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Population stratification is a growing concern in genetic-association studies. Averaged ancestry at the
genome level (global ancestry) is insufficient for detecting the population substructures and correcting
population stratifications in association studies. Local and phase stratification are needed for human genetic
studies, but current technologies cannot be applied on the entire genome data due to various technical
caveats. Here we developed a novel approach (aMAP, ancestry of Modern Admixed Populations) for
inferring local phased ancestry. It took about 3 seconds on a desktop computer to finish a local ancestry
analysis for each human genome with 1.4-million SNPs. This method also exhibits the scalability to larger
datasets with respect to the number of SNPs, the number of samples, and the size of reference panels. It can
detect the lack of the proxy of reference panels. The accuracy was 99.4%. The aMAP software has a capacity
for analyzing 6-way admixed individuals. As the biomedical community continues to expand its efforts to
increase the representation of diverse populations, and as the number of large whole-genome sequence
datasets continues to grow rapidly, there is an increasing demand on rapid and accurate local ancestry
analysis in genetics, pharmacogenomics, population genetics, and clinical diagnosis.

P
opulation stratification is a growing concern in genetic-association studies1–3; it potentially leads to both
spurious associations and reduced statistical power. Admixture has created mosaic chromosomes in human
populations; even within the same individual, different segments and different homologous chromosomes

may have different ancestral origins. Averaged ancestry at the genome level (global ancestry) is insufficient for
detecting population substructures and correcting population stratifications in association studies. Although
numerous approaches have been developed to infer local ancestry4–18, several key issues remain unsolved. Here we
report a new approach that exploits the sequence content information of each personal haplotype instead of using
allele frequencies. This approach has been implemented into a software tool called aMAP (ancestry of Modern
Admixed Populations).

Results
We first empirically evaluated the performance of aMAP on 6 HapMap populations, ASW (African-Americans),
YRI (West Africans), CEU (Caucasians), CHB and CHD (Chinese), JPT (Japanese), and MEX (Mexican-
Americans) (Supplementary Tables S1 & S2, Supplementary Fig. S1). The data not only showed the accuracy
of aMAP at the global level, but also revealed substantial intra-individual variations, between different loci and
between two homologous chromosomes (Supplementary Tables S3 & S4). About 21–31% of genomic regions are
ancestrally heterozygous at the same locus between two homologous chromosomes. These observations suggest
that local ancestry will not be sufficient for stratification; the ancestral information of each chromosome should
also be considered.

To quantitatively measure the accuracy of aMAP, we simulated a 20-generation admixed population (50% YRI
and 50% CHBCHD). On this dataset, the analysis with aMAP reached a mean haploid accuracy of 99.4%
(Supplementary Tables S5 & S6), and the analysis with LAMP-HAP showed a mean haploid accuracy of
97.5% (Supplementary Table S5). We also analyzed the performance of aMAP when the ancestral blocks become
smaller. Our results showed that aMAP maintained at a high level of accuracy over generations, but the accuracy
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of LAMP-HAP decreased rapidly with the number of generations
(Supplementary Table S5, Supplementary Fig. S2). There is no sub-
stantial difference on the aMAP performance between the SNPs in
different MAF (minor allele frequency) ranges (Supplementary Fig.
S3). To determine the resolution of aMAP, we calculated the haploid
accuracies according to the sizes of ancestral segments. This showed
that LAMP-HAP performed well on those large ancestral segments,
but poorly on smaller segments; aMAP performed well on both large
and small ancestral segments (Supplementary Fig. S4), indicating its
potential application for older admixed populations.

To examine the performance of aMAP on closely related popula-
tions, we first analyzed the HapMap Chinese and Japanese popula-
tions. The results demonstrated the capacity of aMAP to stratify the
Chinese and Japanese populations (Supplementary Fig. S5). To fur-
ther quantitatively evaluate its performance on closely related popu-
lations, we simulated a CHBCHD-JPT admixed dataset (50%
CHBCHD and 50% JPT). The mean haploid accuracy of the
aMAP results was 98.5% (Supplementary Table S7), with sensitivity
(98.62%), specificity (97.84%), PPV (97.86%) and NPV (98.61%) on
those CHBCHD segments (Supplementary Table S8).

