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Background: Accurate preoperative planning is essential for successful total hip
arthroplasty (THA). However, the requirements of time, manpower, and complex
workflow for accurate planning have limited its application. This study aims to develop
a comprehensive artificial intelligent preoperative planning system for THA (AIHIP) and
validate its accuracy in clinical performance.

Methods: Over 1.2 million CT images from 3,000 patients were included to develop an
artificial intelligence preoperative planning system (AIHIP). Deep learning algorithms were
developed to facilitate automatic image segmentation, image correction, recognition
of preoperative deformities and postoperative simulations. A prospective study
including 120 patients was conducted to validate the accuracy, clinical outcome and
radiographic outcome.

Results: The comprehensive workflow was integrated into the AIHIP software. Deep
learning algorithms achieved an optimal Dice similarity coefficient (DSC) of 0.973 and
loss of 0.012 at an average time of 1.86 ± 0.12 min for each case, compared with
185.40 ± 21.76 min for the manual workflow. In clinical validation, AIHIP was significantly
more accurate than X-ray-based planning in predicting the component size with more
high offset stems used.

Conclusion: The use of AIHIP significantly reduced the time and manpower required
to conduct detailed preoperative plans while being more accurate than traditional
planning method. It has potential in assisting surgeons, especially beginners facing the
fast-growing need for total hip arthroplasty with easy accessibility.

Keywords: arthroplasty, artificial intelligence, hip, convolutional neural network, preoperative planning

Abbreviations: THA, Total hip arthroplasty; AIHIP, Artificial intelligent preoperative planning system for THA; LLD, Leg
length discrepancy; DSC, Dice similarity coefficient.
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HIGHLIGHTS

Article Focus
- Develop an artificial intelligent preoperative planning system

for THA (AIHIP) with increased inefficiency.
- Conduct a prospective clinical study to validated the efficacy of

AIHIP.

Key Messages
- Convolutional neural networks automated the processing of

CT images and achieved satisfactory accuracy.
- AIHIP significantly reduced the time and manpower required

to conduct detailed preoperative planning.

BACKGROUND

Total hip arthroplasty (THA) is the primary surgical procedure
performed for the treatment of pain and impaired function
associated with osteoarthritis, osteonecrosis, fracture and other
diseases. It is among the top 5 most commonly performed
procedures and the top 5 fastest growing procedures (1). By
2030, the annual counts of THA are estimated to be 572–1,385
thousand (2).

The goals of THA are to minimize discomfort, improve
hip function and prolong implant survival. However, leg
length discrepancy (LLD), dislocation and implant failure
remain primary challenges to success. Accurate preoperative
planning may help surgeons achieve successful THA because
it provides a detailed assessment of preoperative deformities,
predicts implant sizes, provides intraoperative references and
simulates postoperative outcomes such as leg length (3).
Preoperative planning based on X-ray remains one of the
most common methods. However, the accuracy of X-ray-based
planning is controversial, ranging from 40.7 to 99.2% (3–7).
Many factors may limit the accuracy of X-ray-based planning:
surgeon experience, magnification error, patient position and
the nature that X-ray images can only provide 2-dimensional
information (8).

CT-based preoperative planning offers more detailed
information on a three-dimensional scale (9). However, CT-
based planning requires a complex workflow that includes
image segmentation, pelvis correction, deformity recognition
and postoperative simulation. Therefore, the application
of CT-based planning systems is limited in that they are
especially time-consuming for each case and require a group of
experienced engineers, programmers and doctors to work closely
together (10).

Artificial intelligence (AI) techniques, including convolutional
neural networks (CNNs), have shown promising results in
processing medical images with high accuracy and significantly
reduced time requirements (11, 12). However, the clinical
application of artificial intelligence has mainly focused on
diagnosing diseases (13–15). Research to date has not yet
validated the use of AI in preoperative planning systems for THA.

With the help of artificial intelligence, it is possible to develop
efficient and accurate preoperative THA planning system. The

purpose of this study is described as follows. 1. A comprehensive
artificial intelligent preoperative planning system for THA
(AIHIP) was developed, which included automatic image
segmentation, preoperative deformity recognition and real-time
postoperative outcome simulation. 2. A prospective clinical study
was conducted to compare the efficacy between AIHIP planning
and X-ray-based planning.

