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Abstract: Huntington’s Disease (HD) is an autosomal dominant disease that results in severe neu-
rodegeneration with no cure. HD is caused by the expanded CAG trinucleotide repeat (TNR) on
the Huntingtin gene (HTT). Although the somatic and germline expansion of the CAG repeats has
been well-documented, the underlying mechanisms had not been fully delineated. Increased CAG
repeat length is associated with a more severe phenotype, greater TNR instability, and earlier age of
onset. The direct relationship between CAG repeat length and molecular pathogenesis makes TNR
instability a useful measure of symptom severity and tissue susceptibility. Thus, we examined the
tissue-specific TNR instability of transgenic nonhuman primate models of Huntington’s disease. Our
data show a similar profile of CAG repeat expansion in both rHD1 and rHD7, where high instability
was observed in testis, liver, caudate, and putamen. CAG repeat expansion was observed in all tissue
samples, and tissue- and CAG repeat size-dependent expansion was observed. Correlation analysis
of CAG repeat expansion and the gene expression profile of four genes in different tissues, clusterin
(CLU), transferrin (TF), ribosomal protein lateral stalk subunit P1 (RPLP1), and ribosomal protein
L13a (RPL13A), showed a strong correlation with CAG repeat instability. Overall, our data, along
with previously published studies, can be used for studying the biology of CAG repeat instability
and identifying new therapeutic targets.

Keywords: Huntington’s disease; trinucleotide repeats; central nervous system; peripheral system;
transgenic monkey model

1. Introduction

Huntington’s Disease (HD) is an autosomal dominant disease that results in severe
neurodegeneration and cognitive, behavioral, and motor decline, followed by death approx-
imately 10–15 years after diagnosis [1–3]. HD is caused by the expanded CAG trinucleotide
repeat (TNR) on the Huntingtin gene (HTT) [1,4], which results in a longer polyglutamine
(polyQ) chain and misfolding of the huntingtin (HTT) protein. The expansion of CAG
repeat tract in exon 1 of HTT results in expanded polyglutamine-containing fragments that
form aggregates in the cell [5]. Huntingtin is a large protein (>340 kDa) with large a-helical
HEAT (huntingtin, elongation factor 3, protein phosphatase 2A, and lipid kinase TOR)
repeat protein [6]. The expansion results in oligomerization disrupting cellular functions
and impairing proteostasis, eventually resulting in alterations or neural functions [5,7,8].

The functions of wild-type (WT) HTT, though not fully understood, are essential
in neurogenesis and the prevention of cell death [9,10]. The underlying mechanisms of
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TNR expansion remain largely unknown [11], with much interest residing in DNA repair
pathways [12–16]. The pathogenic properties of mutant huntingtin (mHTT) itself likely
arise as a result of mHTT fragment aggregation in the nuclei of cells [17], with exon
1 fragments being the most toxic due to their small size [17–21].

The tissue most affected by HD is the striatum, composed of the caudate nucleus and
putamen, with high TNR instability and protein aggregation [22–24]. Sperm and most brain
areas also show high TNR instability, while some studies showed testes and cerebellum are
relatively unaffected [22,23,25]. The liver has also been shown to have high instability of
TNR in HD mice, which mirrors peripheral symptoms such as weight loss seen in human
HD patients [13,23,25–27]. Most peripheral tissues such as the adrenal gland, spleen,
pancreas, lung, heart, and kidneys generally showed more stable TNR [23,25,26,28,29].

Increased CAG repeat length is associated with a more severe phenotype, greater TNR
instability, and earlier age of onset [25,30–34]. The full mutation length is over 40 repeats,
but more than 70 repeats result in juvenile HD [1,3], typically inherited paternally due to
the large TNR expansions that occurred during spermatogenesis [34,35]. Much evidence
points to mHTT as the driver of HD pathology rather than the result or byproduct. In the
absence of symptoms, non-pathogenic CAG repeats in mice still expand, implying that the
instability of CAG repeats is not a result of disease [36]. There was a considerable delay
in the onset of symptoms in HD mice lacking somatic instability compared to HD mice
with typical mosaicism [37,38]. Furthermore, the presence of N-terminal mHTT fragments
in the nuclei of cells leads to apoptosis [39], and disease progression can be accelerated
solely by increasing the mHTT concentration in the nuclei of cells [18]. Although expanded
polyglutamine plays an important role in the pathogenesis of HD, a recent study has shown
that uninterrupted HTT CAG repeat size determines the onset of HD [40]. Additionally,
the same study identified polymorphic variation at multiple DNA maintenance genes that
are associated with somatic repeat expansion [40]. Thus, the direct relationship between
CAG repeat length and molecular pathogenesis makes TNR instability a useful measure of
symptom severity and tissue-specificity.

