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Big Data in Caenorhabditis elegans: quo vadis?
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ABSTRACT A clear definition of what constitutes “Big Data” is difficult to identify, but we 
find it most useful to define Big Data as a data collection that is complete. By this criterion, 
researchers on Caenorhabditis elegans have a long history of collecting Big Data, since the 
organism was selected with the idea of obtaining a complete biological description and un-
derstanding of development. The complete wiring diagram of the nervous system, the com-
plete cell lineage, and the complete genome sequence provide a framework to phrase and 
test hypotheses. Given this history, it might be surprising that the number of “complete” data 
sets for this organism is actually rather small—not because of lack of effort, but because most 
types of biological experiments are not currently amenable to complete large-scale data col-
lection. Many are also not inherently limited, so that it becomes difficult to even define com-
pleteness. At present, we only have partial data on mutated genes and their phenotypes, 
gene expression, and protein–protein interaction—important data for many biological ques-
tions. Big Data can point toward unexpected correlations, and these unexpected correlations 
can lead to novel investigations; however, Big Data cannot establish causation. As a result, 
there is much excitement about Big Data, but there is also a discussion on just what Big Data 
contributes to solving a biological problem. Because of its relative simplicity, C. elegans is an 
ideal test bed to explore this issue and at the same time determine what is necessary to build 
a multicellular organism from a single cell.

As was predicted at the beginning of the Human Genome Project, 
getting the sequence will be the easy part as only technical issues are 
involved. The hard part will be finding out what it means, because this 
poses intellectual problems of how to understand the participation of the 
genes in the functions of living cells.

Sydney Brenner (1995)

INTRODUCTION: WHAT IS “BIG DATA”?
Collecting “Big Data” is currently seen as the panacea for many re-
search problems in contemporary science, as well as for diverse 
fields outside of science. What is most curious about this state of 

affairs is that hardly anybody defines it, and when you start to dig, 
you realize that the term “Big Data” is used in many different ways. 
Compare, for example, the use of this term in biology, astrophysics, 
and finance and by the U.S. National Security Agency or in social 
media analysis. The size scales are very different in each of these 
examples, often by orders of magnitude. Broadly speaking, Big Data 
are large amounts of data, possibly heterogeneous in nature, that are 
difficult to analyze by current data-processing tools. As data-process-
ing methods change over time, mainly due to increasing computing 
power, the definition of Big Data also changes. Another way to look 
at Big Data is in the context of the overall information available. With 
this in mind, Big Data can be usefully defined as, not just the collec-
tion of lots of samples, but of “all” data, which has been described 
simply as n = all (Mayer-Schönberger and Cukier, 2013). A key feature 
of Big Data in this sense is the option to reuse data for a different, 
even completely unanticipated purpose without the need to collect 
data again. For example, whole-genome sequence data originally 
collected to identify mutations in protein-coding genes could be 
used to identify changes in other parts of the genome or even to 
identify commensal organisms or parasites of the host whose ge-
nome might have been sequenced together with the host genome. 
Because of this added utility, we would argue that completeness 
should be an important aspect of large-scale studies in biology.
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new technological developments such as clustered regularly inter-
spaced short palindromic repeats (CRISPR; Jinek et al., 2012), find-
ing loss-of-function mutations for all functional genetic elements 
remains a monumental undertaking. Reducing gene activity by RNA 
interference (RNAi) offers a way to scale things up, that is, to do 
genome-wide screens (Fraser et al., 2000; Gönczy et al., 2000; 
Kamath et al., 2003). However, RNAi does not work for every gene 
(or every phenotype), the collection of RNAi clones does not cover 
the entire genome, and the actual screening effort for many pheno-
types is prohibitive.

