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S O C I O L O G Y

The universal pathway to innovative urban economies
Inho Hong1, Morgan R. Frank2,3,4, Iyad Rahwan1,5,6, Woo-Sung Jung7,8,9,10, Hyejin Youn11,12,13,14,15*

Is there a universal economic pathway individual cities recapitulate over and over? This evolutionary structure—
if any—would inform a reference model for fairer assessment, better maintenance, and improved forecasting of 
urban development. Using employment data including more than 100 million U.S. workers in all industries 
between 1998 and 2013, we empirically show that individual cities indeed recapitulate a common pathway where 
a transition to innovative economies is observed at the population of 1.2 million. This critical population is ana-
lytically derived by expressing the urban industrial structure as a function of scaling relations such that cities are 
divided into two economic categories: small city economies with sublinear industries and large city economies 
with superlinear industries. Last, we define a recapitulation score as an agreement between the longitudinal and 
the cross-sectional scaling exponents and find that nontradeable industries tend to adhere to the universal path-
way more than the tradeable.

INTRODUCTION
Home to more than half of humanity, cities have pushed the bound-
aries of human productivity, innovation, and success as economic, 
social, and cultural hubs in an era of rapid urbanization (1, 2). The 
future development of cities may depend on identifying and main-
taining the pathways of urban evolution. To this end, many features 
of human behavior and society have been modeled by frameworks 
of universality (3–5), which suggests that cities may too follow universal 
trends regardless of regional and historical differences. Identifying 
these universal trends in urban economic growth may prepare 
policy makers for the economic and industrial needs of their growing 
cities.

The development of individual cities has long been considered 
as idiosyncratic and specialized according to their historical and 
geographical constraints (6–13); however, recent studies reveal several 
regular patterns associating urban characteristics with population 
size (1, 14–21). In particular, many different quantities Y change 
with city population N according to Y(N) ≈ Y0N (14, 17, 21, 22), 
suggesting that population size can indicate a substantial number of 
urban properties under a universal mechanism applied to all cities 
(14) although precise estimates of  can be difficult (23, 24). This 
scaling pattern also describes economic properties and further 
characterizes individual industries by their labor types. For example, 
cognitive labor–based industries scale superlinearly with population 

size ( > 1), while manual labor–based industries instead exhibit 
sublinear scaling ( < 1) (21, 25). These population dependencies 
may undergird many aspects of the urban economic structure—
small cities heavily rely on manual labor while large cities on cogni-
tive labor (21, 26–29).

While the cross-sectional scaling relation describes urban eco-
nomic features as a function of population size (1), it remains to be 
seen how useful it is when it comes to a city’s longitudinal evolution 
(30–32). To test this, we measure to what extent individual cities 
recapitulate the pathway universally prescribed by the scaling law. 
Inspired by biological ontogenetic growth and recapitulation, we 
call this property “urban recapitulation” (33). Using employment 
data for U.S. cities from 1998 to 2013, we show empirically how the 
industrial character of cities changes with urban size and industries’ 
scaling exponent .

We demonstrate that the longitudinal change of urban economies 
indeed follows a universal process governed by changes in population 
size. By examining the revealed comparative advantage for individual 
industries given each city, our analysis reveals a transition point from 
a manual labor economy to a cognitive-based innovative economy at 
around a population of 1.2 million in the United States. We provide a 
recapitulation score to measure the deviation of a city’s economy from 
the cross-sectional scaling by which the universal pathway is revealed.

RESULTS
Explaining innovative economies of large cities
We compare industrial employment and population changes in 
350 U.S. cities according to the industries that characterize each city 
between 1998 and 2013. We measure the importance of industry i to 
city c according to its revealed comparative advantage (RCA) (34–37) 
(i.e., location quotient) given by   rca  ci   = ( Y  ci   /  Σ  

i
     Y  ci   ) / ( Σ  c     Y  ci   /   Σ  

c,i
    Y  ci  )  where 

Yci denotes the employment of i in c. Normalizing employment 
statistics in this way controls for ubiquitous industries and, thereby, 
highlights the industries that distinguish urban economies from each 
other. In particular, an industry is called characteristic if rcaci > 1 
(34, 35).

