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Kidney cancer ranks as one of the top 10 causes of cancer death; this cancer is

difficult to detect, difficult to treat, and poorly understood. The most common subtype of

kidney cancer is clear cell renal cell carcinoma (ccRCC) and its progression is influenced

by complex gene interactions. Few clinical studies have investigated the molecular

markers associated with the progression of ccRCC. In this study, we collected microarray

profiles of 72 ccRCCs and matched normal samples to identify differentially expressed

genes (DEGs). Then a weighted gene co-expression network analysis (WGCNA) was

conducted to identify co-expressed gene modules. By relating all co-expressed modules

to clinical features, we found that the brown module and Fuhrman grade had the highest

correlation (r = −0.8, p = 1e-09). Thus, the brown module was regarded as a clinically

significant module and subsequently analyzed. Functional annotation showed that the

brown module focused on metabolism-related biological processes and pathways, such

as fatty acid oxidation and amino acid metabolism. We then performed a protein-protein

interaction (PPI) network to identify the hub nodes in the brown module. It is worth

noting that only one candidate, acetyl-CoA acetyltransferase (ACAT1), was considered

to be the final target most relevant to the Fuhrman grade of ccRCC, by applying the

intersection of hub genes in the co-expressed network and the PPI network. ACAT1 was

subsequently validated using another two external microarray datasets and the TCGA

dataset. Intriguingly, validation results indicated that ACAT1 was negatively correlated

with four grades of ccRCC, which was also consistent with our results from qRT-PCR

analysis and immunohistochemistry staining of clinical samples. Overexpression of

ACAT1 inhibited the proliferation and migration of human ccRCC cells in vitro. In addition,

the Kaplan-Meier survival curve showed that patients with a lower expression of ACAT1

showed a significantly lower overall survival rate and disease-free survival rate, indicating
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that ACAT1 could act as a prognostic and recurrence/progression biomarker of ccRCC.

In summary, we found and confirmed that ACAT1might help to identify the progression of

ccRCC, which might have important clinical implications for enhancing risk stratification,

therapeutic decision, and prognosis prediction in ccRCC patients.

Keywords: clear cell renal cell carcinoma (ccRCC), weighted gene co-expression network analysis (WGCNA),

survival prognosis, Fuhrman grade, ACAT1

INTRODUCTION

Kidney cancer is one of the most common malignancies of the
urinary system (1),∼90% of which is renal cell carcinoma (RCC).
Clear cell RCC (ccRCC) accounts for between 70 and 85% of
RCC, and has the highest rate of mortality (2). In the past
decades, kidney cancer patients had few treatment options other
than surgery, and 5-year survival was <20% once a metastatic
disease developed (3, 4). A growing body of evidence shows
a strong link between cancer and alerted metabolism. It is
clear that many key oncogenic signaling pathways converge to
accommodate tumor cell metabolism to support their growth and
survival. In addition, some of these metabolic changes appear
to be necessary for malignant transformation. In light of these
basic findings, many researchers suggest that changes in cellular
metabolism should be considered as an important marker of
cancer (5). Previous studies have shown that seven known kidney
cancer genes, VHL, MET, FLCN, TSC1, TSC2, FH, and SDH,
are involved in pathways that respond to metabolic stress or
nutrient stimulation, suggesting that kidney cancer is a disease
of dysregulated cellular metabolism (6). There is, therefore,
great significance in determining the effective metabolism-
related biomarkers responsible for the genesis and development
of ccRCC.

Currently, microarray and high-throughput sequencing
technology have been widely applied to screen biomarkers
of cancer (7, 8). The latest studies indicate that molecular
biomarkers can improve the predictive accuracy of bladder
cancer progression (9). Therefore, it is possible that we can
identify such biomarkers that can predict the progression of
renal cancer. Most of the studies focus on screening differentially
expressed genes, but they have considerable limitations in
ignoring the high correlations between genes. This finding may
be functionally related between genes with similar expression
patterns (10). The weighted gene co-expression network analysis
(WGCNA) concentrates on the associations between genes,
which is a systems biology method used to identify gene clusters
associated with certain biological features (11). At present,
similarly, this analysis is also used to identify tumor biomarkers,
by correlating gene clusters with clinical features that can indicate
tumor progression, such as tumor stage, grade, and metastasis
(12, 13).