At the RNA level, determining gene expression, although pos-
ing some problems in collection and analysis, might be close to 
achieving n = all, at least at the whole-animal level (but see later 
discussion for limitations). Over the past two decades, there have 
been several large-scale projects to monitor mRNA levels in wild-
type and mutant animals, various developmental stages, and 
specific tissues and cells. These studies have used the technology 
of the period, whether it be in situ hybridization, microarrays, 
Serial Analysis of Gene Expression (SAGE), or, more recently, RNA 
sequencing (RNA-seq). There is a large body of data here to 
mine (see, e.g., modSEEK; Zhu et al., 2015; seek.princeton.edu/ 
modSeek/worm/index.jsp), but the different techniques used pose 
a serious challenge for the integration of data. For example, how 
does a twofold microarray signal compare to five SAGE tags or 200 
RNA-seq reads for the same transcript? A single gold standard set 
of expression data would in principle eliminate this problem. A sub-
set of RNA-seq identified transcripts validated using single- 
molecule fluorescent in situ hybridization (smFISH) is one possible 
approach to establishing a gold standard set of expression data  
(Raj et al., 2008). Whereas high-throughput approaches give us a 
comparative look at multiple transcripts simultaneously, and, in ad-
dition, with RNA-seq detail the level of alternative splicing, we still 
miss much of the nuance of gene regulation and expression. This is 
because most large-scale expression studies measure transcript 
 levels of the entire organism or at the level of a single tissue, and 
none has yet given us a glimpse at the breadth of transcripts of a 
single cell in C. elegans.

Although there is now a burgeoning field examining RNA regula-
tion, most large-scale RNA-seq studies use mRNA as a proxy for 
what is occurring at the protein level. There are other possible ap-
proaches to perform this type of study. For example, a more infor-
mative approach, albeit with much lower throughput, is to tag newly 
synthesized proteins and follow their expression through develop-
ment. Following this theme, the Waterston group at the University 
of Washington (Seattle, WA) is attempting to map the expression 
pattern of the >900 transcription factors (TFs; Reece-Hoyes et al., 
2005; Weirauch and Hughes, 2011) in the nematode. Using four-di-
mensional (4D) microscopy and green fluorescent protein–tagged 
genes, they can monitor changes of protein levels over time with 
single-cell resolution during embryonic development (Murray et al., 
2008). So far, they have done ∼10% of all TFs (Robert Waterston, 
personal communication), enough to demonstrate that this is a fea-
sible approach. Multiple laboratories working together could give 
us an expression map for all TFs at the cellular and temporal detail 
required for a detailed understanding of cell specification. Although 
several labs across the world have the capacity to collect 4D expres-
sion data in the embryo, to our knowledge, a coordinated approach 
across multiple laboratories is not being pursued, but we see no 
technological barriers to this happening. An additional contribution 
of this approach is that tagged proteins allow one to determine 
subcellular localization. Use of tagged proteins for this purpose is 
already well established in yeast and has the added benefit that one 

BIG DATA IN CAENORHABDITIS ELEGANS
Along with the question of what Big Data are, we need to ask what 
Big Data are for. In biology today, collections of large data sets often 
ultimately relate to human health, but Big Data can and are being 
used to address all kinds of questions. What if the object is to under-
stand life—for example, how to build an organism. Sydney Brenner 
once said he wanted to build a Gryphon, a mythological creature 
with the head, wings, and talons of an eagle and the body of a lion, 
as only by building such an organism could he confirm that he un-
derstood how development works down to the smallest detail. 
When he was looking for a suitable organism to study the develop-
ment of the nervous system in the late 1960s, “Big Data” in the 
sense of n = all was already in his mind: “It [the organism] should 
have relatively few cells, so that exhaustive studies of lineage and 
patterns can be made” (quoted in Wood, 1988). His search led him 
to the small roundworm (nematode) Caenorhabditis elegans. In-
deed, Big Data were collected in C. elegans almost from the begin-
ning. As a harbinger of things to come, John Sulston measured the 
total genomic DNA content (Sulston and Brenner, 1974). John 
White and his colleagues traced all of the neuronal connections 
from electron microscopic images of serially sectioned animals 
(White et al., 1986). The reconstruction of the synaptic connections, 
now dubbed the “connectome,” was done manually, as attempts to 
automate the task by digitizing the images failed due to a lack of 
computing power at the time, so this was truly “Big Data” in many 
ways. Additional “Big Data” sets in C. elegans now include the com-
plete cell lineage (Sulston and Horvitz, 1977; Sulston et al., 1983) 
and the sequence of the genome, which indeed is complete, with 
no gaps in any of the six chromosomes and totaling 100,291,840 
base pairs (Hillier et al., 2005). These data sets are important as a 
basis for further experiments and formulating hypotheses, but they 
do not solve a scientific question in and of themselves, that is, the 
lineage does not “explain” how development works, and the con-
nectome does not “explain” how the brain works. As these illus-
trate, Big Data alone do not provide answers to many critical ques-
tions in biology, leading detractors of Big Data collections often to 
refer to them as “fishing expeditions” or use the pejorative “hypoth-
esis-free” (supporters of this approach prefer the term “hypothesis 
generating”). Nonetheless, it would be a mistake to dismiss these 
collections as unworthy projects, as is amply demonstrated by the 
value of the connectome, the lineage, and the complete genome 
sequence to subsequent studies of the worm. In addition, Big Data 
projects like these make two underappreciated contributions: they 
provide a driving force to innovate the technology required for more 
efficient data acquisition and, when n = all, they help to define the 
limits of the problem and provide a framework for developing future 
experimental ideas.