Figure 1A shows characteristic industries in cities of different 
sizes. Consistent with existing studies (21, 26, 27, 38), small cities 
are characterized by manual industries such as agriculture and min-
ing, while large cities are characterized by cognitive industries, such 
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as management and professional services. The urban scaling model 
  Y  ci   ≈  Y  io    N c  

   i     across cities of population size Nc accurately describes 
employment for most industries (i.e., R2 > 0.65), showing superlinear 
scaling (i.e., i > 1) for cognitive industries and sublinear scaling 
(i.e., i < 1) for manual labor industries (see Table 1 and the Supple-
mentary Materials). Small cities tend to be characterized by sublinearly 
scaled industries, while large cities are characterized by superlinearly 

scaled industries (see histograms in Fig. 1, A and B). We observe a 
strong correlation between the average scaling exponent of charac-
teristic industries and urban size (Pearson correlation  = 0.59).

Why should this empirical relationship exist? We explore this 
question with an analytical model. The importance of an industry in 
a city rcaci can be expressed as a function of the city’s population 
using the industry’s scaling exponent i. Assuming urban population 
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Fig. 1. City size determines characteristic economic structure. (A) The characteristic industries of the three smallest, medium, and largest cities in the industry space 
(see Materials and Methods). Each industry (node) is sized by its comparative advantages and colored by the cross-sectional scaling exponent (). Every value is averaged 
over the 16-year time span reflected in our dataset. Empty nodes are noncharacteristic industries. Two industries are connected when they are likely to exist in the same 
city ( > 0.15). The histogram shows the frequency of scaling exponents of characteristic industries in each industry space. (B) The average scaling exponent of character-
istic industries in each U.S. city (y axis) compared to population (x axis). (C) We compare the importance of industries (y axis) with different scaling exponents (color) across 
cities of different sizes (x axis). A vertical section denotes the economic profile of a city of that population. We observe a critical population (N* ≈ 1.2 million) that divides 
small city economies from innovative large city economies. (D) After ordering U.S. cities in decreasing size (x and y axes), we measure the pairwise Pearson correlation of 
economic profiles Ic of cities averaged for the entire time span. As in (C), N* corresponds to a critical population size that separates cities based on economic profile.
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is distributed according to P(N) ∝ N−2 following Zipf’s law (39) (see 
the Supplementary Materials for further justification), we have

  rc a  ci   ∝   (   i   − 1 ) ·  N c  
   i  −1   ─ 

 N max     i  −1  −  N min     i  −1 
    (1)

where Nmax and Nmin are the sizes of the largest and smallest cities, 
respectively (see the Supplementary Materials for a complete derivation). 
Following this model, the rcaci of a given industry increases mono-
tonically with population for superlinear industries and decreases for 
sublinear industries, consistent with the observations in Fig. 1A.

This analysis highlights a transition point that separates urban eco-
nomies into small city manual labor economies and large city cogni-
tive labor economies. Solving for fixed points in Eq. 1 reveals a saddle 
point at * = 1 and N* ≈ 1.2 million, which is around the population 
of Louisville, KY, the 43rd largest city (see the Supplementary Materials). 

Empirical observations support this analytical result; Fig. 1C demon-
strates an inversion of characteristic industries around N* = 1.2 million 
by their scaling exponents. Furthermore, the pairwise correlation of 
economic profiles in Fig. 1D confirms this division into two city clus-
ters at around the 50th largest city (see Materials and Methods for the 
correlation). Cities below this critical population have “small city” 
economies represented by manual labor industries with sublinear 
scaling, while cities above the critical size have “large city” economies 
represented by cognitive labor industries with superlinear scaling.

Universal pathway recapitulated by individual industries
Thus far, we have observed cross-sectional evidence relating popu-
lation size and the economic structure of cities, but does this trend 
also describe the economic evolution of cities over time? In particular, 
do longitudinal changes in population relate to longitudinal changes 
in industrial composition governed by industries’ scaling exponents? 

Table 1. Urban recapitulation is common across industries. List of recapitulation scores Si, cross-sectional scaling exponents i, scaled growth coefficients    ̂     i   , 
and nationwide trends  log    ̂ Y    io    of industry sectors in the order of Si. The cross-sectional scaling exponent is averaged over the 16-year time span. The scaled 
growth coefficient and the nationwide trend are measured for the difference between 1998 and 2013 according to Eq. 2. The recapitulation score captures how 
much the scaled growth is associated with the cross-sectional scaling according to Eq. 3. 