METHODS

The Primary Development Goals for
Artificial Intelligent Preoperative
Planning System
The AIHIP planning system included preoperative assessment
and postoperative outcome simulations. Image segmentation was
required to differentiate the femur from the pelvis. Featured
anatomic landmarks were identified to serve as references.
Then, the pelvis was corrected to a neutral position in the
sagittal and coronal planes according to the identified landmarks.
Assessment of preoperative deformity was also conducted
referring to the identified landmarks. Postoperative outcome
simulations showed the planned implant size, implant coverage
and to what degree the preoperative deformity could be
corrected. The comprehensive workflow was integrated into
the AIHIP software. The accuracy of the AIHIP was validated
through a clinical study. The research workflow is shown in
Figure 1.

Data Acquisition
Over 1.2 million qualified CT images from 3,000 anonymized
patients were included in this study. All patients were scheduled
to receive total hip arthroplasty. The primary diagnosis
included osteonecrosis, osteoarthritis, rheumatoid arthritis and
developmental dysplasia of the hip. Standardized pelvic CTs were
conducted prior to the operation. The range of each CT scan
began from the highest point of the pelvis to 15 cm below the
lesser trochanter at 1 mm intervals. All CTs were stored according
to the DICOM protocol.

Ground Truth Definition
CT images were manually segmented by a group of engineers and
three orthopedic surgeons using Mimics Software (Materialise
NV, Leuven, Belgium). All engineers and surgeons had performed
manual segmentation for at least 50 cases prior to this
study. The contours of the femur and pelvis were manually
annotated. Featured anatomic landmarks were manually marked,
which included the anterior superior iliac spine (ASIS), pubic
symphysis, center of the femoral head, medial edge of the lesser
trochanter, and anatomic axis of the femur.

Image Segmentation Module
The complete dataset was randomly assigned to a training set,
validation set and testing set at a ratio of 6:2:2. All images
were resized to 512 × 512 pixels. The neural network structure
was developed based on the attention U-Net with a point
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FIGURE 1 | Flow chart of the development and clinical validation of artificial intelligence preoperative planning system for THA (AIHIP).

rend module. The U-Net convolutional neural network can
automatically segment CT images and has achieved high accuracy
in recognizing abdominal organs and tissues (16). The point
rend module was used to provide point-based predictions to
further enhance segmentation performance (17). An attention
U-Net was developed based on a U-Net with added skip
connections and attention gates (18). The use of an attention
gate enables the network to automatically focus on target
structures without requiring large computational power and
model parameters. A skip connection was conducted between
the corresponding encoder and decoder layers. Implementing
skip connections provided segmentation results with a higher
level of accuracy because more graphic features from the basic
level were preserved and integrated into the output feature. The
increased number of decoders also provides a more detailed
segmentation (Figure 2A). The Dice similarity coefficient (DSC)
and loss was used to assess the model performance of the AIHIP

in the segmentation of CT images. DSC and loss were calculated
for every 100 iterations.

Identification of Featured Anatomic
Landmarks
An example of manual identification of feature anatomic
landmarks and correction of pelvis is shown in Figure 3A. Based
on the segmented pelvis, the automatic recognition of featured
anatomic landmarks was conducted with a stacked hourglass
network, which has been used in human pose estimation (19).
Repeated bottom-up and top-down inference is beneficial in
predicting the coordinates of the featured anatomic structure.
The stacked hourglass network automatically recognized featured
anatomic structures, including the bilateral anterior superior iliac
spine (ASIS), the pubic symphysis and the center of the femoral
head (Figure 3B). The least square method was used to determine
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FIGURE 2 | Development of artificial intelligence preoperative planning system for THA (AIHIP): image segmentation. (A) Net-work structure; (B) segmentation of
pelvis and femur. Images of original CT, manual segmentation, and automatic segmentation with AIHIP in four primary diseases: avascular necrosis (AVN), femoral
neck fracture (FNF), osteoarthritis (OA), and developmental dysplasia of hip (DDH). 3D reconstruction of the CT was completed after segmentation; (C) performance
of AIHIP in automatic segmentation. Dice similarity coefficient (DSC) of training set and validation set. Loss of training set and validation set; (D) time comparison
between manual segmentation and artificial intelligence (AI) segmentation. Time comparison between manual correction and AI correction. ∗∗∗p < 0.001.

the anatomic axis of the femur. The pelvis could be adjusted, and
the preoperative deformity could be measured based on these
identified points (Figure 3C).

