show the fundamental
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adaptability against platinum/taxane treatment, and the recurrence rate is 60–80% within
5 years [3].

Gynecologists typically need to diagnose whether a patient has developed malignant
pelvis masses, which can be suspected as tumors [4]. Although a few techniques, e.g., ultra-
sonography and helical CT scanning, have been utilized to distinguish between a benign
tumor and malignant non-gynecologic conditions, the tumor biomarkers such as carbohy-
drate antigen 125 (CA125), carbohydrate antigen 72-4 (CA72-4) [4], and human epididymis
protein 4 (HE4) detection are some of the crucial components in separating female pelvic
masses [4,5]. There are some studies that determine the efficiency of those biomarkers
in differentiating ovarian cancer and benign tumors. To predict epithelial ovarian cancer,
Moore et al. conducted a comparative study between RMI and ROMA algorithms among
457 patients, and they identified that ROMA predicted epithelial ovarian cancer patients
with higher sensitivity than RMI [6]. Anton et al. compared the sensitivity of CA125, HE4,
ROMA, and RMI among 128 patients and observed HE4 with the highest sensitivity to
evaluate the malignant ovarian tumor [7]. Moreover, to predict the progression of ovarian
cancer, a multi-marker linear model was developed by Zhang et al. by employing CA125,
HE4, progesterone, and estradiol [8].

Machine learning algorithms with novel methodologies have great potentialities in
predicting disease progression and malignancy diagnosis. Alqudah et al. used the machine
learning algorithms with a wavelet feature selection approach using a serum proteomic
profiling dataset [9]. Next, Kawakami et al. performed supervised machine learning
classifiers, including GBM, SVM, RF, CRF, Naive Bayes, Neural Network, and Elastic Net
using different blood biomarkers to predict the tumor size, but those models achieved
only less than 70% AUC score [10]. Paik et al. employed a four-staged OC, histological
information, different types of primary treatments, and chemotherapy regimen informa-
tion, and they predicted the cancer stages with about 83% accuracy score [11]. Recently,
Akazawa et al. had performed the machine learning-based analysis with several models
such as SVM, Naive Bayes, XGBoost, LR, RF and achieved improved model performance
with the XGBoost algorithm with the best accuracy score of around 80% among other
competing models [12]. However, this study was sensitive to the size of the feature set;
i.e., as the number of feature decreases, the accuracy drops around 60%. Another drawback
of this work has been the low number features, i.e., only 16 different blood parameters.
Lu et al. used three different types of biomarkers including blood samples, general chem-
istry medical tests, and OC markers, and they showed a high validation accuracy score but
low testing accuracy [5], which indicates the presence of a common problem in machine
learning algorithms, i.e., over-fitting. Therefore, a robust framework for stratifying ovarian
cancer patients using biomarker features by employing machine learning and statistical
analysis is a pressing need at this moment.

We have seen that although multiple studies have been conducted to diagnose ovarian
cancer, the accuracy ratings are not adequate, so there is still room for improvement.
Additionally, no study has separated the data’s aspects using criteria such as blood samples,
general chemistry tests, and OC biomarkers. As a result, we have started with data
separation. Only statistical approaches were used in the prior investigation, but we used a
mixed methodology (statistical and machine learning) to analyze the data. This method
added a new dimension to work and increased the dependability of actual clinical testing,
which could benefit clinicians and physicians.

The main objectives of our work are as follows:

• Early-stage detection of ovarian cancer using biomarkers;
• Find the significant and associative biomarkers using statistical methods as well as

machine learning models;
• Apply machine learning models on a comprehensive dataset including blood samples,

general chemistry medical tests, and OC markers and perform robust and statistically
sound analytical experiments.
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2. Materials and Methods

In this study, we used a clinically tested raw dataset comprised of samples from benign
ovarian tumors and malignant ovarian patients. Next, statistical analysis was conducted to
identify the most significant biomarkers associated with malignancy. Moreover, the ma-
chine learning classification models were employed to detect ovarian cancer in the early
stage. The detailed pictorial representation of the workflow is depicted in Figure 1.

Figure 1. The schematic diagram of the overall workflow.