Unfortunately, one major obstacle in the study of HD is the lack of animal models
that reflect the robust symptoms displayed in human HD patients. Because the aging
process differs between small and large animals (e.g., mice and monkeys), mHTT affects
mice differently, causing them to display phenotypes different from HD patients, such
as weight gain in YAC128 and BACHD mice [41] as opposed to weight loss [42]. Addi-
tionally, instability in peripheral tissues such as the liver is less consistent among mouse
models [27,43]. While mouse models have been critical for advancing HD research, they
are nonetheless limited biologically in their capacity to mirror complex human pathol-
ogy. To further advance our understanding of HD pathogenesis, it is necessary to use
large animal models that better replicate HD pathology and progression for studying HD
pathogenesis, developing potential treatment, and preclinical studies. The genetic and
physical similarities between humans and nonhuman primates have allowed us to model
the human-specific pathology [42,44–47]. Thus, we examine the tissue-specific TNR insta-
bility of two HD monkeys [48] and compare them with humans. The HD monkey model
developed pathology mirroring human HD, such as decreases in the levels of neuronal
health marker N-acetyl aspartate (NAA) and white matter abnormalities in the corpus
callosum, caudate, and primary motor cortex [27,45,49]. They also displayed progressive
HD symptoms not observed in some mouse models, such as seizures, striatal atrophy,
chorea, and dystonia [49]. In our monkey model (rHD1 and rHD7), both monkeys showed
mHTT aggregated in both the caudate nucleus and putamen at age of five [49]. rHD1, with
a longer CAG repeat tract length, showed more intranuclear inclusions compared with
rHD7, which showed more sparsely stained cells throughout the brain [49].

Somatic mosaicism is well documented in animal models [13,25,26,50–52] and human
postmortem studies [27,30,53]. We recently reported longitudinal progressive CAG repeat
expansion in peripheral blood cells and sperm of HD monkeys [54]. We observed a similar
pattern in CAG repeat size and age-dependent CAG repeat expansion [54] between HD
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monkey and rodent models [25,26]. However, CAG repeat expansion was observed in HD
monkey sperm, while a limited expansion was observed in some HD rodent models.

The aim of this study was to further investigate tissue or cell-type specificity of CAG
expansion in our transgenic HD monkeys and investigate whether our model recapitulates
human pathology. We examined CAG repeat instability of postmortem tissues of transgenic
HD monkeys and investigated proteins that are expressed in various proteins that show a
correlation with CAG repeat expansion which could lead to new insight into the underlying
mechanisms of CAG repeat instability and expansion.

2. Materials and Methods

Animals: Four Rhesus macaques, rHD1, rHD7, and two WTs, were used in this experi-
ment. The two HD monkeys (rHD 1 and rHD7) carried transgenes with different length of
CAG repeats in exon 1 of HTT regulated by human ubiquitin C promoter and human HTT
gene promoter, respectively. Both monkeys were euthanized at five years of age [45,46,55].

Brain tissues (caudate nucleus, cerebellum, hippocampus, motor cortex thalamus,
prefrontal cortex, and putamen) and peripheral tissues (adrenal gland, heart, kidney, liver,
lung, pancreas, and testes) were collected, snap-frozen in liquid nitrogen, and stored at
−80 ◦C until analysis.

DNA Isolation: An approximately 0.5 cm3 sample of tissue was used for DNA ex-
traction. DNA extraction was completed using a Maxwell® 16 Tissue DNA Purification
Kit (Promega, Madison, WI, USA). The concentration and purity of DNA extractions were
measured using NanoDrop™ 2000 (ThermoFisher, Waltham, MA, USA).

PCR: For the PCR, we used 500 ng of genomic DNA, 0.4 µM forward primer (HD32G;
5′-FAM-CTACGAGTCCCTCAAGTCCTTCCAGC), 0.4 µM reverse primer (MD177R; 5′-
GACGCAGCAGCGGCTGTGCCTG), 1× Takara PCR buffer, 1 mM deoxynucleotide triphos-
phate (dNTP), 0.5 U Takara Taq polymerase, and 4 µM Betaine. The PCR protocol was set
using the following: cycling conditions were 98 ◦C for 5 min, 40 cycles of 95 ◦C 5 min, 67 ◦C
0.75 min, 72 ◦C 1.5 min, followed by 10 min at 72 ◦C.

Data Analysis: PCR product was sent to Emory Integrated Genomics Core for GeneS-
can analysis. In total, 1.5 µL of PCR products were mixed with 0.5 µL of GeneScan™ 500
ROX™ (ThermoFisher, Waltham, MA, USA) and 9.5 µL of Hi-Di™ Formamide (Applied
Biosystems). Samples were denatured at 95 ◦C for 5 min and ran on a 3130xl Genetic
Analyser (Applied Biosystems). The data was analyzed using GeneMarker® (SoftGenetics).
From the electrograms, only peaks with a height above 10% of the highest peak were in-
cluded in calculations. Expansion index was calculated by modifying instability index [13]
following the equation:

Σ
((

peak height
Σpeak heights

)
(∆TNR from the reference allele)

)
For the expansion index, instead of calculating changes from the modal peak (i.e., the

highest peak), reference tissue with the most stable CAG repeat (muscle in both rHD1 and
rHD7) was used to calculate the changes, which was multiplied by the normalized peak
height (peak height/∑peak height). The sum of all values was expressed as an expansion
index. The expansion index represents the instability of a sample and its tendency towards
expansions (i.e., positive values) or contractions (i.e., negative values). The expansion index
close to zero indicates low instability. Positive values indicate expansions, and negative
values indicate contractions.