Preoperative Planning Module
Preoperative planning was conducted by two orthopedic
surgeons using AIHIP software (Version 3.0, Longwood
Valley Technology, China). Planning was carried out by
first determining the position and size of the acetabular
component. Inclination, anteversion, and coverage of the
acetabular component were planned as well. Then, the position
and size of the femoral component were determined, and
the level of femoral resection was determined. Different types
of acetabular components, femoral components, and femoral
heads could be chosen. A simulation of the postoperative effect
was generated, which showed the postoperative leg length,
offset and coverage of the acetabular component. Leg length
and offset of the contralateral side were also shown so that
changes in the surgical plan could be made accordingly. The
distance between the tip of the lesser trochanter and the tip
of the femoral stem (neck length) and the distance between
the tip of the lesser trochanter and the resection line of the
femoral neck (calcar length) were measured in preoperative
planning as references. Then, the operating surgeon measured
the neck length and calcar length intraoperatively for verification
(Figures 4A–C).

Clinical Validation of Artificial Intelligent
Preoperative Planning System for THA
Approval from the Institutional Review Board and written
informed consent was acquired to conduct a prospective
clinical study from October 2019 to February 2021. Patients
were included if they 1. were diagnosed with osteonecrosis,
osteoarthritis and developmental dysplasia of the hip (Crowe
I) and received THA; 2. provided written informed consent
to participate in the study. Patients were excluded if 1. the
preoperative or postoperative radiographs were not standardized
or 2. different types of prostheses were used during surgery.
A total of 120 cases were included. X-ray-based planning was
conducted in 60 cases (control group) according to the method
described by Della Valle et al. (3), where planning was completed
directly over the printed X-ray using templates. AIHIP planning
was conducted in 60 cases (AIHIP group).

Leg length discrepancy, offset, neck length, and calcar length
were measured on postoperative radiographs with the patients’
names concealed. Each measurement was made and recorded
by the two observers at least 4 weeks after the operation
to avoid any recollection bias. The mean value of the two
measurements was used for statistical analysis. Inter-observer
reliability of radiographic measurement was assessed with
intraclass correlation coefficient (ICC).

Functional outcome was assessed by Hip Disability and
Osteoarthritis Score Joint Replacement (HOOS JR) (20) and
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FIGURE 3 | Development of artificial intelligence preoperative planning system for THA (AIHIP): correction of pelvis, identification of anatomical landmarks and
recognition of preoperative deformities. (A) Manual correction and measurement of pelvis and femur; (B) network structure used to identify featured anatomic
landmarks; (C) examples of automatic identification of anterior superior iliac spine (ASIS), medial point of lesser trochanter and center of femoral head. The anatomic
axis of femur was identified using least square method.

FIGURE 4 | Preoperative planning using artificial intelligent preoperative planning system for THA (AIHIP). (A) From left to right: 3D reconstructed pelvis and femur;
simulated hip X-ray; simulated postoperative outcome; postoperative X-ray; (B) preoperative planning of acetabular component. The green circle shows the planned
component position in real-time. Bone coverage was calculated once the size, position, inclination, and anteversion of acetabular component is determined; (C)
preoperative planning of femoral component. The red circle shows the planned position of femoral component in real-time.
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EuroQol 5 Dimensions Questionnaire (EQ-5D) (21, 22). Patients
were followed up until 12 weeks postoperatively. Surgical time
and blood loss were also recorded.

Surgical Technique and Peri-Operative
Management
All patients underwent total hip arthroplasty through a
posterior approach by one experienced orthopedic surgeon
in one facility. The prostheses used were Pinnacle Cup
(DePuyOrthopaedics, Warsaw, IN, United States), Corail Stem
(DePuyOrthopaedics, Warsaw, IN, United States) and Trilock
stem (DePuyOrthopaedics, Warsaw, IN, United States). Standard
perioperative care and patient education were administered
to all patients.