2.1. Data Collection

The dataset of 349 patients was collected from the ‘Third Affiliated Hospital of Soo-
chow University’ [5]. The retrospective study was taken from July 2011 to July 2018,
including 171 ovarian cancer patients and 178 benign ovarian tumor patients. The dataset
consists of 49 features that were collected by the pathology diagnosed. We divided the
whole dataset into three subgroups: blood routine test (neutrophil ratio, thrombocytocrit,
hematocrit, mean corpuscular hemoglubin, lymphocyte, platelet distribution width, mean
corpuscular volume, platelet count, hemoglobin, eosinophil ratio, mean platelet volume,
basophil cell count, red blood cell count, mononuclear cell count, red blood cell distribution
width, and basophil cell ratio), general chemistry (albumin, calcium, indirect bilirubin, uric
acid, nutrium, total protein, alanine aminotransderase, total bilirubin, blood urea nitro-
gen, magnesium, glucose, creatinine, phosphorus, globulin, gama glutamyl tranferasey,
alkaline phosphates, kalium, direct bilirubin, carban dioxide-combining power, chlorine,
aspartate aminotransferase, and anion gap) and tumor marker (carbohydrate antigen 72-
4, alpha-fetoprotein, carbohydrate antigen 19-9, menopause, carbohydrate antigen 125,
carcinoembryonic antigen, age, and human epididymic protein 4)) (shown in Table 1).
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The names of the attributes including some statistical analysis results such as the mean,
standard deviation, 95% CI and the p values for Student’s t-test are shown in Table 2.

Table 1. The attribute list for different subgroups of the dataset.

Blood Routine Test General Chemistry Tumor Marker

Neutrophil ratio Albumin Carbohydrate antigen 72-4
Thrombocytocrit Indirect bilirubin Alpha-fetoprotein

Hematocrit Uric acid Carbohydrate antigen 19-9
Mean corpuscular

hemoglubin Nutrium Menopause

Lymphocyte Total protein Carbohydrate antigen 125
Platelet distribution width Alanine aminotransderase Carcinoembryonic antigen
Mean corpuscular volume Total bilirubin Age

Platelet count Blood urea nitrogen Human epididymic protein 4
Hemoglobin Magnesium

Eosinophil ratio Glucose
Mean platelet volume Creatinine

Basophil cell count Phosphorus
Red blood cell count Globulin

Mononuclear cell count Gama glutamyl tranferasey
Red blood cell distribution

width Alkaline phosphates

Basophil cell ratios Kalium
Direct bilirubin

Carban dioxide-combining
power

Chlorine
Aspartate aminotransferase

Anion gap

Table 2. Association between benign ovarian tumor and ovarian cancer patients. The results of
independent sample t-test with blood samples, general biochemistry tests and tumor markers. N.B.
BOT: Benign Ovarian Tumor; OC: Ovarian Cancer; SD: Standard Deviation.

Abbreviation Biomarkers Type Unit
Mean ± SD

95% CI p
BOT OC

MPV Mean platelet
volume full blood fL 9.98± 1.78 10.09± 1.69 (−0.48, 0.25) 0.55

BASO# Basophil cell
count full blood 109/L 0.28± 0.02 0.03± 0.02 (−0.006, 0.002) 0.28

PHOS Phosphorus serum mmol/L 1.12± 0.18 1.12± 0.19 (−0.05, 0.03) 0.67
GLU Glucose serum mmol/L 5.56± 1.18 5.12± 0.85 (0.18, 0.69) <0.01

CA72-4 Carbohydrate
antigen 72-4 serum U/mL 12.77± 19.32 7.67± 4.15 (2.18, 8.01) <0.01

K Kalium serum mmol/L 4.38± 0.41 4.39± 0.39 (−0.4, −1.17) 0.92

AST
Aspartate

aminotrans-
ferase

serum u/L 20.94± 9.36 17.34± 6.88 (1.87, 5.32) <0.01

BASO% Basophil cell
ratio full blood % 0.44± 0.33 0.52± 0.36 (−0.15,−0.001) 0.05

Mg Magnesium serum mmol/L 0.98± 0.13 0.98± 0.12 (−0.03, 0.02) 0.78
CL Chlorine serum mmol/L 100.9± 3.52 100.73± 2.36 (−0.05, 1.07) 0.6

CEA Carcinoembryonic
antigen serum ng/mL 5.23± 15.02 1.47± 0.88 (1.55, 5.98) <0.01

EO# Eosinophil
count full blood 109/L 0.06± 0.06 0.07± 0.08 (−0.03, 0.003) 0.13

CA19-9 Carbohydrate
antigen 19-9 serum U/mL 66.66± 166.39 25.91± 40.36 (15.48, 66.01) <0.01
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Table 2. Cont.