For curve-fit data analysis, masked allele data was imported into MATLAB (The Math-
Works Inc., Natick, MA, USA). The curve-fitting was processed as previously described [28].
Briefly, imported data was analyzed with the ipf.m function in MATLAB, minimizing error
to under 5% and maximizing the overall fitness R2 value to greater than 0.95. The Gaussian
distribution was used to fit the curves due to the nature of the data. Later, curve-fit data
and the electropherogram were superimposed using Adobe Illustrator (Adobe). All the
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data with mean, error, and R2 values are presented in the Supplemental Tables (Table S1
and Table S2).

Statistical analysis: All curve-fit data with the position of mean, error, and R2 value
are presented in the Supplemental Tables. Individual alleles (red curves) were plotted
in the box plot to deconvolute individual alleles that arise from the parental alleles since
different tissues have different expansion profiles, i.e., continuous in the tail and periodic
expansion in striatum [28]. Continuous expansion conforms to a random bi-directional
forward-biased model while dramatic expansion demonstrates periodicity of inserting
stable TNR segments occurring within small cell populations causing the subsequent cell
population to have similar repeat length within the normal distribution [28]. Therefore, the
curve-fit method was used to deconvolute the alleles that arise from periodic expansion
within the electropherograms. For the linear regression, the Pearson correlation coefficient
(R2) and statistical significance (p-value) were calculated using GraphPad Prism Version
8.0.2 (GraphPad Software, La Jolla, CA, USA). For all correlation analyses, one-tailed
Spearman’s correlation analysis was conducted on GraphPad Prism.

Correlation Data Analysis: To characterize the TNR-associated gene expression, we
extracted gene expression data from the tissue used in this study from Genotype-Tissue
Expression (GTEx) project [55]. From the top 100 expressed genes among tissues with high
TNR instability, liver, testis, caudate, and putamen, a total of 35 genes were commonly ex-
pressed in all four tissues. The median transcripts per million (TPM) data were downloaded
from the database, and all 35 genes were tested for correlation with the expansion index
and curve-fit range data. The correlation was tested using corrplot in R. Of 35 genes, only
4 showed either significantly positive or negative correlation with either expansion index
or curve-fit range data (CLU, TF, RPL13A, and RPLP1). Gene expressions from NEIL1 and
MSH3 were added as a reference. The median TPM and either expansion index or curve-fit
range were plotted, and correlations between the two were calculated. For all correlation
analyses, one-tailed Spearman’s correlation analysis was conducted on GraphPad Prism
(GraphPad 8.0.2).

3. Results

Tissue samples were collected from two WT monkeys and two HD monkeys (rHD1
and rHD7; Table 1).

Table 1. Genotypes of nonhuman primates used in this study.

Genotypes rWT1 rWT1 rHD1 rHD7

Exons 1 1–10
Promoter Human polyubiquitin-C Human HTT gene

N-terminal 67 amino acids 508 amino acids
Baseline polyQ length 7, 8Q 7, 8Q 8, 27, 45, 77Q, 87Q 7, 68Q

Both rWT1 and rWT2 had 7Q and 8Q. rHD1 had exon 1, 67 amino acids in the N-terminal, and 8, 27, 45, 77Q,
and 87Q due to multiple integrations of the transgene. In contrast, rHD7 had exons 1-10, 508 amino acids in the
N-terminal, and 7 and 68Q repeats at the baseline. rHD1 had the ubiquitin promoter, and rHD7 had the human
HTT promoter. rHD1 showed a much more severe phenotype that resembled juvenile-onset HD. rHD7 had a
milder phenotype mirroring adult-onset HD.