Industry Si i    ̂     i    log   ̂  Y   io   

Educational services 0.90 1.21 1.09 0.18

Retail trade 0.86 0.96 0.82 −0.12

Construction 0.82 1.05 0.86 −0.28

Utilities 0.79 0.99 1.20 −0.30

Wholesale trade 0.78 1.12 0.88 −0.18

Real estate and rental and 
leasing 0.76 1.12 0.85 −0.09

Other services (except public 
administration) 0.74 1.02 0.76 −0.15

Arts, entertainment, and 
recreation 0.71 1.09 0.77 0.06

Management of companies 
and enterprises 0.71 1.46 1.03 0.02

Accommodation and food 
services 0.69 1.00 0.69 0.10

Health care and social 
assistance 0.69 0.96 0.66 0.15

Manufacturing 0.66 0.94 0.62 −0.47

Transportation and 
warehousing 0.65 1.11 0.72 0.14

Professional, scientific, and 
technical services 0.64 1.22 0.78 0.07

Information 0.58 1.16 0.67 −0.23

Finance and insurance 0.50 1.17 0.59 −0.07

Administrative and support 
and waste management 
and remediation services

0.37 1.17 0.44 −0.06

Agriculture, forestry, fishing, 
and hunting 0.28 0.65 1.13 −0.31

Mining, quarrying, and oil and 
gas extraction 0.06 0.78 1.51 −0.30
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If so, then the combined cross-sectional and temporal observations 
would be evidence for a universal pathway recapitulated by urban 
economies as cities grow.

We illustrate the trajectory of employment versus on population 
for individual cities to describe their longitudinal dynamics over a 
16-year time span. On aggregate, we find strong evidence to suggest that 
changes in city size are more influential on employment by industry than 
national labor trends (see table S3), but there is some variation by in-
dustry. For some industries, such as education (Fig. 2A), cities are likely 
to move along the universal pathway given by the scaling relation, 
whereas other industries, such as manufacturing (Fig. 2B), drift upward 
or downward with a strong nationwide trend [e.g., expansion of health 
care (40, 41); the Supplementary Materials contain a full set of industries].

We first separate scaled growth effects in cities from nationwide 
trends to properly estimate longitudinal scaling effects. From the 
scaling equation   Y  ci   ≈  Y  io    N c  

   i    , changes of industry i employment 
in city c are decomposed into two parts

  log  Y  ci  (t ) ≈ log  Y  io  (t ) +     i   log  N  c  (t)  (2)

where log Yci is the total longitudinal change in employment and 
ilog Nc is the change associated with changes in population size 
(namely, scaled growth) between the starting year, 1998, and the 
ending year, 2013, of our dataset. The regression on the observa-
tions log Yci and log Nc measures the empirical scaled growth 
coefficient    ̂     i    and the nationwide trend  log    ̂  Y    io    (see the schematic 
in Fig. 2C). This scaled growth coefficient denotes the longitudinal 
scaling effect on the employment change with respect to the popu-
lation change.

Detrending the nationwide effect reveals universal dynamics of 
cities along a common pathway, namely, urban recapitulation (see 
the insets in Fig. 2, A and B). The trajectories of individual cities 
converge to the common pathway, analogous to other industries with 
smaller nationwide trends (e.g., education). This convergence 
shows that longitudinal changes in industrial employment strongly 
depend on changes in population following the urban scaling 
relationship between employment and population at a given 
moment. Urban scaling provides a reference framework for esti-
mating the upcoming urban economic change when population 
change is expected.
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Fig. 2. Cities recapitulate the industrial employment of larger cities. (A) The trajectory of each city’s Educational Services employment and population size. The scaling 
relations are denoted by the lines for 1998 (dashed) and 2013 (solid). Arrows depict the change in population and industry size of each city from 1998 to 2013. The de-
trended trajectory of each city is depicted in the inset. We decompose the nationwide trend and subtract it from the employment growth of each city. (B) Similar to (A), 
the trajectory of each city by employment in manufacturing. (C) Decomposition of a city’s trajectory. A city’s trajectory (black arrow) can be decomposed into scaled 
growth (red arrow) and nationwide trend (blue arrow). (D) The recapitulation score for each industry in the 2-digit North American Industry Classification System (NAICS) 
classification. For industries that are well described by urban scaling (i.e., R2 > 0.65), the average industrial recapitulation score of 0.70 is reasonably high.
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We provide a recapitulation score that quantitatively measures 
how accurately a cross-sectional scaling exponent estimates scaled 
growth as following