Abbreviation Biomarkers Type Unit
Mean ± SD

95% CI p
BOT OC

ALB Albumin serum g/L 38.94± 6.27 43.13± 3.92 (−5.29, −3.1) <0.01

IBIL Indirect
bilirubin serum umol/L 5.36± 2.51 6.54± 3.15 (−1.77, −0.57) <0.01

GGT
Gama

glutamyl
transferase

serum u/L 22.79± 17.22 19.88± 18.48 (−0.85, 6.68) 0.13

MCH
Mean

corpuscular
hemoglobin

full blood Pg 28.34± 2.71 29.2± 2.36 (−1.39, −0.32) <0.01

GLO Globulin serum g/L 31.07± 5.04 29.32± 3.69 (0.83, 2.68) <0.01

ALT Alanine amino-
transferase serum u/L 17.96± 11.79 18.06± 10.39 (−2.44, 2.23) 0.93

DBIL Direct bilirubin serum umol/L 2.9± 1.34 3.35± 1.45 (−0.74, −0.15) <0.01

RDW
Red blood cell

distribution
width

full blood % 13.68± 2.0 13.43± 1.59 (−0.13, 0.62) 0.2

PDW
Platelet

distribution
width

full blood % 13.91± 3.19 14.74± 2.74 (−1.46, −0.21) <0.01

CREA Creatinine serum umol/L 63.35± 12.59 65.11± 10.78 (−4.23, 0.7) 0.16

AFP Alpha-
fetoprotein serum ng/mL 20.41± 135.44 2.72± 2.18 (−2.28, 37.66) 0.08

HGB Hemoglobin full blood g/L 122.21± 16.71 128.34± 13.7 (−9.35, −2.93) <0.01
Na Natrium serum mmol/L 140.91± 3.26 140.1± 2.35 (0.22, 1.42) <0.01

HE4
Human

epididymis
protein 4

serum pmol/L 324.24± 488.62 49.17± 39.07 (202.8, 347.34) <0.01

LYM# Lymphocyte
count full blood 109/L 1.41± 0.54 1.7± 0.55 (−0.4, −0.17) <0.01

CA125 Carbohydrate
antigen 125 serum U/mL 652.15±

1021.91 51.45± 79.79 (449.57, 751.81) <0.01

BUN Blood urea
nitrogen serum mmol/L 4.0± 1.42 4.02± 1.15 (−0.28, 0.26) 0.94

LYM% Lymphocyte
ratio full blood % 22.74± 10.05 29.27± 9.7 (−8.61, −4.46) <0.01

Ca Calcium serum mmol/L 2.32± 0.42 2.46± 0.28 (−0.21, −0.06) <0.01
AG Anion gap serum mmol/L 19.4± 4.6 19.24± 4.09 (−0.75, 1.08) 0.73

MONO# Mononuclear
cell count full blood 109/L 0.39± 0.16 0.33± 0.13 (−0.03, 0.78) <0.01

PLT Platelet count full blood 109/L 281.65± 117.44 230.25± 57.33 (32.06, 70,74) <0.01

NEU Neutrophil
ratio full blood % 70.21± 10.92 63.09± 7.5 (5.16, 9.09) <0.01

EO% Eosinophil
ratio full blood 109/L 1.0± 0.94 1.24± 1.29 (−0.48,

−0.004) 0.05

TP Total protein serum g/L 69.66± 8.78 72.45± 5.07 (−4.29, −1.29) <0.01
UA Uric acid serum µmol/L 246.25± 78.04 241.26± 58.18 (−9.46, 19.45) 0.5

RBC Red blood cell
count full blood 1012/L 4.31± 0.52 4.41± 0.41 (−0.19, 0.005) 0.06

PCT Thrombocytocrit full blood L/L 0.27± 0.1 0.23± 0.07 (0.02,0.06) <0.01

CO2CP

Carban
dioxide-

combining
power

serum mmol/L 24.54± 2.97 24.03± 2.36 (−0.05, 1.07) 0.08

TBIL Total bilirubin serum µmol/L 8.27± 3.6 9.88± 4.4 (−2.46, −0.77) <0.01
HCT Hematocrit full blood L/L 0.38± 0.05 0.39± 0.04 (−0.02,−0.002) 0.02

MONO% Monocyte ratio full blood % 5.77± 2.01 5.4± 1.82 (−0.03, 0.78) 0.07

MCV
Mean

corpuscular
volume

full blood fL 87.79± 6.71 88.34± 5.32 (−1.82, 0.72) 0.4

ALP Alkaline
phosphatase serum u/L 86.56± 57.77 67.98± 19.61 (9.56, 27.59) <0.01
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2.2. Data Processing

The raw dataset was subjected to a series of preprocessing steps, including data
cleaning, missing value imputation, data scaling, and data dividing in the preprocessing
step. There are 349 individual patients’ information in our dataset, and there were only
about 7% of missing values, which were imputed with their mean values of existing values
of each features. For the data scaling, we have ‘Standardized’ with the equation [13], which
makes the values centered around the mean values, including a unit standard deviation.

X′ =
X− µ

σ
(1)

where µ is the mean and σ is the standard deviation.