Abbreviations: WGCNA, Weighted Gene Co-expression Network Analysis;

ccRCC, Clear Cell Renal Cell Carcinoma; FC, Fold Change; GO, Gene

Ontology; PPI, Protein-Protein Interaction; BP, Biological Process; GSEA, Gene

Set Enrichment Analysis; FDR, False Discovery Rate; FC, Fold Change; TOM,

Topological Overlap Matrix; OS, Overall Survival; DFS, Disease-free Survival.

Thus, we intend to use the WGCNA method to find gene
clusters related to ccRCC progression, which are indicated by
clinical features, such as grade, stage, and metastasis. Some key
metabolism-related genes and pathways can be identified from
the gene clusters, which may illustrate the metabolic alteration
during the progression of ccRCC (14, 15).

MATERIALS AND METHODS

Data Preparation
Raw data were downloaded from public Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/).
Differentially expressed genes (DEGs) were identified from 72
ccRCC and 72 normal kidney samples using dataset GSE53757
performed on Affymetrix HG U133 Plus 2.0 (16). Thirty-nine
samples from dataset GSE29609 performed on Agilent Whole
Human Genome Oligo Microarray G4112A (Agilent-012391)
were used to perform weighted gene co-expression networks.
Two additional external data GSE40355 and GSE73731 (17)
were used for validation. To obtain reliable results, we also
applied the Oncomine database (http://www.oncomine.org/)
and GEPIA (18) (Gene Expression Profiling Interactive
Analysis) database based on TCGA (The Cancer Genome Atlas)
for validation.

Differentially Expressed Genes (DEGs)
Probes should be annotated first. We used “limma” (19) to
screen the DEGs between ccRCC and normal samples. FDR (false
discovery rate) <0.01 and |log2 (FC)| ≥1 were regarded as the
cut-off criteria.

Weighted Gene Co-expression Network
Detailed steps were described in our previous studies
(20, 21). Briefly, the “WGCNA” (11) R package was used to
conduct a co-expression network (GSE29609). To ensure the
reliability of the constructed network, outlier samples were
excluded after plotting a clustering dendrogram using the
“flushClust” R package. After excluding outlier samples, a
weighted adjacency matrix was generated by the formula amn
= |cmn|β (cmn represents Pearson’s correlation between
genes, amn represents adjacency between genes, the β

parameter is based on the standard scale-free network and
was used to magnify the correlation between genes). Then,
a topological overlap matrix (TOM) was generated (22)
and modules were identified by hierarchically clustering
genes (23).
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Clinically Significant Modules and Module
Functional Annotation
After the co-expressed network was generated, the correlations
between modules and external clinical information were
calculated using the Pearson correlation method. To further
clarify the underlying mechanism of module genes in
corresponding clinical features, genes of the interest module
were enriched using the “clusterProfiler” (24) R package for
functional and pathway enrichment analysis. A false discovery
rate (FDR) <0.01 was considered to be statistically significant.

Identifying Hub Genes
Based on the theory of WGCNA, hub genes had the highest
degree of connectivity in a module, by which the biological
significance of the module was determined. Connectivity and
clinical trait relationship were measured by module connectivity
and clinical trait relationship, as determined by the absolute value
of the Pearson’s correlation (cor.geneModuleMembership >0.8
and cor.geneTraitSignificance >0.2) (12). In addition, a protein-
protein interaction (PPI) network of the clinically significant
module was constructed using STRING (25) (Search Tool for
the Retrieval of Interacting Genes, https:// www.string-db.org/).
The criterion for selecting hub nodes is a combined score of
≥0.8 and a connectivity degree of ≥20. To ensure the reliability
of the identified hub genes, one possible strategy was to apply
the intersection as the final target. Therefore, the “real” hub
genes were taken as the intersection of the hub genes in the
co-expression network and the hub nodes in the PPI network.