   S  i   = 1 − ∣    ̂     i   −    i   ─    i  
  ∣  (3)

where    ̂     i    is the scaled growth coefficient, and i is the cross-sectional 
scaling exponent. If population changes are perfectly related to 
employment changes, then we expect the scaled growth coefficient 
to be equal to the scaling exponent with Si = 1. On the other hand, a 
recapitulation score equal to zero suggests that population change 
does not affect employment. Across industries, recapitulation scores 
tend to be high with an average recapitulation score of    S ̄    i   ≈ 0.7 , 
which suggests that urban recapitulation is common across differ-
ent U.S. industries. Furthermore, this observation provides a suffi-
cient condition for a constant deviation of scaling relations at different 
moments (1).

Why do we observe strong recapitulation in certain industries? 
Traded industries do not necessarily rely on local production and 
consumption as they sell products in external markets. As a result, 
its population dependency is weakened and so is its recapitulation 
score. We observe strong recapitulation in the industries that we 
locally consume, such as education, retail trade, construction, and 
utilities, while weak in the tradeable industries, such as agriculture, 
mining, administrative services, and finance. Therefore, our analysis 
provides a reliable reference for economic growth based on indus-
try’s tradeability. This finding also explains why studies on industrial 
clusters and the product space do not focus on the population de-
pendency (34, 42).

Urban recapitulation to innovative economies
In general, how strongly do individual cities adhere to urban 
recapitulation? We investigate through the aggregated employment 
by industry in a group of cities of similar size. A group recapitula-
tion score averaged over all industries measures how strongly the 
economies of a city group recapitulate a universal pathway. We first 
divide cities into 20 equal-sized groups (i.e., 17 and 18 cities in each 
group) according to the rank of population size and calculate the 

ratio of industry i’s employment change to population change averaged 
for cities in group g. We use    ̂     gi    to denote a group scaled growth co-
efficient by industry. Similar to the recapitulation score in Eq. 3, the 
score comparing    ̂     gi    and i measures the degree of recapitulation in each 
industry, thus the score averaged over all industries measures the overall 
recapitulation of city group g. We use Sg to denote a city group’s re-
capitulation score (see Materials and Methods for mathematical details). 
Similar to before, Sg = 1 when industries of city group g perfectly 
recapitulate the trends predicted by cross-sectional urban scaling 
and becomes zero when population change does not affect their 
employment changes.

High recapitulation scores for city groups validate urban reca-
pitulation in U.S. cities. Figure 3A demonstrates that strong recapit-
ulation occurs over all city groups as    S ̄    g   ≈ 0.6 . Most city groups 
exhibit a high strength of recapitulation, except for a few groups of 
very small cities. The consistency with the average of industry reca-
pitulation score    S ̄    i   ≈ 0.7  shows that urban recapitulation is robust 
for industries and cities. Therefore, as recapitulation is observed in 
each industry, entire urban economies recapitulate the universal 
pathway described by scaling relations.

Last, we demonstrate the structural transition of urban economies 
through the longitudinal change of economic profiles. We first ob-
tain a group economic profile (i.e., RCA values) averaged over cities 
divided into 20 groups according to their populations. Then, the 
longitudinal change of correlation of group economic profiles cap-
tures the change of industrial similarity between two city groups. 
For example, if the smallest cities exhibited increasing correlation in 
the period between 1998 and 2008 with the largest cities fixed in 
1998, then the industries of the smallest cities became more similar 
to the past industries of the largest cities within 10 years. We measure 
these pairwise similarity changes between city groups and represent 
them as a lead-follow matrix (see Materials and Methods for the 
mathematical details).