Both HD monkeys were created by injecting lentivirus vectors into oocytes. rHD1
was created with a vector expressing exon 1 of the human HTT gene with 84 CAG repeats,
and rHD7 was created with a vector expressing exons 1–10 of the human HTT with ap-
proximately 67–72 CAG repeats under the human HTT promoter [48,56]. Although the
integration sites and precise copy numbers of transgenes were not analyzed, lymphocytes
from 3 month-old rHD1 showed mutant alleles at 27Q, 44Q, 76Q, and 87Q [57], and lym-
phocytes from 12 month-old rHD7 showed mutant allele at 66Q [47]. Both monkeys were
euthanized at the age of five. DNA was extracted from the tissues and then underwent PCR
specifically targeting the CAG repeats of normal and mutant HTT genes. Representative
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electropherograms and curve-fit data of several notable tissues from rHD1 and rHD7 are
shown in Figure 1.
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Figure 1. Representative electropherograms superimposed with curve-ft results of rHD1 and rHD7.
(A) In rHD1, testis and liver showed the highest expansion among peripheral tissue samples, while
caudate and putamen showed the highest expansion among the central nervous system tissue
samples. (B) In rHD7, the liver showed the highest expansion among the peripheral tissue samples,
and caudate and putamen showed the largest expansion among the central nervous system tissue
samples. In both rHD1 and rHD7 tissue samples, the muscle was the most stable tissue samples
among all tissue samples collected and used as a reference when calculating the expansion index.
Red lines represent individual curves and black lines represent overall curve-fit results.

All electropherograms are provided in supplemental data (Figures S1–S4). The curve-
fit method was used in this study to capture multiple alleles derived from the primary
allele following the method described by Mollersen et al. [28], which was used in our
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previous studies [54,57]. The result of the curve-fit data is provided in supplemental
data with the error and goodness of fit value (R2) (Supplemental Tables S1 and S2). The
electropherograms show the mosaicism of CAG repeats with different repeat lengths. From
these electrograms, peak sizes from the curve-fit data and expansion index were used in
further analysis. Curve-fit data show that the liver showed a larger range of allele sizes
in peripheral tissues denoting the high instability in these tissues in both rHD1 and rHD7
(Figure 2A,B).
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muscle, and kidney were relatively stable (Figures 1A and 2A). In the central nervous 
system (CNS), tissue samples showed relatively high instability across all brain regions 
except the cerebellum, while caudate, thalamus, and putamen showed the highest insta-
bility (Figures 1A and 2A). In rHD 7, liver, caudate, hippocampus, and putamen showed 
a broad range of alleles, while the rest of the tissues were relatively stable in allele sizes 
(Figures 1B and 2B). A similar trend was observed in both rHD1 and rHD7 where high 
instability was observed in liver and caudate and putamen in the larger allele (Figures 1 
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Figure 2. Curve-fit data of rHD1 and rHD7 arranged from the tissues with the highest CAG expansion
to most stable. (A) Testis showed the largest CAG expansion and showed the emergence of multiple
large alleles derived from 77Q. The kidney showed little emergence of larger alleles among peripheral
tissue samples. Among the central nervous tissue samples, caudate, thalamus, and putamen showed
similar emergency of larger alleles derived from 77Q. (B) Liver showed the largest CAG expansion
followed by the testis in rHD7 among the peripheral tissue samples. Other peripheral tissue samples
showed relatively stable CAG size while the muscle was the most stable. The caudate, hippocampus,
and putamen showed a large CAG expansion among the central nervous samples, while the other
samples were stable.

In rHD1, adrenal gland, lung, and pancreas showed moderate instability while heart,
muscle, and kidney were relatively stable (Figures 1A and 2A). In the central nervous
system (CNS), tissue samples showed relatively high instability across all brain regions
except the cerebellum, while caudate, thalamus, and putamen showed the highest insta-
bility (Figures 1A and 2A). In rHD 7, liver, caudate, hippocampus, and putamen showed
a broad range of alleles, while the rest of the tissues were relatively stable in allele sizes
(Figures 1B and 2B). A similar trend was observed in both rHD1 and rHD7 where high insta-
bility was observed in liver and caudate and putamen in the larger allele (Figures 1 and 2).
Among the tissues from the CNS, a large median value with high CAG mosaicism was
observed in caudate and putamen of rHD1 and rHD7 (Figure 2 and Figure S5).

The expansion index was also calculated by modifying the instability index [13]. All
WT tissues had 0 expansion indexes suggesting the lack of any CAG repeat expansions in
small repeat sizes. The expansion indexes were plotted according to reference alleles (8, 35,
45, and 77Q for rHD1; 7 and 68Q for rHD7) (Figure 3).

Similar to curve-fit data, testis and liver showed high instability in the 77Q allele in
rHD1 (Figure 3A). In all tissues, 77Q showed relatively high instability (Figure 3A). In
rHD7, liver and all central nervous system tissue samples, except cerebellum, showed high
instability (Figure 3B).