2.3. Association and Impacts of the Features to the Patients

In this study, we have considered benign ovarian tumor patients as a control and the
ovarian cancer patients as the case and then conducted two statistical analyses, including
the Student’s t-test and the Mann–Whitney U-test, since it is suitable for finding the
significant features for distinguishing patients’ benign ovarian tumors and ovarian cancer.
For this analysis, we have used Statistical Package for the Social Sciences (SPSS), version 25.0.
Significant features were chosen based on their p-values < 0.05. The Student’s t-test was
used to analyze the association of the continuous variable attributes, where the features
are reserved if they show significant correlation (i.e., p-value < 0.05); otherwise, they are
omitted [14]. The Mann–Whitney U-test is used to compare two population means without
the assumption of being drawn from standard distribution [15].

2.4. Machine Learning Models

In this study, we have used several supervised ensemble-based machine learning algo-
rithms, including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Light
Gradient Boosting Machine (LGBM), Support Vector Machine (SVM), Extreme Gradient
Boosting Machine (XGB), and Gradient Boosting Machine (GBM) separately to predict
ovarian cancer, and we searched for the models with the best performance. We use grid
search to fine-tune hyperparameters in our machine learning study, and we also em-
ploy five-fold cross-validation. For hyperparameter tuning, we have tuned ‘criterion’ as
‘gini’ and ‘entropy’, ‘max_depth’, ‘min_samples_split’, and ‘min_samples_leaf’ for DT,
‘max_depth’, ‘n_estimators’, and ‘learning_rate’ for XGB, ‘n_estimators’, ‘max_features’,
‘max_depth’, and ‘criterion’ for RF, ‘C’ and ‘gamma’ for SVM, ‘learning_rate’, ‘n_estimators’,
‘num_leaves’, ‘boosting_type’, ‘max_bin’, ‘colsample_bytree’, ‘subsample’, ‘reg_alpha’,
‘reg_alpha’ for LGBM, and ‘panalty’ and ‘C’ for LR, and ‘learning_rate’ and
‘min_samples_leaf’ for GBM algorithm.

For all ML studies, the Python (Python 3.7.13) programming language has been
utilized. We have utilized Python libraries such as pandas and numpy for basic data
processing and sklearn for machine learning. In addition, ‘matplotlib’ in Python and
‘ggplot2’ in the R programming language were applied to generate all plots and figures.
For DT, XGB, RF, and GBM algorithms, we employed ‘feature_importance_’ to determine
the importance of a feature; for SVM and LR, we applied the ‘coef_’ method; and for the
LGBM algorithm, we invoked the ‘feature_importance()’ function.

Although the Random Forest (RF) algorithm performs classification tasks based on
the majority voting of an ensemble of decision trees, to provide a fair and comprehensive
comparison, we were interested to observe how RF outperforms a single decision tree
prediction task.

Logistic Regression (LR) is a machine learning algorithm implemented in statistics
used in binary classification problems. It intuits the maximum-likelihood value based on
the best coefficient value [16]. In the logistic regression algorithm, we used the sigmoid
function, which described the output as a number between 0 and 1. Finally, the threshold
value was considered to classify the input dataset.
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Decision Tree (DT) classifies samples by creating decision rules depending on the
entropy function as well as the information gain [17], which can handle both the continuous
and categorical data.

Random Forest (RF) makes use of several decision trees for classification, and its
performance can be developed through accurately tuning the hyperparameter [18], which
considers training data arbitrarily to handle the over-fitting problems in an efficient way [19].
In our analysis, the ‘gini’ function was used to measure the quality of splitting of the trees.

Support Vector Machine (SVM) makes a decision boundary to classify data and has
been widely used in medical informatics. The ‘linear’ kernel is very commonly used
in applications that employ SVM, where the Cost and Gamma are two of the controlling
hyperparameters. The Cost parameter is used to handle the misclassification of training
samples, and the Gamma parameter controls the decision region [18]. We have also used
‘linear’ kernel to find the feature importance. The Bayesian optimization method is used to
optimize the parameter values of RBF to enhance classification performance.

Gradient Boosting Machine (GBM) is an ensemble learning method that merges multi-
ple feeble learners to make a robust one through the optimization of the loss function [18]
that normally uses the deviance or exponential loss function. Logistic regression is em-
ployed to handle deviance loss function, and Adaboosting is applied to control exponential
loss function.

Light Gradient Boosting Machine (LGBM) is an improved version of GBM depending
on tree-based learning techniques. It can potentially handle a massive volume of data and
perform at a high-accuracy level with limited computing resources (i.e., memory space
and computing speed) compared to other models [20]. The learning was tuned between
(0.005, 0.01). The extreme gradient boosting (XGB) employs a gradient descent technique to
diminish the loss while joining a new model. XGB supplies a boosting tree that resolves
numerous data science problems with a fast and precise approach [18].