Hub Gene Validation
To assess the correlation of hub gene expression in four distinct
Fuhrman grades, we conducted a linear regression analysis using
two additional independent validation datasets GSE40435 and
GSE73731. In addition, RNA-seq data were obtained from the
GEPIA (Gene Expression Profiling Interactive Analysis, http://
gepia.cancer-pku.cn/) database to verify the association of hub
gene expression with ccRCC progression. Survival plots for
hub genes were also generated using the GEPIA database.
Oncomine (https://www.oncomine.org) and the Human Protein
Atlas database (26) (http://www.proteinatlas.org/) were used
to verify mRNA and protein expression between tumor and
normal samples.

Cell Culture and Transfection
The human ccRCC cell lines ACHN and Caki1 were purchased
from the Chinese Academy of Sciences in Shanghai. ACHN and
Caki1 were cultured in Minimum Essential Medium (Gibco,
China) and McCoy’s 5A Medium (Gibco, China), respectively,
both containing 10% fetal bovine serum (FBS) (Gibco, Australia)
in a humidified atmosphere with 5% CO2 at 37◦C. Human
ccRCC cells were transfected with lentiviral vector (Control)
and lentiviral ACAT1 (ACAT1) using Lipofectamine 3000
(Invitrogen, USA). The lentiviral vector (Catalog# EX-EGFP-
Lv105) and lentiviral ACAT1 (Catalog# EX-C1085-Lv105) were
purchased from GeneCopoeia, USA. Cells were transfected with
1 µg of the plasmid and incubated for 48 h before harvesting.

Total RNA Isolation and qRT-PCR From
Kidney Tissues
Total RNA from ccRCC and normal kidney tissues was
isolated using a HiPure Total RNA Mini Kit (Magen, Shanghai,
China), and quantified by NanoDrop. First-strand cDNA was
synthesized using 1 µg of total RNA with a ReverTra Ace
qPCR RT Kit (Toyobo, China). Each reaction was performed
using 1 µg of the cDNAs with iQTM SYBR R© Green
Supermix (Bio-Rad, Shanghai, China) in a final volume of
20 µl. ACAT1 primer: 5′-ATGCCAGTACACTGAATGATGG-3′

(forward), 5′-GATGCAGCATATACAGGAGCAA-3′ (reverse).
GAPDH primer: 5′-TGCACCACCAACTGCTTAG-3′(forward),
5′-GATGCAGGGATGATGTTC-3′ (reverse). The annealing
temperature of the two primers was 60◦C.

MTT Assay and Cloning Formation Assay
For the MTT assay, 3,000–5,000/200 µl medium transfected
cells were seeded into 96-well dishes. Then, 20 µl of 5 mg/ml
MTT reagent (Sigma-Aldrich) was added to each well, followed
by incubation at 37◦C for 4 h. After incubation, 100 µl of
DMSO was added to each well to dissolve the precipitate.
Absorbance at 570 nm was measured by a microplate reader
(SpectraMax M2; Molecular Devices, USA). For the cloning
formation assay, 1,000–1,500 transfected cells were seeded into
six-well dishes to grow for 2 weeks. The cells were fixed with
4% PFA for 30min, followed by staining with 0.1% crystal violet
for 15 min.

Transwell Assay
A 24-well plate Transwell chamber system was used to perform
the Transwell assay. Next, 5–10 × 104 transfected ccRCC cells
in serum-free medium were seeded into the upper chamber
(Corning, Inc. USA), while 10% FBS medium was added to the
lower chamber. After incubation for 24 h at 37◦C, the cells in
the upper chamber were removed. Cells on the lower side of
the chamber were fixed with 4% PFA for 30min, followed by
staining with 0.1% crystal violet, and the cells were photographed
by microscopy.