Somewhat surprisingly, there are no other complete data sets for 
C. elegans. This absence has not been for lack of investment of both 
money and labor but is mainly due to the fact that, apart from the 
examples just given and possibly RNA sequences (see later discus-
sion), the desirable data sets today either are simply too large to be 
readily obtained with current methods or inherently open ended. At 
the DNA level, a reasonable goal would be to create deletion or 
other loss-of-function alleles for every gene. The C. elegans knock-
out project, after 15 years of systematically generating mutations, 
has generated bona fide loss-of-function mutations in >14,000 of 
20,000 protein-coding genes, but it will likely take at least another 
5 years to complete the collection (C. elegans Deletion Mutant 
Consortium, 2012; Thompson et al., 2013). This target does not 
even include microRNAs or other RNAs modulating cellular pro-
cesses, and we dare not even mention control regions. Even with 



Volume 26 November 5, 2015 Big Data in Caenorhabditis elegans | 3911 

complete expressed proteome of 1250 proteins using shotgun 
proteomics and saturating RNA-seq (Omasits et al., 2013). The 
 alternative to defining smaller problems is to develop technologies 
that allow us to increase the scale at which we can collect these 
types of data.

THE HORROR! THE HORROR! WORKING WITH BIG DATA
WormBase is the main repository for all data pertaining to C. ele-
gans and many of its relatives (Harris et al., 2014; www.wormbase 
.org/). Although there is a great deal of gene annotation for some 
genes, many genes still have only sparse annotation or none at all. 
This is sobering, considering this nematode is probably among the 
most thoroughly studied of metazoans. Regarding gene function, 
data on gene expression and phenotype are most relevant. Pheno-
typic descriptions are difficult to analyze on a large scale when writ-
ten in plain language. This has led to the proposal of the adoption 
of a Worm Phenotype Ontology (WPO; Schindelman et al., 2011), 
and phenotypic data in this standardized vocabulary can now be 
extracted from WormBase, which greatly simplifies large-scale phe-
notypic comparisons. Some aspects of phenotype are also captured 
in Gene Ontology (GO) terms associated with the gene (Ashburner 
et al., 2000). In addition, GO terms include information about puta-
tive biochemical function due to sequence similarity. However, 23% 
of the protein-coding genes in WormBase release WS238 have nei-
ther phenotypic nor cell-specific expression data and no GO anno-
tation, that is, these are completely uncharacterized genes for which 
we cannot even predict a putative function based on sequence simi-
larity. Eighteen percent of the genes have cellular expression data, 
mainly based on reporter gene expression, and 35% have either 
RNAi or mutant phenotypes (32% have RNAi phenotypes, 11% have 
mutant phenotypes, and some genes have both). Curiously, we are 
in a situation in which 70% of genes have mutations, but only 11% 
have any phenotypic description based on mutations. Obviously, 
the bottleneck is not the generation of mutants, but the character-
ization of mutants, which seems a peculiar state of affairs for such a 
pivotal genetic model organism. Unlike yeast, for which high-
throughput phenotypic screening is prominent, high-throughput 
phenotypic screening has yet to take hold in the worm community 
even with the availability of high-throughput technology in the form 
of the Union Biometrica COPAS BioSorter, worm trackers (Husson 
et al., 2012), and microfluidic devices.