Existing approaches require a priori, a good proxy of reference
panels to reveal the true ancestries of admixed individuals. In reality
however, selecting good proxy reference panels for admixture decon-
volution is highly challenging because the researchers and often the
subjects themselves may not know their precise ancestral back-
grounds, thus it is very likely that the reference panels fail to cover
all of the ancestral origins of a subject. To examine the performance
of aMAP under this scenario, we analyzed the ASW (African-
Americans) individuals without the YRI (West Africans) reference
(Fig. 1). The results showed that aMAP successfully detected the
absence of a major population in the reference panel by showing a
large portion of yellow segments (‘‘others’’). Furthermore, aMAP
successfully labeled those African-originated loci as ‘‘others’’. We
then created YRI-CHBCHD simulated dataset to quantitatively mea-
sure the performance of aMAP in this scenario (Supplementary Fig.
S6). The results showed that aMAP could detect those YRI segments
when the YRI reference was missing (reported as ‘‘others’’) with
99.5% PPV, 82.3% sensitivity, 91.7% NPV, and 99.6% specificity

(Supplementary Table S9). Meanwhile, we evaluated the perform-
ance of LAMP-HAP with the data under this scenario. We found that
when the YRI reference was missing, LAMP-HAP did not detect the
absence of a major reference population, it assigned those YRI seg-
ments mainly into CEU (Supplementary Fig. S6). This advantage will
enable aMAP to be applicable to more general or realistic scenarios in
local ancestry analysis.

It is becoming increasingly clear that controlling for population
stratification at the continental level is insufficient and that subcon-
tinental ancestries must be considered in population studies6. The
ideal reference panel should be composed of multiple continental,
subcontinental, regional and ethnic populations; however, current
approaches can only consider two or three ancestral populations at a
time due to computational limitations. This caveat prevents the
inclusion of more reference populations, and increases the chance
of missing a major population reference in a real analysis. To exam-
ine if aMAP can overcome this multi-way ancestry inference chal-
lenge, we simulated a six-way admixed dataset with 6 HapMap
populations (CEU 12.5%, GIH 12.5%, CHBCHD 25%, YRI 12.5%,
MKK 25% and LWK 12.5%). It took aMAP 0.18 seconds to complete
a six-way local ancestry inference for a single chromosome-1 haplo-
type (Supplementary Table S10). The mean haploid accuracy was
98.55% in this 6-way inference (Supplementary Table S11).

Despite the continuing contributions of organized efforts such as
the International HapMap Project and the 1000 Genomes Project,
and the growing availability of publically available population data,
molecular haplotypes are still unavailable for many subcontinental
and regional populations. This motivated us to explore whether
aMAP could utilize unphased genotypes as references. We down-
loaded the genotypes and haplotypes from HapMap, and then
inferred haplotypes statistically from the genotypes using the soft-
ware Beagle. We observed highly accurate results when these statist-
ically resolved haplotypes were used by aMAP as the reference to
infer the ancestry, compared to the data using molecular haplotypes
as references (Supplementary Table S12, Supplementary Fig. S7). We
believe that it is because that these statistically inferred haplotypes are
very accurate locally within the phasing range of tens to hundreds of
kilobases, which is larger than the aMAP window size and enable

Figure 1 | The results of aMAP on ASW with proxy reference panels and imperfect reference panels. ASW individuals (chromosome-1) were analyzed

by aMAP with and without the YRI reference panel. The results of 5 personal haplotypes are shown. When YRI was missing in the reference panel,

those African-originated segments (green) could be detected and reported as ‘‘others’’ (yellow).
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aMAP to tolerate the switching errors in statistically inferred haplo-
types. This strongly suggests that aMAP can be applied on all popu-
lations that have genome-wide genotype data, such as GWAS data.

We examined the computing speed of aMAP on a regular desktop
computer (an Intel Core, 3.40 GHz processor, 32 GB RAM). It took
aMAP 55 seconds to finish an ancestry analysis on 20 ASW indi-
vidual genomes (1.4 million SNPs) (Supplementary Table S13). The
total runtime is linear to the number of SNPs (Fig. 2, Supplementary
Table S13), the sample size (the number of sample haplotypes)
(Supplementary Table S14, Supplementary Fig. S8), the reference
size (the total number of reference haplotypes) (Supplementary
Table S15, Supplementary Fig. S9), and the number of ancestral
populations (Supplementary Fig. S10). Compared with LAMP-
HAP, which is currently one of the fastest local ancestry inference
software packages, aMAP was 923 times faster (Supplementary Table
S13).