Western Blot Analysis
After transfection, cells were harvested and washed with
cold PBS. Total protein was isolated using RIPA buffer with
a protease inhibitor. A total of 20 µg of total protein was
separated using 10% SDS-PAGE and transferred to PVDF
membranes (Millipore, USA). After blocking with 5% bovine
serum albumin (BSA), the membrane was incubated with
primary antibodies overnight at 4◦C. The membrane was
then incubated with the second antibodies for 2 h at room
temperature. We visualized the band using an enhanced
chemiluminescence (ECL) kit (Bio-Rad) with a Bio-Rad
ChemiDoc MP Imaging System (Bio-Rad, USA). GAPDH
was used as a loading control. The primary antibodies
were as follows: ant-ACAT1, 1:1,000 (Proteintech, catalog#
16215-1AP), anti-GAPDH, 1:1,000 (Santa Cruz, catalog#
sc-365062).
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FIGURE 1 | DEGs and clustering dendrogram of tumor samples, as well the clinical traits. (A) The volcano plot for all DEGs based on GSE53757. (B) The clustering

was based on DEGs between ccRCC and normal. The red color represents positive renal vein involvement, tumor necrosis, microvascular invasion, and tumor

progression. The color intensity represents older age, higher pathological stage, and Fuhrman grade.

Immunofluorescence Staining and
Evaluation for ccRCC Cells
Cells were seeded on coverslips after transfection. After washing
with cold PBS, the cells were fixed with 4% PFA for 30min
and then treated with 0.1% Triton X-100 for 15min. After

blocking with 5% BSA for 30min, the cells were incubated

with Ki67 antibody (Novus, catalog# NBP2-19012) for 2 h at

room temperature. After washing with PBS, the cells were

incubated with Cy3-labeled secondary antibody for 1 h at room
temperature. Immunofluorescence staining was visualized using
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FIGURE 2 | Determine soft-thresholding power in WGCNA. (A) The scale-free fit index for various soft-thresholding powers (β). (B) The mean connectivity for various

soft-thresholding powers. (C) Histogram of connectivity distribution (β = 4). (D) Checking the scale free topology (β = 4).

a fluorescence microscope (Olympus, Japan) after nuclei were
labeled with DAPI.

Immunohistochemistry (IHC) Staining for
ccRCC
The tissue microarray (TMA) of ccRCC was collaborated
with Shanghai OutdoBiotech (Shanghai, China). The tissue
microarray (catalog# HKidE180Su02) contained 150 ccRCC
specimens and 30 adjacent normal tissues. The survival and
clinical correlation analyses were based on the detailed clinical
data of these 150 cases. Briefly, paraffin sections were hydrated
and embedded, followed by incubation with 3% H2O2 for
15min. Tissues were then incubated with citrate buffer for
antigen retrieval. Tissues were incubated with ACAT1 antibody
(Proteintech, catalog# 16215-1AP) after blocking with 5% BSA
followed by incubation with biotinylated secondary antibody.
Tissues were incubated with HRP substrate solution for 30min,
followed by incubation with DAB substrate chromogen solution.
Tissue slides were counterstained with hematoxylin, dehydrated,
and mounted. The ACAT1 staining signal was calculated based
on the scores of the staining intensity and staining positive

rate. The staining intensity is scored as follows: 0 points
(negative), 1 point (weak), 2 points (moderate), and 3 points
(strong). The staining positive rate is scored based on the
positive cells as follows: 0 points (negative), 1 point (1–25%),
2 points (26–50%), 3 points (51–75%), and 4 points (76–
100%). The ACAT1 total staining score is calculated by the
formula: total score = staining intensity score × staining
positive rate score. Total scores of ≥6 were regarded as
a high expression and scores of <6 were regarded as a
low expression.

Gene Set Enrichment Analysis (GSEA)
To explore the functional role of ACAT1 in the progression
of ccRCC, we performed gene set enrichment analysis (27)
(GSEA, http://software.broadinstitute.org/gsea/index.jsp) using
GSE73731. Based on the median expression value of ACAT1,
265 ccRCC tissue samples were divided into two groups. The
reference sets were selected as c2.cp.kegg.v5.2.symbols.gmt to
annotate all gene sets. In addition, the cut-off criteria for
significantly enriched KEGG pathways were a gene size of ≥30,
FDR of <0.05, and of an enrichment score (ES) |> 0.65.
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FIGURE 3 | Identifying modules associated with the clinical traits of ccRCC. (A) Dendrogram of all DEGs clustered based on a dissimilarity measure (1-TOM). (B)

Heatmap of the correlation between module eigengenes and clinical traits of ccRCC. (C) Distribution of average gene significance and errors in the modules

associated with Fuhrman grade of ccRCC.