The lead-follow matrix provides evidence of the universal changes 
led by large cities and followed by small cities (see Fig. 3B) as would 
be expected with urban recapitulation. The positive similarity 
change in the upper triangle shows that small cities become more 
similar to the past of the larger cities by 2.95% over a 10-year period. 
On the other hand, the negative similarity change in the lower triangle 
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Fig. 3. Urban recapitulation is common across city sizes and leads small cities to follow the economic path of larger cities. (A) The recapitulation score for each city 
group using industries with strong scaling relationships. Cities are binned into 20 equal-sized groups according to population size. A longitudinal scaling effect explains 
about 60% of employment growth in most cities except for a few very small cities. The dashed line denotes the average recapitulation score over all groups. (B) The 
lead-follow matrix demonstrates increases (red) or decreases (blue) in industrial similarity between cities ranked and grouped by size (i.e., group 1 denotes the largest 
cities and group 20 denotes the smallest cities). Each cell represents the similarity change over 10 years of an observed city group (y axis) with respect to a reference group 
(x axis). The positive upper triangle means that smaller cities in the future become more similar to larger cities at the present.
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shows that large cities become increasingly dissimilar to the smaller 
cities by 4.0% over 10 years. This observation illustrates an overall 
pattern that large cities lead the economic developmental pathway 
and small cities follow it. Thus, both small cities and large cities 
evolve into innovative economies according to the overall increase 
of populations in the 16-year time span. From the evidences of the 
group recapitulation score and the lead-follow matrix, we conclude 
that cities recapitulate a universal pathway paved by scaling rela-
tions. Along with the structural difference by population size, an 
urban economy is expected to become more innovative, creative, 
and economically desirable as it grows along the universal pathway.

DISCUSSION
Urban recapitulation helps to explain the economic change of individual 
cities following a universal pathway governed by scaling relations. 
Analytical and empirical analyses of the scaling properties lead to a 
systematic division of small city economies from innovative large 
city economies at a critical population of 1.2 million. Our recapitu-
lation framework reveals that longitudinal population changes scale 
employment changes in most industries with a high accuracy 
(about 70%). As a result, urban economies as a whole evolve 
into innovative economies through a universal developmental 
pathway led by large cities and followed by small cities. Overall, 
urban scaling underpins the structure and the pathway of urban 
economies, and the population size helps to determine the state of 
a city.

Our framework is inspired by the recapitulation theory in biology 
(33) much the same as urban scaling theory (14) is motivated from 
the allometric scaling in biology (43). However, there is an important 
conceptual difference between them. In biological recapitulation, 
similar species recapitulate a shared evolutionary pathway from their 
ancestors in phylogeny as they grow in their life cycles. On the other 
hand, cities rarely die nor give a birth. Therefore, it is difficult to 
define urban phylogeny, not to mention ancestors, and thus we use the 
term “recapitulation” in a loose definition, in a rather colloquial 
way: Each city seems to recapitulate evolutionary footprints of the 
largest city which is prescribed by the scaling relations.

A limitation of our study is the coverage of our dataset which 
includes only a 16-year-long time window and economies in the 
United States. Fortunately, this time window includes major economic 
changes such as the growth of the internet and the digital economy 
in the 2000s and the Great Recession in 2008 and the recovery (see 
the Supplementary Materials for the trend of employment). Therefore, 
the observed urban recapitulation is not constrained to a stationary 
economic condition. Further studies in different regions other than 
the United States are needed to hold the universal pathway.

Our findings on the recapitulation and the industrial transition 
give some political insights on urban economies. First, high-skilled 
workers can play an important role to maintain urban growth. 
Although our finding does not suggest any causal relation, it high-
lights transition to innovative industries with superlinearly increasing 
skilled workers, coinciding with the conventional wisdom on urban 
development by educated workers (13, 11). Second, growth of urban 
employment can be dominated by the industries whose prod-
ucts or services are locally consumed or sold in other cities or 
countries. As the different levels of recapitulation by industries de-
notes, governmental support policy on local businesses may 
not be effective if their products are easily replaceable by the prod-

ucts from other regions. Third, rapidly increasing high-tech indus-
tries could intensify the economic polarization between large 
cities and small cities. Most of innovative industries, e.g., manage-
ment, professional services, finance, and information, are not very 
likely to recapitulate as their products or services are not localized. 
This trend, with the higher risk of automation in small cities 
(28) and migration of skilled workers to large cities (31), de-
mands labor policies to prepare for the vulnerable employment in 
small cities.