Discussion
In summary, we have presented a new method, aMAP, for locus-
specific and haplotype-specific local ancestry inference. This new
method is distinguished by high accuracy (99.4%), high-speed,
high-resolution, and a scalability to larger datasets with respect to
the number of SNPs, the number of samples, the total number of
haplotypes in the reference panels, and the numbers of reference
populations. Our method also exhibits a tolerance to missing ances-
tral reference panels, an applicability to genetically close populations,
and a capacity for analyzing multi-way admixed individuals. As the
biomedical community continues to expand its efforts to increase the
representation of diverse populations, and as the number of large
whole-genome sequence datasets continues to grow rapidly, there is
an increasing demand on rapid and accurate local ancestry analysis
in genetics, pharmacogenomics, population genetics, and clinical
diagnosis.

Methods
The aMAP algorithm. The procedure of the aMAP method is composed of five steps,
1) pre-analysis of reference haplotypes, 2) parallel window scans, 3) horizontal data
integration, 4) vertical data integration, and 5) border refinement.

Pre-analysis and pre-treatment of reference haplotypes. Briefly, aMAP first scans the
reference haplotypes using a set of parallel non-overlapping sliding windows and
compares sequence contents of those reference haplotypes in each sliding window
within each given reference population and between different reference populations.

In this process, exact sequence matches are searched for among all haplotypes in the
reference populations. Based on the results of these exact sequence comparisons,
aMAP divides reference haplotypes of each window into several non-redundant
groups, including one ‘‘population-unique’’ group for each of those populations given
by users and a list of ‘‘common’’ (shared) groups in different combinations of those
given reference populations (Supplementary Fig. S11). When a haplotype sequence in
a window is observed in only one of the given reference populations, it will be placed
into the population-specific group of the corresponding population; when a haplo-
type sequence in a window is observed in more than one given reference populations,
it will be placed in a ‘‘common’’ group. To further illustrate how this process is done in
practice, we provide a simplified example of this process in the Supplementary Table
S16, and an actual case to show how this process is executed in the aMAP running on
HapMap sample haplotypes in a window of the window-20 scan (Supplementary
Table S17). When two reference populations are analyzed, in any window, all of those
haplotypes will be divided into three groups, common group (shared by A and B),
population-A group, and population-B group; when 4 populations are used as
references (A, B, C, D), the reference haplotypes in each window will be divided into
15 groups, 4 population-unique groups (A, B, C, D), and 11 ‘‘common’’ groups (AB,
AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD, ABCD) (Supplementary Fig. S11).
When two ancestral populations are genetically closer, they will share more haplo-
types in their ‘‘common’’ pool and less haplotypes in the population-specific pools.

Parallel window scans. Then, aMAP scans each sample haplotype with a series of non-
overlapping sliding windows simultaneously and seeks an exact sequence match to a
reference haplotype in each window (Fig. 3, Supplementary Fig. S12). It records the
scanning results by the group ID (ancestry calls) of each window, such as ‘‘A’’ (unique
to population A), ‘‘B’’ (unique to population B), ‘‘AB’’ (shared between A and B),
‘‘ABCD’’ (shared among A, B, C, D). If no exact match is found, aMAP documents it
as ‘‘other’’ (no match). The results will fall into three non-overlapping possibilities, 1)
the sample haplotype matches to a reference haplotype in one of the given ancestral
populations; 2) it matches to a reference haplotype in one of the ‘‘common’’ groups
shared by any two or more populations; and 3) it does not match to any of the
reference haplotypes. These parallel windows have different sizes and different
number of windows; the default setting of the number of windows is 19, aMAP will
scan each sample haplotype by 19 window tracks; the default window size of these 19
windows are, window-20 (the haplotypes of 20 consecutive SNPs are analyzed in each
window), window-30 (30 consecutive SNPs), ……, and window-200 (200 consec-
utive SNPs).

Horizontal data integration. It is well-known that haplotype diversity varies dra-
matically across the genome in different populations. The optimal window size may
vary with the genomic positions, the ethnohistory of each population, and the genetic
distance between two reference populations. Therefore, there is no universally
optimal window size for different regions across the genome and for different com-
binations of reference populations. As a solution, the aMAP algorithm scans each
sample haplotype simultaneously with a series of windows with different sizes
(Supplementary Fig. S12). It is obvious that at small windows it will tend to yield
‘‘common’’ calls; to a certain value, when the windows become larger, it will yield
‘‘population-unique’’ calls; as the window size continues to increase, it will eventually
yield ‘‘other’’ calls (Fig. 3, Supplementary Fig. S13). At any given SNP position, when a
larger window contains completely a smaller window, a unidirectional transition
from ‘‘common’’ to ‘‘population-unique’’ to ‘‘others’’ can be observed when the
ancestry is called sequentially from the smaller windows gradually to the larger
windows. From this unidirectional transition, aMAP takes those ‘‘population-
unique’’ messages before the appearance of the ‘‘others’’ calls in the larger windows as
the ancestral calls of each locus (horizontal integration); when it is transformed
directly from ‘‘common’’ to ‘‘other’’, aMAP records it as ‘‘common’’; when the
‘‘other’’ calls are received from all parallel windows horizontally, aMAP records it as
‘‘other’’ (Supplementary Table S18).