RESULTS

Differentially Expressed Genes in ccRCC
Tissue Samples
Under the threshold of a false discovery rate (FDR) <0.01 and
|log2 (FC)| ≥1, a total of 2,572 DEGs were identified between 72
ccRCC samples and 72 normal kidney samples. The volcano plot
for all DEGs is shown in Figure 1A. All DEGs were selected for

subsequent co-expression network construction. The flow chart
of the study was shown in Figure S1.

Weighted Co-expression Network
A co-expression network analysis was performed using 39
ccRCC samples in GSE29609 (Figure 1B). The 2,572 DEGs were
included by adopting the “WGCNA” R package. β = 4 (scale
free R2 = 0.85) was selected as the soft-thresholding power

Frontiers in Oncology | www.frontiersin.org 6 October 2019 | Volume 9 | Article 957

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chen et al. ACAT1 Is a Predictor of ccRCC Progression

FIGURE 4 | Functional enrichment and PPI network of genes in the brown module. (A) GO and pathway analysis of genes in the brown module. The x-axis represents

the gene number and the represents the GO and KEGG terms. The color represents the –log10 (P-value) of each term. (B) PPI network of genes in the brown module.

The red color represents upregulated genes and blue color represents downregulated genes. The bold circle labeled node represents common real hub gene in

WGCNA and PPI network.

(Figures 2A–D). Ten modules were identified with a minimum
size (gene group) of 30 for the gene dendrogram and a cut line of
0.25 for the module dendrogram (Figure 3A).

Identification of Clinically Significant
Module
Identifying the module most significantly associated with
clinical features has considerable biological implications. The
brown module has the highest correlation with the Fuhrman

rank (r = −0.8, p = 1e-09, Figure 3B). In addition, the

brown module also showed the highest gene significance
associated with the Fuhrman grade (Figure 3C). Therefore,

we chose the brown module as the module of interest and
analyzed it.

A total of 364 genes in the brown module were enriched for

Gene Ontology (GO) and pathway analysis. Biological processes

of the brown module were focused on fatty acid beta-oxidation,

oxidation-reduction process and lipoprotein metabolic process
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TABLE 1 | Hub genes in the module related to Fuhrman grade in co-expression

and PPI network.