Spearman’s correlation test was used to determine whether CAG expansion depends
on tissue type (i.e., tissue specificity) or the size of CAG repeat (i.e., size specificity)
(Figure 4).
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Figure 3. Expansion indexes of rHD1 and rHD7 peripheral and central nervous system samples are
arranged in the same order as the curve-fit data. (A) All alleles, except 77Q, were stable. Like curve-fit
data, testis and liver showed the highest instability compared to the rest of the peripheral tissue
samples, although 77Q in all peripheral tissue samples showed a high expansion index. Among the
central nervous system samples, 77Q alleles in all tissue samples showed similar instability. (B) All
peripheral tissue samples, except the liver, showed similar instability in both 7Q and 68Q. In the
central nervous system, the caudate showed the highest instability, followed by the putamen.
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Figure 4. Correlations of expansion indexes between samples. (A) Expansion indexes from each
tissue from rHD1 and rHD7 were plotted to show the tissue specificity of CAG expansion. A
Spearman’s correlation showed a strong positive correlation between rHD1 and rHD7, which was
statistically significant (Rs(14) = 0.5341, p = 0.0261) when the rHD1 testis index was removed due
to high expansion of CAG repeats in rHD1 testis. (B) The range of curve-fit data was plotted for
corresponding tissue samples. A strong positive correlation was found between rHD1 and rHD7
(Rs(14) = 0.5926, p = 0.0199). (C) When all expansion indexes of rHD1 and rHD7 are plotted against
CAG repeat size (Q size), the expansion index follows a nonlinear regression model where the
expansion index increases exponentially around 60Q.

When expansion indexes were plotted for rHD1 and rHD7 for each correlating tissue,
a strong positive correlation was observed between rHD1 and rHD7 with statistical signif-
icance (Rs(14) = 0.5341, p = 0.0379) when rHD1 testis was excluded after Grubbs’ outlier
test (α = 0.05, G = 2.858) (Figure 4A). The range of the curve-fit data also showed a strong
positive correlation between rHD1 and rHD7 (Rs(14) = 0.5926, p = 0.0190) (Figure 4B). When
all expansion indexes of rHD1 and rHD7 were plotted against CAG repeat size (Q size),
the expansion index followed a nonlinear regression model (R2 = 0.9121). The expansion
index increases exponentially around 60Q (Figure 4C).

To further determine the factors contributing to tissue specificity of CAG expansion,
lists of the top 100 expressed genes in four tissues with high instability (liver, testis, cau-
date, and putamen) were retrieved from the Genotype-Tissue Expression (GTEx) database
(Figure S6). Among the 35 genes that were common in all four tissues, genes with expres-
sion patterns similar to the trend of CAG instability were selected for further analysis
(clusterin (CLU), transferrin (TF), ribosomal protein lateral stalk subunit P1 (RPLP1), and
ribosomal protein lateral stalk subunit P1 (RPL13A)) (Figure 5).
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Figure 5. The genotype-tissue expression (GTEx) profile of the selected genes from the organs used in
this study. Among tissues with high CAG repeat instability (liver, testis, caudate, and putamen), a list
of 100 genes highly expressed in each organ was analyzed on the GTEx database. Among 35 genes in
all four tissue samples, genes showing a similar trend as the CAG instability were selected for further
analysis (CLU, TF, RPLP1, and RPL13A). (A,B) CLU and TF expression showed a similar trend as
the expansion index where liver, testis, and brain showed a high gene expression while muscle and
heart showed a low gene expression. (C,D) RPLP1 and RPL13A showed the opposite trend as the
expansion index. (E,F) Among the genes associated with CAG expansion, NEIL1 and MSH3 gene
expressions were plotted.

CLU and TF were highly expressed in the testis, liver, and brain where CAG instability
was high (Figure 5A,B). Two genes (RPLP1 and RPL13A) showed the opposite trend as
the CAG expansion index (Figure 5C,D). Among the genes previously that have been
associated with CAG expansion in HD, NEIL1 [58] and MSH3 [59,60] were also investi-
gated to see whether their expression correlates with CAG instability (Figure 5D,E). To
further investigate the correlation between gene expression patterns and CAG instability in
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different tissues, we plotted gene expression data (transcripts per million (TRM)) against
the expansion index and curve-fit data of corresponding tissue (Figure 6).

Biomedicines 2022, 10, x FOR PEER REVIEW 9 of 16 
 

as the CAG expansion index (Figure 5C,D). Among the genes previously that have been 
associated with CAG expansion in HD, NEIL1 [58] and MSH3 [59,60] were also investi-
gated to see whether their expression correlates with CAG instability (Figure 5D,E). To 
further investigate the correlation between gene expression patterns and CAG instability 
in different tissues, we plotted gene expression data (transcripts per million (TRM)) 
against the expansion index and curve-fit data of corresponding tissue (Figure 6).  