Statistical Analysis
Statistical analysis was performed with SPSS version 25 (IBM,
New York, NY, United States) and GraphPad Prism version 8
(GraphPad Software, San Diego, CA, United States). According
to previous literatures (23–25), accurate prediction was defined as
the predicted size to be within ± 1 size from the implanted size.
Absolute error was defined as the absolute difference between
planned and implanted component size and the difference
between plan and postoperative radiographic measurement.
Mean error was defined as the average value of the planned
component size minus the implanted component size. A p-
value less than 0.05 was considered statistically significant.
Discontinuous variables were recorded as incidence and rate.
The chi-square test was used to compare the discontinuous
variables between groups. Continuous variables were recorded
as the means and standard deviation. A general linear model
was used to test whether there was a statistically significant
difference between the two groups considering confounding
factors, including age, sex, BMI, and primary diagnosis.

RESULTS

Validation of Artificial Intelligent
Algorithms
The effect of manual segmentation and AI segmentation from
four common primary diagnoses are shown in Figure 2B. The
DSC curves and loss from the training set and validation set are
shown in Figure 2C. Both curves reached convergence by 15,800
iterations, which indicated optimal DSC and loss. At 15,800
iterations, the DSC of the training set was 0.983, and the DSC
of the validation set was 0.987. The losses were 0.008 and 0.013
for the training set and validation set, respectively (Figure 2C).
The testing set was used to validate algorithm performance. The
testing set achieved a DSC of 0.973 and loss of 0.012, which was
comparable to that of the training set and validation set.

The average time consumption was 0.99 ± 0.94 min for AIHIP
segmentation and 0.87 ± 0.07 min for AIHIP correction and
deformity assessment. The average time was 124.55 ± 16.87 min
for manual segmentation and 60.85 ± 11.11 min for manual
correction and deformity assessment (Figure 2D). The total

TABLE 1 | Demographic characteristics.

AIHIP (n = 60) Control (n = 60)

Mean Std Mean Std P-value

Height (cm) 165.15 8.04 165.98 8.03 0.571

Age (years) 47.62
(range:
23–78)

15.30 53.75
(range:
24–78)

16.10 0.033

Weight (kg) 66.12 10.58 69.29 11.77 0.123

BMI (kg/m2) 24.19 3.08 25.14 3.78 0.134

Gender Male = 29, Female = 31 Male = 32, Female = 28 0.584

Primary disease

Osteonecrosis n = 41 n = 33 0.467

DDH(Crowe I) n = 10 n = 11

Osteoarthritis n = 3 n = 7

Old Fracture n = 2 n = 1

Ankylosing spondylitis n = 4 n = 7

Rheumatoid arthritis n = 0 n = 1

time required for the AIHIP algorithm to process the CT for
one case was 1.86 ± 0.12 min on average, compared with
185.40 ± 21.76 min for the manual workflow (P < 0.001).

Clinical Validation
A total of 120 cases were included in the study. The demographic
characteristics are listed in Table 1, which include age, sex,
height, weight, BMI, and primary diagnosis. The difference in
age between the control group (mean: 53.75, range: 24–78) and
the AIHIP group (mean: 47.62, range: 23–78) was statistically
significant (P = 0.033). There were no statistically significant
differences in terms of sex, weight, height, or BMI. Demographic
characteristics were considered as confounding variables. Their
influences on the prediction accuracy were assessed and adjusted
with generalized linear models.