We have use Google Co-laboratory cloud platform to perform all the simulation tasks.

2.5. Evaluation Metrics

In this article, we have used several evaluation metrics, namely accuracy, precision,
recall, F-score, AUC, and log-loss to evaluate the performances of the classifiers based on
the True Positives (TP), False Positives (FP), True Negatives (TN) and True Positives (TP).

• Accuracy: Accuracy represents the correctness of a model [21], and it can be expressed
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

• Precision: Precision states the percentage of appropriately identified samples (positive)
inside all identified samples (positive) [22], which can be stated as follows:

Precision =
TP

TP + FP
(3)

• Recall: Recall expresses the capacity of the classifier to properly classify samples
within a given class, which is as follows: [23]

Recall =
TP

TP + FN
(4)

• F1-score: F1-score is used for the case when there is class imbalance in data by harmo-
nizing Precision and Recall [22], which is as follows:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(5)
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• ROC-AUC: ROC-AUC denotes the discrimination capability of the model, and it
shows the relationship between specificity and sensitivity [22].

Sensitivity = Recall =
TP

TP + FN
(6)

Speci f icity =
TN

FP + TN
(7)

The Area Under the Curve (AUC) is the area under the Sensitivity(TRP) − (1 −
Speci f icity)(FPR) curve.

• Log-loss: Log-loss calculates the ambiguity of the probability of a method by analyzing
them to the exact labels. A lesser log-loss value indicates improved predictions [24].

Hp(q) = −
1
N

N

∑
i=1

yi.log(p(yi))

+(1− yi).log(1− p(yi))

(8)

Log loss is calculated as follows: H(q), where y is the level of the target variable, p(y)
is the projected probability of the point given the target value, and q is the actual value
of the log loss.

3. Results

In this study, the dataset consisted of 349 individual patients’ information, and there
was only 7% missing values, which was handled by imputing the mean values. We also
eliminated the entries that contained any missing values, and we found a total 106 patients’
data (44 benign tumors and 62 ovarian cancer tumors). The data-scaling technique was
used to approximate mean values with standard deviation. We divided the whole dataset
into 80% for training and 20% for testing. Accuracy, Precision, Recall, F1-score, AUC,
and log-loss evaluation metrics are employed to test the classifier performance. We also
implemented the Mann–Whitney U-test to detect the significant factors that are responsible
for ovarian cancer.

3.1. Finding Significantly Associative Biomarkers Using Statistical Methods

We used the Mann–Whitney U-test and Student’s t-test to all datasets to identify
important factors which are accountable for ovarian cancer. Our findings are shown
in Figures 2–4. The most significant descending order parameters are neutrophil ratio,
lymphocyte ratio, platelet count, lymphocyte count, and thrombocytocrit in the blood
sample dataset. The albumin, aspartate aminotransferase, alkaline phosphatase, indirect
bilirubin, and globulin are the most critical attribute in descending order in the general
chemistry dataset. The highest vital features in descending order are age, menopause,
carbohydrate antigen 125, human epididymis protein 4, and carbohydrate antigen 72-4 in
the OC marker dataset.
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Neutrophil ratio Thrombocytocrit Lymphocyte ratio Platelet count Hematocrit

A

C

B

Figure 2. The analysis results for the dataset blood samples; (A) The feature importance of blood
samples calculated by ML algorithms according to coefficient values after model training; (B) The
association between benign ovarian tumor and ovarian cancer patients applying independent sample
t-test, the lighter and larger bubble represent higher association; (C) The box plot of the five top most
associated blood samples.

Albumin Calcium
Indirect
bilirubin

Alkaline
phosphatase

Aspartate

A

C

B

aminotransferase

Figure 3. The analysis results for the dataset general chemistry tests; (A) The feature importance
of general chemistry tests calculated by ML algorithms according to coefficient values after model
training; (B) The association between benign ovarian tumor and ovarian cancer patients applying
independent sample t-test, the lighter and larger bubble represent higher association; (C) The box
plot of the five top most associated general chemistry tests.
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Human epididymis Carcinoembryonic
antigen Age

Carbohydrate Carbohydrate
antigen 19-9

A B

antigen 125protein 4C

Figure 4. The analysis results for the dataset cancer markers; (A) The feature importance of cancer
markers calculated by ML algorithms according to coefficient values after model training; (B) The
association between benign ovarian tumor and ovarian cancer patients applying independent sample
t-test, the lighter and larger bubble represent higher association; (C) The box plot of the four top most
associated cancer markers with patients age.