 
Figure 6. Correlation of gene expression in tissue samples used in this study against expansion index 
and curve-fit data. (A) A Spearman’s correlation analysis of rHD1 data showed a strong positive 
correlation between expansion index and TF expression in rHD1, which was statistically significant 
(Rs(14) = 0.6214, p = 0.0077) while CLU showed positive correlation that was close to statistical sig-
nificance (Rs(14) = 0.4321, p = 0.0547). RPLP1 and RPL13A expression levels showed a statistically 
significant strong negative correlation with the expansion index ((Rs(14) = −0.5750, p = 0.0137) and 
(Rs(14) = −0.5648, p = 0.0152), respectively). NEIL1 and MSH3 did not show any significant correla-
tion. (B) The Spearman’s correlation showed a strong positive correlation between range of the 
curve fit data with CLU and TF expression, which was statistically significant ((Rs(14) = 0.5036, p = 
0.0291) and (Rs(14) = 0.6679, p = 0.004), respectively). RPLP1 expression level showed a statistically 
significant strong negative correlation with the expansion index (Rs(14) = −0.4750, p = 0.0379). 
RPL13A, NEIL1, and MSH3 did not show any significant correlation. (C) The Spearman’s correla-
tion of rHD7 expansion index data showed a statistically significant positive correlation between 
expansion index and TF expression (Rs(14) = 0.7143, p = 0.0019) while no significant correlation was 
observed with CLU expression (Rs(14) = 0.3214, p = 0.4566). Both RPLP1 and RPL13A showed statis-
tically significant negative correlations ((Rs(14) = −0.4786, p = 0.0367) and (Rs(14) = −0.5523, p = 
0.0175), respectively). No significant correlation was found for both NEIL1 and MSH3. (D) When a 
Spearman’s correlation was analyzed with range of curve-fit data and gene expression, similar cor-
relation trends were observed as expansion index. A statistically significant positive correlation be-
tween curve-fit range and TF expression (Rs(14) = 0.7893, p = 0.0004) was observed while no signifi-
cant correlation was observed with CLU expression (Rs(14) = 0.3607, p = 0.0935). Both RPLP1 and 
RPL13A showed a statistically significant negative correlation ((Rs(14) = −0.5893, p = 0.0116) and 
(Rs(14) = −0.6524, p = 0.005), respectively). No significant correlation was found for both NEIL1 and 
MSH3. 

Figure 6. Correlation of gene expression in tissue samples used in this study against expansion index
and curve-fit data. (A) A Spearman’s correlation analysis of rHD1 data showed a strong positive
correlation between expansion index and TF expression in rHD1, which was statistically significant
(Rs(14) = 0.6214, p = 0.0077) while CLU showed positive correlation that was close to statistical sig-
nificance (Rs(14) = 0.4321, p = 0.0547). RPLP1 and RPL13A expression levels showed a statistically
significant strong negative correlation with the expansion index ((Rs(14) = −0.5750, p = 0.0137) and
(Rs(14) = −0.5648, p = 0.0152), respectively). NEIL1 and MSH3 did not show any significant correla-
tion. (B) The Spearman’s correlation showed a strong positive correlation between range of the curve
fit data with CLU and TF expression, which was statistically significant ((Rs(14) = 0.5036, p = 0.0291)
and (Rs(14) = 0.6679, p = 0.004), respectively). RPLP1 expression level showed a statistically signif-
icant strong negative correlation with the expansion index (Rs(14) = −0.4750, p = 0.0379). RPL13A,
NEIL1, and MSH3 did not show any significant correlation. (C) The Spearman’s correlation of rHD7
expansion index data showed a statistically significant positive correlation between expansion index
and TF expression (Rs(14) = 0.7143, p = 0.0019) while no significant correlation was observed with
CLU expression (Rs(14) = 0.3214, p = 0.4566). Both RPLP1 and RPL13A showed statistically significant
negative correlations ((Rs(14) = −0.4786, p = 0.0367) and (Rs(14) = −0.5523, p = 0.0175), respectively).
No significant correlation was found for both NEIL1 and MSH3. (D) When a Spearman’s correlation
was analyzed with range of curve-fit data and gene expression, similar correlation trends were
observed as expansion index. A statistically significant positive correlation between curve-fit range
and TF expression (Rs(14) = 0.7893, p = 0.0004) was observed while no significant correlation was
observed with CLU expression (Rs(14) = 0.3607, p = 0.0935). Both RPLP1 and RPL13A showed a
statistically significant negative correlation ((Rs(14) = −0.5893, p = 0.0116) and (Rs(14) = −0.6524,
p = 0.005), respectively). No significant correlation was found for both NEIL1 and MSH3.