The predicted cup size and implanted cup size were exactly
the same in 66.67% of the AIHIP cases and 20% of the control
cases (P < 0.001). For femoral stem, the exact same size was
achieved in 55% of the AIHIP cases and 31.67% of the control
cases. The cup size was accurately predicted to within ± 1
size in 55.00 and 96.67% of patients in the control group and
AIHIP group, respectively (P < 0.001). Stem size was accurately
predicted to within ± 1 size in 65.00 and 96.67% of the control
group and AIHIP group, respectively (P < 0.001). Further
analysis showed more detailed comparison in Figures 5A, B.
The tendency toward overestimation or underestimation of
component size was assessed by mean error. Comparing with
AIHIP planning, acetate templating tended to underestimate cup
size by 2.13 ± 2.11 (P < 0.001) and underestimate the stem size
by 0.53 ± 1.28 (P = 0.013). The comparison of the mean absolute
error between the two groups is shown in Table 2. Compared with
the control group, high offset/varus stems were more commonly
used in the AIHIP group (P = 0.004) (Figure 5C). The average
time it took to conduct X-ray planning was 7.37 ± 1.32 min
and the average time it took to conduct AIHIP planning was
8.11 ± 0.98 min (P = 0.001).
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FIGURE 5 | Clinical validation of artificial intelligent preoperative planning system for THA (AIHIP). (A) Plan accuracy of cup size; (B) plan accuracy of stem size; (C)
proportion of high offset/varus stem used; (D) postoperative leg length discrepancy (LLD); (E) difference between preoperative and postoperative offset; (F)
operation time. *, **, *** P < 0.05, 0.01, 0.001.

TABLE 2 | Accuracy of the surgical plan and radiographic outcome.

AIHIP (n = 60) Control (n = 60) P-value

Mean Std Mean Std

Mean absolute error between preoperative planning and postoperative
results

Cup size 0.73 1.10 2.53 1.6 <0.001

Stem size 0.48 0.57 1.07 0.88 <0.001

Neck length (mm) 5.49 4.40 6.13 3.16 0.813

Calcar length (mm) 3.92 2.79 4.51 2.96 0.249

Changes between preoperative and postoperative offset

Femoral offset (mm) 4.41 3.99 6.91 5.08 0.001

Acetabular offset (mm) 5.83 4.29 4.59 3.55 0.163

Global offset (mm) 7.33 5.04 7.44 5.40 0.919

Postoperative leg length discrepancy

LLD (mm) 5.03 3.67 5.68 4.06 0.360

Confounding variables including age, gender, BMI and primary diagnosis were
considered and none of them are factors with significant influence on the results.

Neck length, calcar length, LLD, and offset were measured
on radiographs. The difference between preoperative planning
and postoperative radiographic measurements was recorded as
the mean absolute error and is shown in Table 2. The ICCs for
all radiographic measurement were above 0.9, which indicated
substantial inter-observer agreement (Table 3). The mean
absolute error for neck length was 6.13 ± 3.16 mm in the control

group and 5.49 ± 4.40 mm in the AIHIP group (P = 0.813).
The mean absolute error of calcar length was 4.51 ± 2.96 mm
in the control group and 3.92 ± 2.79 mm in the AIHIP group
(P = 0.249). The average postoperative LLD for the control group
and AIHIP group was 5.68 ± 4.06 mm and 5.03 ± 3.67 mm,
respectively (P = 0.360) (Figure 5D). Although a trend was
observed in the above radiographic outcomes, the differences
were not statistically significant. Changes in acetabular offset and
global offset were not significantly different between the two
groups. Femoral offset was more accurately restored in the AIHIP
group than in the control group (P = 0.001) (Figure 5E).

The average operation time was 106.83 ± 18.20 min in
the AIHIP group and 109.58 ± 21.98 min in the control
group (P = 0.457) (Figure 5F). The average blood loos was
285.00 ± 127.33 ml in the AIHIP group and 315.67 ± 164.68 ml
in the control group (P = 0.256). There were no statistically
significant differences in HOOS score preoperatively (P = 0.605)
and 12 weeks postoperatively (P = 0.22) between the two groups.
There were no statistically significant differences in EQ5D
index preoperatively (P = 0.846) and 12 weeks postoperatively
(P = 0.203) between the two groups.

DISCUSSION

We developed an artificial intelligence-based system (AIHIP) to
enhance the efficiency and accuracy of preoperative planning for
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TABLE 3 | Inter-observer agreement of radiographic measurement.