Gene Co-expression analysis Hub gene in

PPI network

DEG analysis*

cor.geneModule

Membership

cor.geneTrait

Significance

logFC FDR

ACAT1 −0.861336 0.698151 Yes −1.92496 1.97E-33

SLC6A13 −0.943927 0.773485 No −1.72017 9.28E-10

DDAH1 −0.942308 0.744123 No −1.15064 1.11E-25

FXYD2 −0.897976 0.736515 No −1.2175 3.82E-15

EPHX2 −0.890283 0.702759 No −2.10646 1.58E-28

BBOX1 −0.890081 0.786987 No −1.76985 1.88E-14

LRP2 −0.888462 0.693115 No −1.07557 8.58E-08

GBA3 −0.88583 0.795882 No −1.71742 2.19E-11

DDC −0.880567 0.747123 No −3.296 1.02E-26

SLC5A10 −0.871862 0.766412 No −1.62937 2.60E-10

PDZK1 −0.869838 0.791488 No −1.41303 2.28E-15

ABHD6 −0.865587 0.728156 No −1.02397 1.09E-17

AGXT2 −0.861336 0.656894 No −2.64568 3.19E-16

GATM −0.856275 0.69933 No −2.41321 2.40E-29

C11orf54 −0.848988 0.687114 No −1.60588 6.19E-26

ANK3 −0.848583 0.659466 No −1.94172 1.07E-21

CXCL14 −0.840486 0.56838 No −1.12772 1.54E-11

LGALS2 −0.838866 0.687221 No −1.2955 1.70E-08

APOM −0.837652 0.692364 No −2.88154 7.87E-27

RBP5 −0.831984 0.616709 No −1.48516 1.73E-12

CLDN10 −0.831781 0.770056 No −2.39593 2.49E-34

MAP7 −0.827935 0.722477 No −1.3653 5.00E-16

FBXL16 −0.824696 0.679612 No 1.822383 1.20E−15

DEPDC7 −0.815992 0.698687 No −1.17135 1.76E-09

CRYL1 −0.814372 0.632783 No −1.7183 5.71E-32

EMX2OS −0.811741 0.715404 No −1.06888 6.73E-11

LEPROTL1 −0.810324 0.727192 No 1.014621 1.07E-26

UPB1 −0.809514 0.589276 No −1.26555 7.37E-07

CLCN5 −0.80668 0.534731 No −2.05668 1.03E-30

WDR72 −0.803036 0.605886 No −2.64714 1.78E-23

*Differentially expressed genes between 72 ccRCC tissues and 72 normal kidney tissues

in GSE53757.

(FDR < 0.01). KEGG pathways of the brown module were
significantly enriched in protein and carbon metabolism-related
pathways (FDR < 0.01, Figure 4A).

Identification of Hub Genes
Thirty genes with high connectivity
(cor.geneModuleMembership >0.8 and
cor.geneTraitSignificance >0.2) in the brown module were
selected as hub genes.Table 1 lists the hub genes that significantly
correlated with Fuhrman grade. To identify the “real” hub genes,
a protein-protein interaction (PPI) network was also constructed.
The PPI network was visualized by Cytoscape (28) (Figure 4B).
Genes with more than 20 nodes were regarded as hub nodes.
Intriguingly, only one common hub gene, ACAT1, in both the
co-expression network and PPI network was identified as a “real”
hub gene and was further validated (Table 1).

TABLE 2 | Association between ACAT1 expression and clinicopathological

features of human ccRCC.

variables ACAT1 expression in human ccRCC tissues

Cases (n = 150) High Low χ² P-value

Age

≤65 y 120 46 74 2.36 0.12

>65 y 30 7 23

Gender

Female 43 17 26 0.47 0.49

Male 107 36 71

Tumor size(cm)

<7 cm 119 48 71 6.31 0.012*

≥7 cm 31 5 26

TNM stage

TNM1 62 27 35 3.12 0.077

TNM2–4 88 26 62

Clinical stage#

Stage I 122 47 75 2.91 0.087

Stage II–IV 28 6 22

Survival status

Live 122 48 74 4.60 0.032*

Dead 28 5 23

#Based on AJCC 7th edition. *p < 0.05 is considered significant.

Hub Gene Validation
Another three independent datasets were used to verify the
expression of ACAT1 in different Fuhrman grades. In test set
GSE40435 and GSE73731, linear regression analyses showed
that ACAT1 expression had a strongly negative correlation with
a Fuhrman grade of ccRCC (Figures 5A,B). The results from
the clinical samples also suggested that ACAT1 mRNA and
protein were both decreased in ccRCC (Figures 5D–F, 6A,B,
S2A–D). In addition, the results from the qPCR and tissue
microarray of ccRCC showed that ACAT1 expression at both the
mRNA and protein level is lower in high stage ccRCC than in
low stage ccRCC (Figures 5C,F, 6C,D,G, Table 2). Furthermore,
ccRCC patients with lower ACAT1 expression had significantly
shorter overall survival (OS) and disease-free survival (DFS)
times (Figure 6E and Figures S2E,F).

Overexpression of ACAT1 Inhibited
Proliferation and Migration of ccRCC Cells
To investigate the effect of ACAT1 on the viability and
proliferation of ccRCC cells, ACHN and Caki1 cells were
treated with lentiviral control and lentiviral ACAT1 for 48 h
and determined by MTT assay and cloning formation assay,
suggesting that overexpression of ACAT1 drastically restrained
ccRCC cell proliferation (Figures 7A–E). Immunofluorescence
staining revealed that the ACAT1-overexpression group showed
fewer Ki-67-positive cells than the control group (Figure 7D).
Transwell migration assays showed that overexpression of
ACAT1 reduced the cell migration of ccRCC cells (Figures 7F,G).
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FIGURE 5 | Validation of hub gene. (A) The correlation of ACAT1 expression with the Fuhrman grade of ccRCC (based on microarray data of GSE40435). (B) The

correlation of ACAT1 expression with the Fuhrman grade of ccRCC (based on microarray data of GSE73731). (C) The violin plot of ACAT1 across different

pathological stages based on the TCGA data in the GEPIA database. (D) ACAT1 mRNA expression in ccRCC tissue samples (n = 10) and normal kidney tissues