MATERIALS AND METHODS
Data
This study uses employment data by North American Industry 
Classification System (NAICS) industry code and 350 U.S. metro-
politan statistical areas, referred to as “city” throughout the manu-
script, according to the U.S. Bureau of Labor Statistics. The sizes of 
industry set are 19, 86, 289, 642, and 978 according to the depth of 
classification denoted by 2 to 6 digits. We use 2-digit classification 
for analyses as default. Data include annual employment measure-
ments for the years 1998 through 2013.

Economic profile and inter-industry relatedness
We characterize industry i as an array of RCA values of cities as Ii = 
(…, log (rcaci + 1), log (rcac′i + 1)…). Similarly, a city is characterized 
as a profile of industries according to Ic = (…, log (rcaci + 1), 
log (rcaci′ + 1), …). The inter-industry relatedness (34, 44–46) is de-
fined by the Pearson correlation of two economic profiles Ii and Ij as

  (i,j ) = ( I   i ,  I   j )  (4)

where  is the Pearson correlation function. It describes how two dif-
ferent industries are likely to exist in the same cities. We measure the 
relatedness for each year in our dataset and average them in time. 
Figure 1A shows links that satisfy (i, j) > 0.15. The pairwise correla-
tion of cities can also be measured from the Pearson correlation (Ic, Ic′).

Recapitulation score of city groups
The recapitulation score of a city group is defined by generalizing 
the decomposition in Eq. 2 for individual cities. We bin cities into 
20 equal-sized city groups (i.e., 17 and 18 cities in each group) ac-
cording to their populations. We can determine the scaled growth 
of each city by subtracting industry i’s nationwide growth  log    ̂  Y    io    
estimated in Eq. 2. Then, the group scaled growth coefficient    ̂     gi    is 
given as the average ratio of scaled growth (i.e.,  log  Y  ci   − log    ̂  Y    io   ) 
to the population change (i.e., log Nc) for the cities in city group g as

    ̂     gi   =   
 ∑ c∈g    (log  Y  ci   − log    ̂  Y    io   ) ·

 
log  N  c     ──────────────────  

 ∑ c∈g    (log  N  c  )   2  
    (5)

where c ∈ g is the set of cities in city group g, and the groups are 
determined in the order of populations (see the Supplementary 
Materials for the detailed derivation). A city group recapitulation score 
is the similarity with the static scaling exponent i according to

   S  g   = 1 −   1 ─ ∣I∣     ∑ 
i∈I

    ∣  
  ̂     gi   −    i   ─    i  

  ∣  (6)

where i ∈ I is the set of all industries.
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Lead-follow matrix
A lead-follow matrix measures the temporal change of industrial 
similarity between cities to identify the direction of evolution. As 
in “Recapitulation score of city groups” section, we bin cities into 
20 equal-sized city groups according to their populations and, for each 
city group, we represent the economic profile Ig(t) of city group g at 
year t as the average RCA values of each city in group according to

   I  g  (t ) =  (… ,  〈log (rc a  ci  (t ) + 1 ) 〉  c∈g  , … )  
i∈I

    (7)

where I denotes the set of 2-digit NAICS industry codes. Then, the 
Pearson correlation gg′(t, ) of Ig(t) and Ig′(t + ) shows how the 
economic profiles of city groups g and g′ relate over different time 
periods t and t + . A lead-follow score LFgg′ aggregates these indus-
trial changes over each starting year in our dataset, according to

  L F  g g ′     = T ·   
 ∑ =1  T    ·  〈    g g ′    (t,  ) −    g g ′    (t, 0 ) 〉  

t
  
   ───────────────  

 ∑ =1  T        2 
    (8)

where T is the length of aggregation period in years which we set as 
10 years as default. This score denotes the average similarity change 
between reference group g and observed group g′, and a lead-follow 
matrix for the scores of all pairs summarizes the overall trend (see 
the Supplementary Materials for other time periods).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/34/eaba4934/DC1
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