The lack of completeness or paucity of Big Data sets (in the 
sense of n = all) obviously leads to major challenges for data integra-
tion. The dearth of phenotypic data exacerbates this problem be-
cause phenotype can integrate many seemingly unrelated data sets. 
Big Data sets tend to be “noisy” and inevitably contain imperfect or 
false data. Not every Y2H interaction represents a real interaction 
(let alone a biologically meaningful one). Combining Big Data sets is 
one way to improve the quality of the observations. For a protein 
interaction to be “real,” the two proteins have to be expressed in 
the same cell at the same time, so that expression data combined 
with Y2H data can improve data quality. Obviously this approach is 
more effective when all relevant data sets are truly “big” in the 
sense of n = all. Because most current data sets are “small,” that is, 
effectively just samples of the “expressome,” “phenome,” or “inter-
actome,” our ability to use data integration to improve quality is 
severely compromised. Consequently, we can use these integrated 
data sets mainly to add a few additional uncharacterized genes to 
existing networks, but we are not yet at the point where novel 
insights at the “systems” level might emerge. High-throughput se-
quencing is by far the main avenue to generate Big Data, although 
various time-lapse imaging strategies and electron microscopic 

can follow protein localization under different conditions (Tkach 
et al., 2012; Chong et al., 2015).

Although there have been several informative small-scale studies 
directed at specific protein complexes, in general, protein data lag 
far behind DNA or RNA data. To date, there are only a few pub-
lished large-scale proteomic studies in C. elegans, and these have 
identified proteins for ∼50% of the genes in this organism (Merrihew 
et al., 2008; Schrimpf et al., 2009; Walther et al., 2015). By compari-
son, proteins have been associated with ∼84% of genes in humans 
(Kim et al., 2014; Wilhelm et al., 2014). The lower percentage of 
coverage for the worm reflects that these studies were done on 
whole animals, whereas the human studies were done on a wide 
variety of different tissues. For neither organism are we close to 
identifying peptides for all exons and splice variants. It is now pos-
sible to do cell- and tissue-specific proteomic analysis in the worm, 
which should allow the generation of a more detailed proteome 
(Yuet et al., 2015). The largest compendia of protein interaction data 
for C. elegans are yeast two-hybrid (Y2H) data sets. These data sets 
are no doubt useful as a guide, but they suffer from lack of context, 
validation, and completeness. One of the leading laboratories con-
ducting high- throughput Y2H screening estimates that 96% of the 
protein–protein interactions in C. elegans have yet to be docu-
mented and that their high-throughput system will ultimately be 
able to detect ∼16% of these interactions (Simonis et al., 2009). Lest 
this be viewed as an anomaly specific to the worm, a recent human 
interactome–mapping project identified 14,000 Y2H interactions for 
13,000 genes; this is estimated to be between 5 and 10% of all 
protein interactions for humans (Rolland et al., 2014). An additional 
problem for gene or protein interaction data sets is that the number 
of possible interactions grows nonlinearly with the number of pro-
teins or genes, so that n = all might become substantially more dif-
ficult to achieve. Mass spectrometry–based (MS) shotgun pro-
teomics coupled with immunoprecipitations (reviewed in Fonslow 
et al., 2014) might be a way to identify biologically meaningful inter-
actions more directly and accelerate the identification of such inter-
actions. There are clearly limitations to this approach, as it requires 
good antibodies and stable complexes of interacting proteins. As 
with expression profiling, mapping proteins and protein complexes 
in the worm could benefit from an organized, sustained, distributed, 
and cooperative endeavor. Current MS technology applied as a co-
operative effort could approach n = all. Creating a map of interac-
tions that actually occur would reduce the search space, which is an 
important starting point. However, to understand how a cell, tissue, 
or organism functions, a dynamic view of protein interactions is ulti-
mately needed.