rHD1 data showed a strong positive correlation between expansion index and TF
expression in rHD1, which was statistically significant (Rs(14) = 0.6214, p = 0.0077) while
CLU showed a positive correlation that was close to statistical significance (Rs(14) = 0.4321,
p = 0.0547) (Figure 6A). RPLP1 and RPL13A expression level showed a statistically signifi-
cant strong negative correlation with the expansion index ((Rs(14) = −0.5750, p = 0.0137)
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and (Rs(14) = −0.5648, p = 0.0152), respectively) (Figure 6A). However, NEIL1 and MSH3
did not show any significant correlation (Figure 6A). On the other hand, a strong positive
correlation ((Rs(14) = 0.5036, p = 0.0291) and (Rs(14) = 0.6679, p = 0.004)) between the range
of the curve fit data with CLU and TF expression was observed in rHD1, respectively.
Although RPLP1 expression level showed a statistically significant negative correlation
with the expansion index ((Rs(14) =−0.4750, p = 0.0379), RPL13A, NEIL1, and MSH3 did not
show any significant correlation (Figure 6B). For rHD7, TF gene expression showed a strong
positive correlation with both expansion index (Rs(14) = 0.7143, p = 0.0019) and curve-fit
range (Rs(14) = 0.7893, p = 0.0004) (Figure 6A,B). RPLP1 and RPL13A showed a statistically
significant negative correlation with both expansion index ((Rs(14) = −0.4786, p = 0.0367)
and (Rs(14) = −0.5523, p = 0.0175), respectively) and curve-fit range ((Rs(14) = −0.5893,
p = 0.0116) and (Rs(14) = −0.6524, p = 0.005) respectively) (Figure 6A,B). No statistically
significant correlation was found for CLU, NEIL1, and MSH3 (Figure 6A,B).

4. Discussion

Peripheral tissues from HD monkeys provide a unique opportunity to study CAG
instability in different cell types that share the same genetic background. Previously, we
demonstrated age- and CAG repeat size-dependent CAG repeat expansion [47]. This study
demonstrates tissue/cell-type and CAG size-dependent CAG repeat expansion (Figure 4).
One of the hypotheses of HD pathogenesis is a two-step process. First, the rate of somatic
expansion dictates the rate of phenotypic onset. Second, somatic expansion causes cytotoxi-
city resulting in cell death in the venerable cells. Somatic expansion of the CAG repeat has
been well documented in various model systems and humans [13,25–27,30,50–53]. A recent
report in human postmortem tissues [53] reveals similar findings as our HD monkeys.
Moreover, unlike humans, rHD1 carries four alleles with different CAG repeat sizes (8, 35,
45, and 77Q), which provides a unique opportunity to investigate the correlation between
CAG repeat sizes and CAG stability in the same individual.

Behaviorally, rHD1 resembles juvenile-onset HD, while rHD7 is comparable to adult-
onset HD [49], which suggests the expression level of HTT and the size of the HTT frag-
ment are crucial factors for disease onset and severity [49,55]. Tissue-specific instability
observed in caudate and putamen of rHD1 and rHD7 was similar to reports in humans
and mice [53,58,61,62]. However, the instability of the liver does not typically exceed that
of the caudate and putamen, as we observed in rHD7 [13,23,26,27].

Interestingly, a recent human postmortem study showed high CAG repeat size insta-
bility in testis and liver similar to rHD1 [53]. Nonetheless, the caudate, putamen, hippocam-
pus, thalamus, and motor cortex were among the most unstable tissues, as seen in other
studies [13,23–25]. The cerebellum, prefrontal cortex, and peripheral tissues such as the
muscle, heart, adrenal gland, and pancreas of rHD1 were highly unstable, similar to other
reports [23,25,27,51,53]. Besides the liver, the testis is the most unstable peripheral tissue.

The use of human polyubiquitin-C promoter in rHD1 resulted in the global expression
of mHTT. In contrast, mHTT transgene under the regulation of the human HTT promoter
in rHD7 was expected to mimic human HTT expression pattern. Although overall high
instability was observed in rHD1, heart, muscle, kidney, and cerebellum appeared to be
among the most stable, while the testis, liver, thalamus, caudate, and putamen were the
most unstable. In rHD7, liver, hippocampus, caudate, and putamen showed high instability
(Figure 2B) similar to a human postmortem study [53].

Our previous data show rHD1 lymphocytes at the age of 3 months had 8, 27, 42, and
80Q, and rHD7 lymphocytes had 7 and 65Q at the age of 12 months [47,57]. The most stable
tissue in this study, muscle, showed 8, 27, 45, 80, 85, and 90Q in rHD1 while rHD7 had 7
and 66Q (Figure 1 and Tables S1 and S2).

It is interesting to note that HD patients with less than 44 repeats have small tissue-
specific differences in instability levels [63,64]. In rHD1and in rHD7, higher instability was
observed in alleles with a larger repeat size of over 44Q than in alleles with less than 44Q.
A prior longitudinal study on three HD monkeys, including rHD7 that carry the same



