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Background: In patients with suspected obstructive coronary artery

disease (CAD), evaluation using a pre-test probability model is the

key element for diagnosis; however, its accuracy is controversial. This

study aimed to develop machine learning (ML) models using clinically

relevant biomarkers to predict the presence of stable obstructive CAD

and to compare ML models with an established pre-test probability of

CAD models.

Methods: Eight machine learning models for prediction of obstructive

CAD were trained on a cohort of 1,312 patients [randomly split into

the training (80%) and internal validation sets (20%)]. Twelve clinical and

blood biomarker features assessed on admission were used to inform the

models. We compared the best-performing ML model and established

the pre-test probability of CAD (updated Diamond-Forrester and CAD

consortium) models.

Results: The CatBoost algorithm model showed the best performance

(area under the receiver operating characteristics, AUROC, 0.796, and

95% confidence interval, CI, 0.740–0.853; Matthews correlation coefficient,

MCC, 0.448) compared to the seven other algorithms. The CatBoost

algorithm model improved risk prediction compared with the CAD consortium

clinical model (AUROC 0.727; 95% CI 0.664–0.789; MCC 0.313). The

accuracy of the ML model was 74.6%. Age, sex, hypertension, high-

sensitivity cardiac troponin T, hemoglobin A1c, triglyceride, and high-

density lipoprotein cholesterol levels contributed most to obstructive

CAD prediction.
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Conclusion: The ML models using clinically relevant biomarkers provided

high accuracy for stable obstructive CAD prediction. In real-world practice,

employing such an approach could improve discrimination of patients with

suspected obstructive CAD and help select appropriate non-invasive testing

for ischemia.

KEYWORDS

machine learning, artificial intelligence, coronary artery disease, stable angina
pectoris, personalized medicine

Introduction

Estimating the probability of coronary artery disease
(CAD) in patients with stable angina or anginal equivalent
symptoms is a frequent challenge. The current guidelines
recommend estimation of the pre-test probability of CAD
scores to guide decisions on whether diagnostic testing could
be deferred or performed, and whether the initial test should
be non-invasive or invasive (1). However, recent studies
have shown that the performance of the traditional pre-
test probability of CAD models is limited in estimation of
obstructive CAD (2, 3). Moreover, the pre-test probability of
CAD models does not reflect the current regulatory status
of risk factors such as hypertension, diabetes mellitus (DM),
and dyslipidemia.

Machine learning (ML) involves the application of artificial
intelligence (AI) that uses computer algorithms to identify
patterns in large datasets with a multitude of variables
to capture high-dimensional, non-linear relationships among
clinical features. Data-driven techniques based on ML can
improve the performance of risk predictions by exploiting large
data repositories to identify novel risk predictors agnostically
and more complex interactions between them. However, only
few studies have been conducted on stable obstructive CAD
using ML of clinical risk factors and blood biomarkers
commonly used in clinical practice. Therefore, we aimed to
develop ML models using these features to predict stable
obstructive CAD and determine the ranking of the features’
predictive contribution. We also compared the ML models
with the established pre-test probability of CAD models
to evaluate whether there were significant improvements
in discrimination.

Abbreviations: AI, artificial intelligence; AMI, acute myocardial infarction;
AUROC, area under the receiver operating characteristics; CAD,
coronary artery disease; CI, confidence interval; CKD, chronic kidney
disease; DM, diabetes mellitus; HbA1c, hemoglobin A1c; HDL, high-
density lipoprotein; lightGBM, Light Gradient Boosting Machine; MCC,
Matthews correlation coefficient; ML, machine learning; MLP, MulitLayer
Perceptron; PCI, percutaneous coronary intervention; SD, standard
deviation; SHAP, SHapley Additive exPlanations; SVM, support vector
machine; Troponin T, high-sensitivity cardiac troponin T; XG, Extreme
gradient.