3.2. Classification of Ovarian Cancer Using Machine Learning Algorithms

In the case of the blood samples dataset, the highest Accuracy (82.0%), F1-score (83.0%),
and AUC (82.0%) were calculated by GBM and LGBM. DT and RF performed the maximum
precision of 83.0% and recall of 92.0%, respectively. The lowest log-loss value is 6.2, which
LGBM manipulates. In the general chemistry dataset, RF showed the maximum accuracy
(81.0%) and AUC (80.0%) and the minimum log-loss (6.71). LGBM calculated the highest
precision 87.0% and F1-score 84.0%. However, SVM manipulated the peak recall, and it
was 90.0%.

In the OC marker dataset, the highest accuracy (86.0%), recall (97.0%), AUC (86.0%),
and the lowest log-loss (4.79) were evaluated by both RF and XGBoost classifiers. DT
and RF showed the maximum precision (81.0%) and F1-score (87.0%), respectively. Other
classifiers also achieved good results in all evaluation metrics. In the combined dataset,
RF, GBM, and LGBM showed the maximum accuracy of 88.0%, AUC of 87.0%, and the
minimum log-loss of 4.31. RF and GBM evaluated the highest recall of 95.00% and F1-
score of 89.0%. LGBM demonstrated the uppermost precision, and it was 85.0%. Table 3
contains the results. Additionally, we determined the confusion matrices and displayed the
outcomes in the Supplementary Table S1.

Additionally, we have removed any rows with any missing information, leaving us
with a total of 106 patients’ data (44 benign tumor and 62 ovarian cancer). Table 4 contains
the results. After comparing the outcomes of substituting missing values and removing
missing values, it can be seen that the scores of the matrices differ significantly. With a few
notable exceptions, such as the RF score of 0.91 accuracy for the OC marker dataset, almost
of the scores of the dataset with the missing values removed were lower except for log-loss.
In this situation, the missing values deleted scenario exhibits bad results because lower
log-loss values suggest better results.
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Table 3. Accuracy and evaluation matrices scores for each of the data groups.

Dataset Model Accuracy Precision Recall F1-Score AUC Log Loss

Blood Samples RF 0.81 0.76 0.92 0.82 0.78 7.6
SVM 0.81 0.77 0.89 0.82 0.78 7.8
DT 0.81 0.83 0.78 0.81 0.81 6.71

XGBoost 0.81 0.78 0.86 0.82 0.77 7.6
LR 0.80 0.79 0.81 0.80 0.78 7.6

GBM 0.82 0.82 0.84 0.83 0.82 6.23
LGBM 0.82 0.80 0.86 0.83 0.82 6.2

General
Chemistry RF 0.81 0.80 0.83 0.82 0.80 6.71

SVM 0.80 0.76 0.90 0.81 0.79 7.11
DT 0.68 0.70 0.68 0.69 0.68 11.03

XGBoost 0.76 0.76 0.78 0.78 0.77 8.15
LR 0.80 0.75 0.89 0.82 0.79 7.11

GBM 0.75 0.76 0.76 0.76 0.75 8.63
LGBM 0.75 0.87 0.82 0.84 0.76 7.11

OC Marker RF 0.86 0.80 0.97 0.87 0.86 4.79
SVM 0.85 0.80 0.95 0.86 0.84 5.27
DT 0.85 0.81 0.92 0.86 0.85 5.2

XGBoost 0.86 0.80 0.97 0.86 0.86 4.79
LR 0.83 0.80 0.92 0.85 0.83 5.7

GBM 0.85 0.80 0.95 0.86 0.84 5.27
LGBM 0.85 0.80 0.95 0.86 0.84 5.27

Combined RF 0.88 0.83 0.95 0.89 0.87 4.31
SVM 0.81 0.77 0.89 0.83 0.80 6.71
DT 0.78 0.78 0.78 0.78 0.78 7.6

XGBoost 0.86 0.82 0.95 0.86 0.86 4.79
LR 0.82 0.79 0.89 0.84 0.82 6.23

GBM 0.88 0.83 0.95 0.89 0.87 4.31
LGBM 0.88 0.85 0.92 0.88 0.87 4.31

Table 4. Accuracy and evaluation matrices scores for each of the data groups for the dataset of
106 patients.