Biomedicines 2022, 10, 1863 11 of 16

mutant HTT transgene with repeat sizes, ranging between 56Q and 70Q, showed that 62Q
might be the threshold of CAG repeat instability leading to large CAG expansion [54]. Cur-
rent data also demonstrate that around 62Q, the expansion index exponentially increases
(Figure 4C). Tissue specificity was demonstrated by both expansion index and curve-fit
data (Figure 4A,B). Tissue specificity of CAG repeat expansion begs to investigate gene
expression in multiple organs to find genetic modifiers that might be involved in CAG ex-
pansion. The Genotype-Tissue Expression (GTEx) allows quick screening of the expression
pattern of tissue-specific genes that share a similar trend to CAG repeat expansion [65]. Of
the top 100 genes in the four tissues with the highest CAG repeat instability, 35 common
genes were identified. Among the 35 common genes, 17 genes were mitochondrial genes
and did not show a similar expression trend as our instability data. Of the remaining 18,
4 genes CLU, TF, RPLP1, and RPL13A showed similar expression pattern as instability
data (Figure 5). Additionally, the trend of gene expressions that have been associated
with HD pathogenesis and CAG repeat expansions, such as huntingtin (HTT), huntingtin-
interacting protein 1 (HIP1), 8-oxoguanine DNA glycosylase (OGG1) [61], tumor protein
53 (TP53) [66,67], RE1-silencing transcription factor (REST) [68], nuclear factor kappa B
(NF-κB) [69], CREB-binding protein (CBP) [70], forkhead box protein 1 (FOXP1) [71], heat
shock factor 1 (HSF1) [72], FANCD2- and FANCI-associated nuclease 1 (FAN1) [62,73],
postmeiotic segregation increased 1 homolog 1/2 (PMS1/PMS2) [62], mutL homolog 1/3
(MLH1/MLH3) [62,74], transcription elongation regulator 1 (TCERG1) [62], ribonucleotide
reductase regulatory TP53 inducible subunit M2B (RRM2B) [62], coiled-coil domain contain-
ing 82 (CCDC82) [62], apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) [75], DNA
ligase 1 (LIG1) [62], breast cancer 1 (BRCA1) [75], nei like DNA glycosylase 1 (NEIL1) [58],
and mutS Homolog 2/3 (MSH2/MSH3) [62,76] in various tissues were analyzed. Only
NEIL1 and MSH3 showed similar gene expression patterns as CAG repeat expansion
(Figure 6E,F). However, correlation analysis shows a positive correlation between CAG
repeat expansion with CLU and TF while a negative correlation between CAG repeats
expansion with RPLP1 and RPL13A (Figure 6). Both CLU and TF are involved in oxidative
stress response, apoptosis, and DNA damage response (DDR) and have been reported
to be involved in Huntington’s disease pathogenesis [77–79]. Especially, increased CLU
expression has been associated with Alzheimer’s disease, where increased CLU decreased
toxicity and the aggregation of amyloid-beta (Aβ) [80]. Additionally, CLU is involved in
Aβ aggregation and clearance, neuroinflammation, and regulations of neuronal cell cycle
and apoptosis [80]. Moreover, RNA sequence analysis of human Huntington’s disease
brain showed CLU as one of the top differentially expressed genes [81]. One study over-
expressing CLU in the COS-7 cell line (African green monkey kidney cell) showed the
formation of aggresomes, severe interruption of mitochondrial distribution, and triggering
of the mitochondria-mediated apoptotic pathway [82], which are the hallmark phenotypes
of neurodegenerative disease such as HD and AD. Transferrin gene expression has also
been implicated in HD [78]. Iron overloading has been reported in HD models [78] and
HD patients [83–85]. Moreover, an antibody against transferrin receptor and deferoxamine
(iron chelator) has been successfully used in treating HD symptoms [86,87]. However, its
impact on CAG repeat size has not been investigated, which warrants further investigation.
Both RPLP1 and RPL13A code for ribosomal proteins and are structural components of
the ribosome. Although no association with HD has been reported, their involvement
in the elongation step of protein synthesis might suggest why they are negatively regu-
lated in tissues with high CAG repeat instability. Interestingly, neither NEIL1 nor MSH3
showed a statistically strong correlation. Although NEIL1 and MSH3 have been reported
in GWAS studies [62] and verified by animal studies [15,58,60], most prior studies were
focused on the brain and blood samples. Therefore, a comprehensive multi-omics study
including genomic, transcriptomic, epigenomic, and proteomic studies on multiple tissues
is a critical step to uncover genetic modifiers that affect CAG instability in HD and other
TNR expansion diseases. A recent human postmortem study on HTT CAG and ATXN1
CAG expansion showed high tissue-specific CAG expansion between the two genes [53],
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which suggests a common pathogenic mechanism among TNR expansion diseases and HD
monkeys might provide valuable insight to investigate TNR instability and pathogenesis.

It will be pertinent in the future to replicate this study with a larger sample size.
Still, our findings suggest that the HD monkey model could contribute significantly to
advancing HD research and preclinical studies. rHD7 had distinct tissue-specific instability
that largely mirrored human HD. rHD1 contains multiple alleles with differing CAG repeat
sizes that might be useful to investigate the effect of CAG repeat sizes on their stability
with the same genetic background.

5. Conclusions

Our study provides further evidence that CAG repeat expansion is an age-, tissue-,
and size-dependent process. This study set the future avenues of investigations that could
delineate the biological processes involved in CAG expansion and pathogenesis that can be
targeted for future therapeutic development.
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