Method

Study population

We included a cohort of 4,906 patients who visited
the outpatient department for angina or anginal equivalent
symptoms and underwent invasive coronary angiography at
Dankook University Hospital between August 2014 and January
2016. Obstructive CAD was defined as any stenosis 70%
or greater in the epicardial coronary artery, 50% or greater
in the left main coronary artery, or both. Non-obstructive
CAD was defined as a stenosis 20% or greater but less than
70% in any other epicardial coronary artery, or a coronary
artery stenosis 20% or greater but less than 50% in the
left main coronary artery, as recorded by physicians in the
catheterization report. No apparent CAD was defined as all
coronary stenoses less than 20% or luminal irregularities.
The case group was defined as having obstructive CAD,
and the control group was defined as having no apparent
CAD. When creating ML models, the inclusion criteria were
patients who were diagnosed with chronic stable coronary
syndrome after visiting the outpatient department with angina
or anginal equivalent symptoms; the exclusion criteria were
patients who were diagnosed with acute myocardial infarction
(AMI) based on the fifth universal definition of myocardial
infarction, had non-obstructive moderate CAD (20–70%
stenosis), and previously underwent percutaneous coronary
intervention (PCI).

Finally, 1,312 patients (case group = 861, control
group = 451) were selected for the analysis. A subset of
the dataset was randomly selected to train the risk-prediction
algorithms, and the remaining dataset was used for validation
(Figure 1). This study was approved by the Institutional Review
Board of the Dankook University Hospital (2018-09-014).

Data collection

Baseline information was collected from patients
with suspected CAD admitted for invasive coronary
angiography, including demographics, cardiovascular risk
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FIGURE 1

Flowchart of the study population and process. CAD, coronary artery disease.

factors [hypertension, DM, dyslipidemia, chronic kidney
disease (CKD), and smoking status], and biomarkers
[hemoglobin A1c (HbA1c), creatinine clearance, high-
sensitivity cardiac troponin T (troponin T), and lipid profile].
These parameters were also used in the established pre-test
probability scores for analysis.

Machine learning algorithms and
feature importance

Eight supervised ML algorithms were selected: CatBoost
(4), Extreme gradient (XG) boost (5), gradient boost (6),
Light Gradient Boosting Machine (lightGBM) (7), MultiLayer
Perceptron (MLP) (8), support vector machine with a
linear kernel (SVM) (9), Random forest (10), and K-nearest
neighbor (11). Each ML model was implemented using
Python 3.8.2, with the following packages: xgboost for
extreme gradient boost, catboost for CatBoost, lightgbm for
lightGBM, pytorch for MultiLayer Perceptron, and scikit-
learn for the other ML algorithms. For the MLP and SVM
algorithms, categorical features were represented by one-hot
encoding. Hyperparameters were tuned using the Bayesian
hyperparameter tuning library optuna with fivefold cross-
validation on the training population (Supplementary Table 1).
To interpret the ML prediction models, we used SHapley
Additive exPlanations (SHAP). The SHAP value assesses the
impact of each variable by representing the change in log odds
when a variable is hidden from the model (12). The MissForest
algorithm was used for imputation of missing values in the ML
models, except for boosting algorithms (13).

The study population was randomly split into the training
(80%; case group = 677, control group 373) and validation
(20%; case group = 184, control group = 78) sets. To
control the overfitting caused by an imbalanced dataset,
the bootstrap resampling method was applied, obtaining
equal proportions of numbers in each group of the training
population (10 bootstrap samples: case group = 373, control
group= 373). To evaluate feature importance, we estimated the
SHAP values of 48 available variables in the CatBoost model
(Supplementary Figure 1). Twelve variables for obstructive
CAD were selected in the final prediction models based on
the recursive feature elimination and visual inspection of a
SHAP-dependence plot.

Statistical analysis

The Revised Diamond-Forrester score (2), CAD consortium
basic, and CAD consortium clinical (14) were calculated to
compare model performance. The models were compared with
ML-based models by the area under the receiver operating
characteristics (AUROC) using the DeLong method (15)
and Matthews correlation coefficient (MCC) (16). The
MCC is a useful metric for evaluating binary classification,
especially for imbalanced datasets. Continuous variables
were expressed as mean ± standard deviation (SD) or
median (interquartile range) and were compared by Student’s
t-tests or Wilcoxon rank-sum tests. Categorical variables
were expressed as proportions and compared by χ2 test.
A two-sided p-value < 0.05 was considered significant for
all the analyses.
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Results

Patient characteristics

Table 1 presents the baseline characteristics of the
development and validation datasets. The mean age of the 1,312
patients was 63 ± 11.8 years, and 59.4% were men. The CAD
group was significantly older, had higher systolic blood pressure,
and more frequent hypertension, DM, and dyslipidemia than
the no CAD group. Moreover, the CAD group had higher
levels of HbA1c, troponin T, and triglycerides than the no
CAD group. In contrast, creatinine clearance and high-density
lipoprotein (HDL) cholesterol levels were significantly lower
in the case group.