Dataset Model Accuracy Precision Recall F-1 Score AUC Log-Loss

Blood Samples RF 0.86 0.82 1 0.9 0.81 4.71
SVM 0.81 0.77 1 0.88 0.75 6.28
DT 0.77 0.8 0.86 0.83 0.74 7.85

XGBoost 0.77 0.8 0.86 0.83 0.74 7.85
LR 0.82 0.78 1 0.88 0.75 6.28

GBM 0.73 0.72 0.73 0.72 0.68 9.42
LGBM 0.64 0.64 1 0.78 0.5 12.56

General
Chemistry RF 0.77 0.76 0.93 0.84 0.71 7.85

SVM 0.77 0.76 0.93 0.84 0.71 7.85
DT 0.59 0.67 0.71 0.69 0.54 14.13

XGBoost 0.73 0.75 0.86 0.8 0.68 9.42
LR 0.77 0.76 0.93 0.84 0.71 7.85

GBM 0.73 0.72 0.73 0.72 0.68 9.42
LGBM 0.64 0.64 1 0.78 0.5 12.56

OC Marker RF 0.91 1 0.86 0.92 0.93 3.14
SVM 0.82 0.92 0.79 0.85 0.83 6.28
DT 0.59 1 0.36 0.53 0.68 14.13

XGBoost 0.68 1 0.5 0.67 0.75 10.99
LR 0.82 0.92 0.79 0.85 0.83 6.28

GBM 0.81 0.84 0.82 0.82 0.83 6.28
LGBM 0.64 0.64 1 0.78 0.5 12.56

Combined RF 0.86 0.87 0.93 0.9 0.84 4.71
SVM 0.64 0.8 0.57 0.67 0.66 12.56
DT 0.68 1 0.5 0.67 0.75 10.99

XGBoost 0.86 1 0.79 0.88 0.89 4.71
LR 0.86 0.82 1 0.9 0.81 4.71

GBM 0.86 0.87 0.86 0.87 0.87 4.71
LGBM 0.64 0.64 1 0.78 0.5 12.56
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Our study also demonstrated the feature importance, and it is calculated depending
on the average coefficient value of each used classifier. First, we determined the feature
importance values for each algorithm, and then, we scaled the values using the min–max
method to make them lie between 0 and 1. After that, we calculated the average values for
each feature.

In Figure 3, we observed general chemistry’s feature importance and noticed the most
significant feature is age. Other vital features are albumin, calcium, indirect bilirubin, uric
acid, and so on. The least significant attributes are anion gap, aspartate aminotransferase,
chlorine, carbon dioxide-combining power, direct bilirubin, and so on.

The highest rank feature is neutrophil ratio, and the lowest rank attribute is eosinophil
count, respectively, in feature importance of blood routine (Figure 2). In the case of the
feature importance of the tumor marker in Figure 4, the most and least significant features
are human epididymis protein 4 and carbohydrate antigen 72-4, respectively.

4. Discussion

Early detection of ovarian cancer can reduce the rate of mortality by extending the
survival life. Our analysis reveals three different ways of using a dataset to detect ovar-
ian carcinomas in the early stage and finds different sets of biomarkers responsible for
disease occurrence.

At first, the raw dataset was imputed for the missing entries followed by its nor-
malization through scaling techniques. We divided the dataset into three parts based of
different types of biomarkers, such as blood routine tests, general chemistry tests (serum),
and tumor markers. We have applied statistical and machine learning methods individually
over the grouped data. In the statistical analysis, we have identified the most significant
biomarkers, whereas in machine learning classification approaches, we classify the patients
in the two different groups, benign ovarian tumors and ovarian cancer, and we rank the
features as important biomarkers according to their importance. Note that in the machine
learning analysis, prior to the data scaling, firstly, we have split the whole data into two
partitions: training and testing data following the ratio of 4:1. The tuning of model parame-
ters was conducted based on the grid search technique using a five-fold cross-validation
approach. After model training and cross-validation, we test the model with a test dataset
and measure the accuracy, including evaluation matrices over the test dataset.

The usage of machine learning models is a broadly recognized mechanism for showing
disease-related factors as distinguishing markers in predictive patient diagnostics [25,26].
Machine learning algorithms’ capacity to find hidden patterns in data by examining a
collection of characteristics can lead to a better grasp of the understanding. The classification
results with a higher accuracy score indicate reasonable prediction and ensure real-life
applicability. Most models can predict accurately with above 80% accuracy score, precision,
recall, F1-score, and AUC score. A low log-loss score in binary classification also justifies a
good model performance. More specifically, RF, GBM, and LGBM models have achieved a
comparatively good accuracy score compared with other matrices in some cases.

Our results suggest some important and significant biomarkers. Firstly, age and
menopause are significant as demographic information. Some studies have also proven
that menopause is a factor that is not directly responsible for ovarian cancer. However,
most of the cases are diagnosed after menopause [27,28], because generally, menopause is
not possible at an early age; ovarian cancer is detected after a certain age. In the analysis of
Student’s t-test, we found the four most significant biomarkers, which were also identified
by machine learning analysis, and they are carbohydrate antigen 125, carbohydrate antigen
19-9, carcinoembryonic antigen and human epididymis protein 4—all of those are serum
samples. Among other significant biomarkers that we have found are: neutrophil ratio,
thrombocytocrit, hematocrit as blood samples, alanine aminotransferase, calcium, indirect
bilirubin, uric acid, and natrium as the general chemistry test.