None of those single window scans could retrieve the ancestral background suffi-
ciently and accurately (Supplementary Table S18); thus, the parallel scan with a series
of windows at different sizes and the horizontal integration is necessary to report the
ancestry at different locus. Although we selected the window series of 20-snp, 30-snp,
……, 190-snp, and 200-snp) as the default setting of the window size in the current
version of aMAP, it allows the users to choose their own window size.

Vertical data integration. Next aMAP vertically integrates ancestral calls from adja-
cent windows along the chromosomal haplotypes and absorbs those ‘‘common’’ calls
if possible (vertical integration) (Supplementary Fig. S14). For example, when an
Common_AC segment is recorded between two population_A_unique segments
along a sample haplotype, aMAP revises the ancestry call of this AC_shared segment
to population_A because this segment is shared between the population A and the
population C and may be inherited from the common ancestors of populations A and
C.

Border refinement. At last, aMAP zooms into these common blocks between two
ancestral segments and finalizes the borders (Supplementary Fig. S15). When a
‘‘common’’ segment is called between two different population calls vertically, aMAP
does a border refinement by zooming into the common segment using a series of
overlapping windows with one SNP as a moving step. The scans start from the two
margins between the common segment and the population-ancestral segments.

Figure 2 | The computing time of aMAP and LAMP. The whole-genome

of 20 HapMap ASW individuals (African-Americans) were analyzed with

three references (CEU, YRI, and CHBCHD). The computing speeds of

aMAP and LAMP-HAP are compared, and both are linear to the total

number of SNPs; the speed of aMAP is about 923 times faster than the

speed of LAMP-HAP.
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The input and output of the aMAP software. The aMAP requires only two
documents as the input; one is the sample haplotype file, the other one is the file with
the sequences of the reference haplotypes. The output is a digital file that documents
the ancestry of each segment along chromosomes.

Data downloaded from HapMap. All haplotype data were downloaded from HapMap,
CEU (CEPH, U.S. Utah residents with ancestry from northern and western Europe),
YRI (Yoruba in Ibadan, Nigeria), CHB(Han Chinese in Beijing, China), CHD (Chinese
in Metropolitan Denver, Colorado), JPT (Japanese in Tokyo, Japan), MEX (Mexican
ancestry in Los Angeles), TSI (Toscans in Italy), LWK (Luhya in Webuye, Kenya), MKK
(Maasai in Kinyawa, Kenya), and GIH (Gujarati Indians in Houston) (Supplementary
Table S19). The entire genome contains 1,437,974 SNPs on 23 chromosomes. CHB and
CHD were combined throughout this study. These haplotypes were used to assess the
performance of aMAP as sample haplotypes and as reference haplotypes, as well as
original haplotypes to create simulated datasets. When a haplotype is used as a sample
haplotype or to create a simulated dataset, this haplotype was always temporarily
removed from the corresponding reference panel during the analysis.

Simulated datasets. YRI-CHBCHD simulated dataset. We first ran aMAP on the
chromosome-1 YRI and CHBCHD using YRI and CHBCHD as the reference panels.
Then we selected top 6 relatively pure haplotypes from YRI and 6 relatively pure
haplotypes from CHBCHD, and simulated YRI-CHBCHD admixed individuals
(50%–50%) by random mating between these original haplotypes. Six recombinations
were introduced in each mating. We totally simulated 19 generations of offspring.

JPT-CHBCHD simulated dataset. We used the same approach to simulate CHBCHD-
JPT admixed individuals (50%–50%) from 6 CHBCHD haplotypes and 6 JPT
haplotypes.

6-way admixed dataset (CEU-YRI-CHBCHD-GIH-LWK-MKK). We used the same
approach to simulate 6-way admixed individuals, including 12.5% CEU, 12.5% GIH,
25% CHBCHD, 12.5% YRI, 25% MKK and 12.5% LWK.

Measurement of accuracy.

Accuracy~
The number of SNPs with correct ancestry calls

The number of all SNPs
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