Model performance and comparison to
the established model

Using 12 potential variables, prediction models for stable
obstructive CAD were developed with eight ML algorithms.
Among the eight ML-based models, the highest predictive
performance was observed for CatBoost (AUROC 0.796;
95% CI 0.74–0.853; MCC 0.448), performing similarly to
XGboost (AUROC 0.796; 95% CI 0.74–0.852; MCC 0.399)
and lightGBM (AUROC 0.789; 95% CI 0.732–0.846; MCC
0.403), slightly better than random forest (AUROC 0.742;
95% CI 0.679–0.805; MCC 0.413), gradient boost (AUROC
0.732; 95% CI 0.667–0.796; MCC 0.371), Multilayer Perceptron
(AUROC 0.728; 95% CI 0.663–0.792; MCC 0.379), and support
vector machine (AUROC 0.721; 95% CI 0.657–0.786; MCC
0.373), and significantly better than the K-nearest neighbor
model (AUROC = 0.704; 95% CI 0.638–0.77; MCC 0.313)
in the independent validation set (Figure 2A). The CatBoost
model also performed significantly better than the established
pre-test probability of CAD scores, the CAD consortium
clinical model (AUROC 0.727; 95% CI 0.664–0.789; MCC
0.313) and Diamond-Forrester score (AUROC 0.687; 95%
CI 0.621–0.753; MCC 0.271) (Figure 2B). The AUROC,
MCC, accuracy, sensitivity, specificity, positive predictive value,
negative predictive value, and F1 of all the risk prediction models
are presented in Table 2.

Feature importance

The 12 potential variables for stable obstructive CAD
prediction were ranked using SHAP values. Age, sex,
hypertension, troponin T, HbA1c, triglycerides, and HDL
cholesterol were important features in our study (Figure 3A).
To identify features that influenced the prediction model,
we constructed a SHAP summary plot of CatBoost. The
plot shows how the variable values are related to the SHAP

values in the training dataset. Higher SHAP values were
associated with higher CAD probability (Figure 3B). The
SHAP-dependence plot (Figure 4) can also be used to
understand how a single feature affects the output of the
CatBoost prediction model. The y-axis values indicate the
SHAP values of the features, and the values of features for
the x-axis were in the SHAP-dependence plot. In the plot,
we visualized how the influence of a feature changed as its
values varied. SHAP values exceeding zero for specific features
represent increased risk of CAD.

Discussion

The main findings of our analysis were as follows:
(1) the ML-based model (CatBoost), using clinically
relevant biomarkers, exhibited a more accurate prediction
of stable obstructive CAD than the established pre-test
probability models, (2) using a novel ML-based model,
we identified important features for the diagnosis of
obstructive CAD.

Accurate prediction of obstructive stable CAD still
represents an unmet need. Current guidelines recommend
assessing the probability of obstructive CAD from clinical risk
factors and, according to this pre-test, probability refers to
non-invasive testing, invasive coronary angiography, or no
further assessment (1). However, the diagnostic performance
of established pre-test probability models is limited in the
estimation of obstructive CAD in contemporary cohorts.
Previous data have shown that the current model overestimates
the probability of obstructive CAD in unselected patients
(17). Another study demonstrated that the updated 2019 ESC
guideline pre-test probability recommendations tended to
underestimate slightly the disease in the SCOT-Heart trial
cohort (18).

As the ML algorithm has been recently used for the diagnosis
and prognosis of coronary artery disease, its predictive ability
has improved significantly compared with established pre-
test and prediction models. In the CREATION cohort study,
the ML model provided better accuracy and discrimination
than the existing traditional model. Using the ML method
instead of established pre-test probability models (modified
Diamond-Forrester and CAD consortium score) would imply
a correct change in diagnostic strategy in 22.2% of the
patients (19). From the CONFIRM registry, it has been shown
that an ML model combining clinical features and coronary
artery calcium score can accurately estimate the pre-test
probability of CAD (20). Also, recent studies have attempted
to diagnose stable CAD using multiple biomarkers, but there
are limitations regarding difficulties in direct clinical practice
application (21).

Only few studies have been conducted on stable obstructive
CAD prediction by incorporating multiple biomarkers into the
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TABLE 1 Baseline characteristics.