Our analysis suggests that biomarkers are good enough to detect ovarian cancer,
but a question could arise about which types of biomarkers are needed. In this study, we
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consider this question as well. The three different types of biomarkers (blood samples,
general chemistry tests, and OC markers) are used differently and proved that those are
capable to detect ovarian cancer separately. So, it will helpful with any set of biomarkers
separately or in combination in the practical application to diagnose ovarian cancer.

We compare our work with previous work in Table 5 to prove the superiority of our
research. Lu et al. [5] applied DT and obtained an accuracy of 87.00% and SE of 82.00%,
respectively, in clinical data that contained 349 patients and 49 features. In another work,
Akazawa and Hashimoto [12] used XGBoost to obtain an accuracy of 80.00%. In addition,
Martinez-Mas [29] employed SVM and ELM classifiers and obtained an accuracy of 87.00%
and SE of 87.00% and AUC of 89.00% in image data. In contrast, in our work, we achieved
an accuracy of 88.00%, SE of 97.00%, and AUC of 87.00% using RF, GBM, and LGBM
methods, which is better than the previous results. Furthermore, in our study, we have
analyzed the individual datasets, i.e., blood samples, general chemistry tests (serum),
and cancer biomarkers and combined data. Each of the analyses is individually capable of
differing between benign tumor patients and malignant patients and identifying the most
associative biomarkers using statistical methods.

This work was performed using a small amount of patients’ data for classification;
thus, it is tough to make a generalized decision based on this study, though it could be
a good enough predictive system in the use of the real-life application. Because most of
the time, practitioners cannot detect cancer at an early stage, this system can help them
diagnose in an early stage.

Table 5. A comparison between proposed methods and previous methods.

References Dataset Classifiers Accuracy Sensitivity AUC

[5]

Clinical data
(349 patients

with 49
features)

DT 0.87 0.82 -

[12]

Clinical data
(202 patients

with 32
features)

XGBoost 0.80 - -

[29] Image data
(348 patients) SVM, ELM 0.87 0.87 0.89

Proposed

Clicnical data
(349 patients

with 49
features)

RF, GBM,
LGBM 0.88 0.97 0.87

Proposed

Clicnical data
(106 patients

with OC
marker

features)

RF 0.91 0.86 0.93

5. Conclusions

In this paper, we preprocessed the dataset and employed statistical and machine
learning techniques to identify important features in early diagnosis of ovarian cancer
patients. The most significant biomarkers accountable for ovarian cancer are carbohydrate
antigen 125, carbohydrate antigen 19-9, carcinoem-bryonic antigen, and human epididymis
protein 4. It also found that RF, GBM, and LGBM classifiers demonstrate a high degree of
classification accuracy, which may be indicative that our work can be used for computer-
aided clinical diagnostics to assist physicians and clinicians in analyzing ovarian cancer in
a low-cost manner. Another important implication of our work is to reduce cancer identifi-
cation time. The main limitation of our research was the amount of data. In the future, we
will use more data to explore ovarian cancer including the control group of patients.
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MPV Mean platelet volume
BASO# Basophil cell count
PHOS Phosphorus
GLU. Glucose
CA72-4 Carbohydrate antigen 72-4
K Kalium
AST Aspartate aminotransferase
BASO% Basophil cell ratio
Mg Magnesium
CL Chlorine
CEA Carcinoembryonic antigen
EO# Eosinophil count
CA19-9 Carbohydrate antigen 19-9
ALB Albumin
IBIL Indirect bilirubin
GGT Gama glutamyltransferasey
MCH Mean corpuscular hemoglubin
GLO Globulin
ALT Alanine aminotransferase
DBIL Direct bilirubin
RDW Red blood cell distribution width
PDW Platelet distribution width
CREA Creatinine
AFP Alpha-fetoprotein
HGB Hemoglobin
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Na Natrium
HE4 Human epididymis protein 4
LYM# Lymphocyte count
CA125 Carbohydrate antigen 125
BUN Blood urea nitrogen
LYM% Lymphocyte ratio
Ca Calcium
AG Anion gap
MONO# Mononuclear cell count
PLT Platelet count
NEU Neutrophil ratio
EO% Eosinophil ratio
TP Total protein
UA Uric acid
RBC Red blood cell count
PCT Thrombocytocrit
CO2CP Carban dioxide-combining power
TBIL Total bilirubin
HCT Hematocrit
MONO% Monocyte ratio
MCV Mean corpuscular volume
ALP Alkaline phosphatase
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