This is where we reach an impasse. At this juncture in biology, 
there is no easy way to collect n = all for this type of protein data, 
nor is it possible to identify all possible mutations or all variant 
transcripts and their cell and temporal expression in a genome of 
this size. It is not just the problem that n is too large, but also the 
problem of defining what n should include in each of these in-
stances. A more feasible approach may be to identify a specific 
scientific question, such as control of gene expression, so that only 
a small subset of all the genes need be investigated and n = all can 
amount to a small and manageable number—for example, examin-
ing the expression pattern of all transcription factors as described 
earlier. A divide-and-conquer strategy could also be applied to the 
issue of proteomics, with a division of labor among cooperating 
laboratories along the lines of protein families or by tissue. That 
scale is everything in trying to attain completeness of this sort of 
data has been amply demonstrated in prokaryotes, where research-
ers using the bacteria Bartonella henselae were able to identify the 
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encoding sequence of a protein but less straightforward when inter-
genic regulatory elements are affected. Secondary consequences—
for example, consequences of an amino acid change for protein 
function—are frequently impossible to predict in the absence of fur-
ther information on the protein in question. This challenge is exem-
plified by the results of the Million Mutation Project in C. elegans, 
which has identified >180,000 missense mutations with largely un-
known consequences regarding protein function (Thompson et al., 
2013; genome.sfu.ca/mmp/about.html). Whereas the resource does 
provide an allelic series for most genes, it will be up to the individual 
investigator to tease apart which protein changes have a phenotypic 
effect. For any other kind of molecular data, even interpreting the 
primary data is a challenge. What does it mean when expression of 
gene X is three times higher than the expression of gene Y? In com-
parative expression studies, it is impossible to define a threshold for 
changes in gene expression that is significant in a biological sense. 
In fact, it is likely that the threshold will be different for different 
genes. Thresholds for “significant” change in expression levels in 
comparative expression studies are arbitrary from a biological per-
spective (thresholds, of course, can be and are specified on purely 
statistical grounds). Because posttranscriptional regulation of mRNA 
levels does not necessarily correlate with protein levels, changes in 
protein concentration cannot be predicted unambiguously from 
changes in mRNA levels. Limitations in data interpretation pose sub-
stantial challenges for a meaningful use of Big Data in biological 
sciences.

SUMMARY: QUO VADIS?

The future is already here—it’s just not very evenly distributed.
William Gibson (1999)

Big Data can lead to new insights by establishing unexpected cor-
relations that allow for new predictions and hypotheses. Big Data 
alone, however, cannot establish causality (Leonelli, 2014). Correla-
tions are sufficient in certain circumstances—for example, if a com-
bination of genetic markers predicts that a drug will likely work for a 
particular patient, there is no need to establish causality in order to 
help the patient. However, not being able to establish causality is an 
unsatisfactory situation in basic research, such as research done with 
model organisms such as C. elegans. “Big Data” does not tell us 
how to build a worm, but it does provide us with a blueprint and a 
parts list. Therefore, “Big Data” in basic research is a tool and the 
starting point for further experimentation, not the endpoint. In one 
form or another, “Big Data” has been driving scientific progress in 
C. elegans since Brenner chose it for his studies. The complete lin-
eage, connectome, and genome sequence provided a foundation 
for testing hypothesis and accelerated discoveries. Because of its 
relative simplicity compared with other metazoans, collecting Big 
Data in C. elegans historically has not depended on the develop-
ment of revolutionary technologies. The lineage was worked out by 
simple observation without the sophisticated time-lapse recordings 
available today, the wiring diagram of all 302 neurons was estab-
lished by manual tracing of neuronal processes on printouts of 7000 
electron micrograph images without the aid of computers, and the 
genome was sequenced using standard Sanger sequencing tech-
niques with incremental improvements long before next-generation 
sequencing tools became available. Each of these achievements 
took years of focused, dedicated effort to achieve n = all, and build-
ing the connectome and sequencing the genome were viewed as 
high throughput for their time. Incremental changes to technology, 
as well as all new technologies, allow these types of data to be ob-
tained faster and at much lower cost today.

reconstructions are beginning to generate substantial amounts of 
image data, which provide challenges for data analysis and presen-
tation (e.g., Jarrell et al., 2012; also see WormAtlas, www.wormatlas 
.org; Hall and Altun, 2008). Although sequencing has opened up a 
substantial number of research areas, many scientific questions can-
not be addressed with the limited set of Big Data currently available. 
The value of the genome sequence will increase significantly when 
we can effectively integrate it with expression phenotype and pro-
tein interaction data. For this reason, we think that the near future 
for Big Data collection in C. elegans should include single-cell ex-
pression studies, more emphasis on large-scale protein studies, and 
certainly more emphasis on phenotypic analysis at both the whole-
organism and the tissue level.