Features Total population (n = 1312) Control group (n = 451) Case group (n = 861) p-value

Age (years) 63.0± 11.8 58.6± 12.4 65.6± 10.7 < 0.001

Male gender 806 (59.4%) 240 (48.4%) 566 (65.7%) < 0.001

Hypertension 1003 (73.9%) 310 (62.5%) 693 (80.4%) < 0.001

Diabetes mellitus 572 (42.1%) 148 (29.8%) 424 (49.2%) < 0.001

Dyslipidemia 1018 (77.6%) 367 (74.0%) 691 (80.2%) 0.010

Cerebrovascular accident 112 (8.2%) 37 (7.5%) 75 (8.7%) 0.485

Chronic kidney disease 63 (4.6%) 9 (1.8%) 54 (6.3%) < 0.001

Smoking 542 (39.9%) 158 (31.9%) 384 (44.5%) < 0.001

Non-smoking 816 (60.1%) 338 (68.1%) 478 (55.5%)

Current-smoking 248 (18.3%) 68 (13.7%) 180 (20.9%)

Ex-smoker 294 (21.6%) 90 (18.1%) 204 (23.7%)

BMI (kg/m2) 25.1± 3.5 25.2± 3.7 25.0± 3.4 0.304

Systolic blood pressure (mmHg) 135.2± 19.6 132.3± 18.7 136.9± 20.0 < 0.001

Diastolic blood pressure (mmHg) 81.4± 13.5 82.0± 13.6 81.1± 13.4 0.257

Hemoglobin (g/dL) 13.4 (12.3, 14.5) 13.3 (12.4, 14.3) 13.5 (12.1, 14.5) 0.609

Hematocrit (%) 39.7 (36.5, 42.5) 39.6 (37.0, 42.2) 39.7 (36.1, 42.7) 0.570

Creatinine clearance (mL/min/1.73 m2) 79.9 (60.2, 101.3) 88.8 (68.9, 112.7) 75.8 (54.3, 95.9) < 0.001

Total cholesterol (mg/dL) 159.0 (135.0, 189.0) 159.0 (137.0, 188.5) 159.0 (134.0, 189.0) 0.643

LDL cholesterol (mg/dL) 88.0 (65.2, 116.2) 90.6 (66.8, 116.0) 87.0 (64.5, 116.4) 0.702

HDL cholesterol (mg/dL) 42.0 (35.0, 51.0( 46.0 (37.0, 56.0) 40.0 (34.0, 48.0) < 0.001

Triglyceride (mg/dL) 130.0 (88.0, 190.0) 115.0 (77.8, 177.2) 136.5 (95.2, 200.0) < 0.001

Glucose (mg/dL) 120.5 (103.0, 154.0) 112.0 (102.0, 135.8) 126.5 (104.0, 162.8) < 0.001

HbA1c (%) 5.9 (5.5, 6.5) 5.7 (5.5, 6.1) 6.0 (5.6, 6.8) < 0.001

Troponin T (ng/mL) 0.010 (0.005, 0.020) 0.010 (0.003, 0.010) 0.010 (0.007, 0.021) 0.036

LDH (mg/dL) 201.0 (177.0, 242.2) 205.0 (179.5, 243.0) 200.0 (176.0, 242.0) 0.222

NT-proBNP (pg/mL) 89.9 (36.5, 526.2) 60.0 (25.1, 254.6) 117.7 (47.9, 711.8) 0.908

Values are n (%), mean ± SD (standard deviation), or median (Q1, Q3). BMI, body mass index; CRP, C-reactive protein; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; LDH,
lactate dehydrogenase; LDL, low-density lipoprotein; NT-proBNP, N-terminal pro-brain natriuretic peptide.

FIGURE 2

Receiver operating characteristic curves for the machine learning models and established pre-test probability of CAD models. (A) Comparing
the eight machine learning models. (B) Comparing the CatBoost model and the established pre-test probability of CAD models. AUROC, area
under the receiver operating characteristics; CAD, coronary artery disease; GBM, gradient boosting machine; XG, extreme gradient.

ML algorithm. The ML-based model could be more accurate
and account for subtleties in data that are overlooked by linear
assumption. In this study, the SHAP value was found to affect
obstructive CAD prediction in the following order: troponin T,
HbA1c, triglyceride, creatinine clearance, and HDL cholesterol.