(Continued)
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FIGURE 5 | (n = 10) based on the Oncomine database. (E) qRT-PCR results suggested that ACAT1 mRNA expression was low in 13 ccRCC tissue samples

compared with 13 matched normal kidneys. (F) ACAT1 mRNA expression in different grades of ccRCC and matched normal kidney samples indicated by qRT-PCR.

*p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 6 | Tissue microarray staining results confirmed that ACAT1 protein was downregulated in ccRCC tissues. (A) Total staining scores of ACAT1 in 150 ccRCC

tissues and 30 adjacent normal tissues. (B) Percentage of low and high ACAT1 staining scores in ccRCC and adjacent tissues. (C) Total staining score of ACTA1 in

ccRCC with clinical stage I and stage II–IV. (D) Total staining score of ACTA1 in ccRCC with TNM 1 and TNM 2–4. (E) Kaplan-Meier plot of overall survival for ACAT1

expression based on the tissue microarray data. (F) ACAT1 staining of ccRCC tissue microarray. (G) Representative pattern of ACAT1 protein expression in adjacent

normal tissues and ccRCC tissues using tissue microarray sections.
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FIGURE 7 | Overexpressed ACAT1 inhibited proliftion and migration of ccRCC cells. (A) Overexpressed ACAT1 increased ACAT1 protein by western blot analysis.

GAPDH abundance was used as an internal control. (B–C) Distinct ccRCC cells transfected with empty control or lentiviral ACAT1 were allowed to grow at the

indicated times, and the cell viability was determined by the MTT assay. (D) Representative Ki-67 staining (red) revealed the cell proliferation of ccRCC cells after

ACAT1 overexpression or empty control treatment. Nuclei were counterstained by DAPI (blue). (E) The cell survival was measured by the cloning formation assay after

transfected with empty control or lentiviral ACAT1. (F) The cell migration was measured by Transwell assay after transfected with empty control or lentiviral ACAT1. (G)

The statistical results of the Transwell migration assay. *p < 0.05, **p < 0.01, ***p < 0.001.

Functional Annotation for the Hub Gene
To determine the functional role of ACAT1 in ccRCC

progression, we performed a GSEA analysis using 265 ccRCC
samples. Under the cut-off criteria of gene size ≥30, FDR

<0.05, and |enrichment score (ES) |>0.75, six pathways
were significantly enriched. Interestingly, the pathways were
all involved in lipid and fatty acid metabolism processes,
including “fatty acid metabolism,” “valine leucine and

isoleucine degradation,” “PPAR signaling pathway,” “lysine
degradation,” “butanoate metabolism,” and “citrate cycle TCA
cycle” (Figure 8).

DISCUSSION

ccRCC is the most common subtype of kidney cancer and
its progression is affected by complex gene interactions
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FIGURE 8 | Gene set enrichment analysis (GSEA). Six representative functional gene sets enriched in ccRCC with ACAT1 downregulated based on GSE73731. (A)

Citrate cycle TCA cycle. (B) Butanoate metabolism. (C) Fatty acid metabolism. (D) PPAR signaling pathway. (E) Valine leucine and isoleucine degradation. (F) Lysine

degradation.

(29). Many studies suggest that altered cellular metabolism
is an important marker of cancer (5). Previous studies
have shown that kidney cancer is a disease of dysregulated
cellular metabolism (5). Determining effective metabolism-
related biomarkers responsible for the genesis and development
of ccRCC is strongly warranted. Molecular biomarkers associated
with ccRCC progression have been predicted in many studies.
By comparing ccRCC at different histological levels, eight
genes were identified to distinguish between different levels
of ccRCC (30). This analytical method might, however,
result in large false positive results because it did not
use a global level system biological analysis method. By
directly comparing gene expression, other studies found
that EphA1 (31), EphA2 (32), and VEGFR-1 (33) were
indicators in different stages of ccRCC but lacked large
sample support.