Calcar length Neck length LLD Femoral offset Acetabular offset

Preoperative Postoperative Preoperative Postoperative

ICC 0.950 0.968 0.974 0.970 0.937 0.963 0.929

THA. Deep learning algorithms were used for the comprehensive
workflow. In the segmentation module, the attention U-Net
with point rend features achieved satisfactory DSC and loss in
the training set, validation set and testing set, which indicated
satisfactory segmentation performance. Based on segmentation,
a stacked hourglass network was applied to recognize featured
anatomic landmarks. The identified landmarks served as a
reference for pelvis correction and recognition of preoperative
deformities. The comprehensive workflow including automatic
segmentation, pelvis correction, deformity assessment and real-
time simulation of postoperative outcomes was integrated into
the AIHIP software.

Segmentation is the foundation for building an accurate
preoperative planning system. Previous studies have reported
deep learning as a valuable tool for automatic segmentation
in abdominal CT (12), head CT (26), and CT angiography
(27). Although the role of deep learning in joint segmentation
remains largely unexamined, the results of this study were
comparable to the abovementioned studies. A stacked hourglass
network was first used to identify featured bony landmarks in
cephalograms in 2020 (28). Cephalograms are two-dimensional
X-ray images, while CT offers three-dimensional information,
which complicates the coordinate prediction of featured points.
This study further investigated its application in hip CT.
The use of artificial intelligence has also greatly reduced the
time and manpower required to conduct detailed preoperative
plans for patients.

In this series, AIHIP planning was significantly more accurate
in predicting implant sizes than X-ray-based planning. X-ray-
based planning underestimated cup size by an average of
2.13. The accuracy of X-ray-based planning varies in different
studies. The reported accuracy of X-ray-based planning ranged
from 40.68 to 90% (24, 29, 30). The wide variety of reported
accuracies for X-ray-based planning is subjected to many factors,
including the quality of the radiograph, magnification error
and surgeon experience (31). In this series, the accuracy to
within ± 1 size of X-ray-based planning was 55% for cup size
and 65.00% for stem size, while the accuracy to within ± 1
size of AIHIP planning was above 95% for cup size and
stem size. Acetate templating tended to underestimate stem
size and cup size. Planners might be more conservative in
X-ray-based planning because less information is provided
in 2-dimensional X-rays than in 3-dimensional CT. During
AIHIP planning, the simulation of prothesis position and its
relation to surrounding bone can be visualized in coronal,
sagittal and axial plane, allowing surgeons to adjust the plan
from more angles.

Both X-ray-based planning and AIHIP planning were carried
out by two orthopedic residents. This suggested the potential

benefit of AIHIP in assisting beginners because it provides
more information than traditional methods. In AIHIP planning,
real-time simulation of the position, coverage and to what
degree the deformity could be corrected were visualized,
allowing for improved understanding and simulation of the
case prior to surgery. AIHIP planning also facilitated accurate
measurement of offset and LLD. Femoral offset was more
accurately restored in AIHIP planning comparing with X-ray
planning, which may be related to the fact that more high
offset/varus stems were selected in AIHIP planning. It has been
reported that reduced femoral offset negatively affected range
of motion due to impingement and reduced abductor lever
(32). Gait analysis has shown that changes in femoral offset
also influence the function of external rotator, extensor and
short flexor muscle during different phase of gait (33). On
the other hand, one study found that significantly increased
femoral offset was an important source of elevated ions in
metal on polyethylene THA, suggesting possible increased
contact force and accelerated wear (34). Therefore, accurate
restoration of femoral offset might provide potential benefit in
avoiding impingement and implant biomechanics. Although the
changes of femoral offset might be compensated by changes
in acetabular offset in certain aspects, a significant decrease
in femoral offset might result in impingement and possible
dislocation irrespective of acetabular offset. The limitations of
this study are as follows. 1. Postoperative radiographic assessment
was conducted on X-ray images rather than CT, which is
less accurate. 2. There was no statistical significant differences
in terms of clinical outcome. 3. Different planning methods
were applied in the two groups, which could lead to potential
bias in comparing the accuracy of both methods. However,
general linear model was applied to minimize the influence of
confounding factors.

CONCLUSION

The use of AIHIP greatly reduced the time and manpower
required to conduct detailed preoperative plans while being more
accurate than traditional planning methods. It has potential in
assisting surgeons, especially beginners facing the fast-growing
need for total hip arthroplasty with easy accessibility.
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