This means that the SHAP values of HbA1c, HDL cholesterol,
triglyceride, and creatinine clearance, which reflect the current
state of the disease, were higher than the SHAP values of DM,
dyslipidemia, and CKD. Therefore, it may be more helpful in
predicting the disease. In our study, even if troponin T was very
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TABLE 2 Comparison of performance between risk prediction models.

Models AUROC MCC Accuracy Sensitivity Specificity PPV NPV F1

CatBoost 0.796 0.448 0.746 0.783 0.674 0.825 0.614 0.803

XGBoost 0.796 0.399 0.724 0.767 0.641 0.807 0.584 0.786

LightGBM 0.789 0.403 0.724 0.761 0.652 0.811 0.583 0.785

Random forest 0.742 0.413 0.728 0.761 0.663 0.815 0.587 0.787

Gradient boost 0.732 0.371 0.710 0.750 0.630 0.799 0.563 0.774

Linear SVM 0.721 0.373 0.699 0.706 0.685 0.814 0.543 0.756

MLP 0.728 0.379 0.710 0.739 0.652 0.806 0.561 0.771

CAD consortium clinical 0.727 0.313 0.676 0.706 0.620 0.784 0.518 0.743

CAD consortium basic 0.715 0.223 0.559 0.444 0.783 0.800 0.419 0.571

Diamond-Forrester score 0.687 0.271 0.706 0.933 0.261 0.712 0.667 0.808

K-nearest neighbor 0.704 0.313 0.676 0.706 0.620 0.784 0.518 0.743

AUROC, area under the receiver operating characteristics; CAD, coronary artery disease; GBM, gradient boosting machine; MCC, Matthews correlation coefficients; NPV, negative
predictive value; PPV, positive predictive value; SVM, support vector machine; XG, extreme gradient. The bold values indicate the best performance of the 11 models.

FIGURE 3

Feature importance ranking. (A) Mean SHAP value of features. (B) Impact on CatBoost model output of SHAP value. HbA1c, hemoglobin A1c;
HDL, high-density lipoprotein; LDH, lactate dehydrogenase; SHAP, SHapley Additive exPlanations; Troponin T, high-sensitivity cardiac troponin T.

finely detected within the normal range, it contributed to the
prediction of obstructive CAD. Previous studies have reported
that elevated levels of troponin T are associated with increased
coronary artery plaque volume, structural heart disease, and
cardiovascular events (22, 23). Therefore, an ML-based model
that incorporates these variables could be more accurate in
predicting the disease. Moreover, laboratory data and multiple

biomarkers can be directly sampled in an outpatient clinic, and
results can be easily obtained; therefore, it is expected that ML
algorithms developed based on these data can serve as a pre-test
probability model in real-world practice.

The application of the new pre-test probabilities has
important consequences in selecting appropriate diagnostic
testing. ML-based models may be helpful in clinical decisions
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FIGURE 4

SHAP dependence plots of the CatBoost model. HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; LDH, lactate dehydrogenase; SHAP,
SHapley Additive exPlanations; Troponin T, high-sensitivity cardiac troponin T.

when non-invasive diagnostic tests are not available.
Furthermore, AI-based integrated analysis of all data, including
non-invasive diagnostic tests, will contribute significantly to
patients’ precise diagnosis.

This study had several limitations. First, this was a
retrospective single-center analysis and thus susceptible to
data selection and measurement biases. Second, our ML-
based models were not externally validated. Our models were
independently divided into training and validation sets to
limit overfitting to some extent. In the future, we should
conduct a performance test using completely separated test
data, which are not used for model development. Third, some
values were missing from the data. Missing values could be
handled in the boosting algorithm model as the “not available”
category. Still, our results were consistent with those obtained
with or without missing data imputation (Supplementary
Table 2). In the future, detailed and complete hospital-level
patient data with minimal missing values will be needed.
Fourth, our study did not compare the ML-based model
with other non-invasive diagnostic tests. Further randomized
control trials comparing the AI-based prediction model and
the existing non-invasive stress test are needed to clarify
performance power.

Conclusion

In conclusion, we developed and validated a new prediction
model for stable obstructive CAD using ML algorithms.

Our ML-based model predicted the probability of obstructive
CAD more accurately than the existing pre-test probability
of CAD scores. It would be useful to predict the risk of
CAD, and helpful to select appropriate non-invasive testing for
ischemia.
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