Unlike these researches, we used a systems biology
method combined with a large number of samples to
screen specific biomarkers of ccRCC. Most importantly,
molecular biomarkers should be well-differentiated between
tumor and normal tissues. On this basis, the co-expression

network was performed by the dynamic tree cutting
method, and 10 co-expression modules were identified.
Correlation analysis showed that the brown module had
the highest correlation with the Fuhrman grade among the
10 modules. Hub genes with the highest connectivity were
identified from the brown module, which determined the
characteristics of the module to a large extent. In addition,
a PPI network was constructed based on the genes in
the brown module, and hub nodes were also identified.
Finally, only one common hub gene, ACAT1, was selected
as the real hub gene in the co-expression network and PPI
network for further validation. Further verification also
confirmed that ACAT1 was negatively correlated with the
Fuhrman grade of ccRCCs, and its expression was also
related to overall survival and the disease-free survival of
ccRCC patients.

The ACAT1 enzyme carries out the last step in ketone
breakdown during fasting or starving. The enzyme could
catalyze the reversible formation of acetoacetyl-CoA from
two molecules of acetyl-CoA (34). Ketone bodies are an
important source of energy during fasting in normal cells.
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ACAT1 gene mutation induced a deficiency in mitochondrial
acetoacetyl-CoA thiolase, which was also called ketothiolase
deficiency (35). The most important fuel that supports tumor
growth is carbohydrates. It therefore seems reasonable that
a low-carbohydrate diet could reduce the progression
of cancer. Many mouse studies have shown that dietary
restriction reduced tumor size and growth rate (36), prolonged
survival (37), and increased sensitivity to radiotherapy
(36). Therefore, we can assume that the decreased ACAT1
expression in high-grade ccRCC may be caused by metabolic
changes, as the invasive tumors cannot obtain enough
energy from ketolysis and fatty acid oxidation to support
their growth.

Compared with benign prostate tissues, ACAT1 expression
was significantly increased in prostate cancer tissues (38, 39).
Upregulation of ACAT1 was correlated with more aggressive
pancreatic cancer. Interestingly, Zhao et al. (40) and White
et al. (41) both performed quantitative proteomic analysis and
identified that the ACAT1 protein was decreased in ccRCC
compared with adjacent tissues, which was consistent with
our findings.

Previous studies reported that altered pathways, such
as metabolic pathways (42), glycolysis, and fatty acid
oxidation (43), were confirmed by our results from the
brown module, revealing that metabolism changes were
important for ccRCC progression. Lipid droplets were
often found in ccRCC cytoplasm (4); therefore, ACAT1
may participate in cholesterol metabolism, similar to cytosolic
acetyl-CoA acetyltransferase 2 (ACAT2), which indicated
that lipid and fatty acid metabolism were different between
kidney cancer and prostate cancer, as well as pancreatic
cancer. In our study, ACAT1 at the transcriptional and
translational levels were significantly decreased in ccRCC
tissues (Figures 5D, 6). Moreover, ACAT1 had a strong
negative correlation with the four grades of ccRCC, indicating
that ACAT1 was closely associated with the progression of
ccRCC. Notably, when ccRCC patients had lower expressions
of ACAT1, they exhibited a significantly shorter OS and
DFS rate. Furthermore, an in vitro study indicated that
overexpressed ACAT1 inhibited the proliferation and
migration of renal cell ACHN and Caki1 cells, suggesting
that ACAT1 might be a favorable prognostic marker in
ccRCC (Figures 5E,F).

We should also consider some of the limitations of this
study. Our findings should be validated using a larger number
of clinical samples. In addition, the mechanisms governing the
impact of ACAT1 on the progression of ccRCC should be
elucidated by molecular biology experiments, which is our next
research plan. In conclusion, we built a co-expression network
and identified the ACAT1 related to the progression of ccRCC,
which might have important clinical significance in improving
risk stratification, treatment decision-making and prognosis
prediction in ccRCC patients.
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