As mentioned earlier, Big Data sets inevitably contain errors due 
to experimental constraints and the large scale of data collection. 
Error rates of individual large-scale studies can vary substantially 
and are often unknown. Although validation will always be a prob-
lem when dealing with Big Data, since traditional types of valida-
tion experiments cannot be scaled up easily, and even performing 
replicate experiments might not be possible due to costs, we need 
to define the “known unknowns” whenever possible. Data annota-
tion, integration, and conversion can further compromise data 
quality. Particularly critical here is GO annotation, as it is widely 
used across many organisms (see, e.g., geneontology.org/page/
download-annotations; see Rhee et al. (2008) for a review of use 
and misuse of GO). GO annotations integrate a variety of different 
data. They are associated with an evidence code covering different 
types (and quality) of evidence, ranging from Inferred from Elec-
tronic Annotation (IEA) to Inferred by Curator. By far the largest 
number of annotations comes from IEA, not necessarily the most 
reliable source of annotation. Frequently, the quality of the underly-
ing data used for the annotation is unclear. GO annotations are an 
integral part of many bioinformatics studies, so that lack of a sense 
of quality of the underlying data is a bit disturbing. We might be at 
risk of “garbage in, garbage out” or, even worse, “garbage in, 
problem solved” after drawing conclusions from large integrated 
data sets.

Data visualization tools and user-friendly interfaces for queries 
are essential for handling Big Data, and a major emphasis now is on 
the development and improvement of such tools. See, for example, 
Cytoscape (Shannon et al., 2003; www.cytoscape.org). Gene and 
protein interactions are typically shown as networks with genes/
proteins as nodes and interactions as lines connecting nodes. 
GeneMANIA (Montojo et al., 2014; www.genemania.org/) is a pro-
gram that provides a flexible, interactive user interface with access 
to information about which data sets are used to infer functional 
connections. We think this is one of its most powerful features. A 
related strength of this interface is that it allows the user to exclude 
certain data sets as a way to identify where the evidence for the in-
teractions comes from and to estimate robustness of the network. 
Often it reveals a surprisingly small number of data sets contributing 
to a particular interaction. The program mentioned earlier, mod-
SEEK, which allows comparisons of RNA profiles, also has these fea-
tures. The evidence for interactions will become much stronger 
once we have more data sets and independent types of data, but in 
many instances, these validating data are still to come.

MORE HORROR! INTERPRETING BIG DATA
For DNA sequences, we can obtain raw data with high accuracy, 
limited only by instrument quality and the resources to generate 
them. Interpreting the primary consequences of a detected 
sequence change is straightforward if it involves the amino acid 
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Achieving n = all for many biological data may be an unreach-
able or unrealistic goal. A question to ask is whether there is a point 
at which data collecting is “good enough,” even if it is not compre-
hensive. Depending on the scientific question, it might be possible 
to get a sufficiently “complete” answer with a limited data set. For 
example, one can get a good understanding of the principles of 
pattern formation in early embryogenesis from a selected set of in-
formative mutants without having to analyze every single gene in-
volved in the process, so not being able to achieve n = all does not 
necessarily mean that a scientific question is unsolvable.

The C. elegans community has a long history of sharing and 
pooling data. One of our colleagues referred to organizing large 
collaborative research efforts as akin to “herding cats,” and so per-
haps we are being Pollyannaish, but we believe that Big Data for this 
organism can be generated in a distributed manner, as we sug-
gested for expression profiling of genes, protein–protein interaction 
maps, and large-scale studies of mutant phenotypes. “Big Data” 
has played a big part in C. elegans research in the past and will 
continue to accelerate scientific discoveries for the foreseeable fu-
ture. It would certainly help if granting agencies appreciate this and 
commit to supporting these types of projects over the long term 
and to their completion. Obtaining n = all might not be sexy, but for 
carefully selected data sets, it should help to guide further experi-
ments to understand basic questions in biology. As the following 
quote implies, data alone will not solve any problem:

Actually, the orgy of fact extraction in which everybody is currently 
engaged has, like most consumer economies, accumulated a vast debt. 
This is a debt of theory, and some of us are soon going to have an 
exciting time paying it back—with interest, I hope.

Sydney Brenner (1997)
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