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Selective syntheses of thick and thin nanosheets
based on correlation between thickness
and lateral-size distribution

Yuri Haraguchi,1 Hiroaki Imai,1 and Yuya Oaki1,2,*

SUMMARY

Exfoliation of layered materials, a typical route to obtain 2D materials, is not
easily controlled because of the unpredictable downsizing processes. In partic-
ular, the thickness control remains as a complex challenge. Here, we found a cor-
relation between the thickness and lateral size distribution of the exfoliated
nanosheets, such as transition metal oxides and graphene oxide. The layered
composites of the host metal oxides and interlayer organic guests are delami-
nated into the surface-modified nanosheets in organic dispersion media. The
exfoliation behavior varies by combination of the hosts, guests, and dispersion
media. Here, we found that the thick and thin nanosheets were obtained on the
monodispersed and polydispersed conditions, respectively. The selective synthe-
ses of the thick and thin nanosheets were achieved using a prediction model of
the lateral size distribution. The correlation between the thickness and lateral
size distribution can be applied to thickness-selective syntheses of 2D materials.

INTRODUCTION

Nanosheets including monolayers and few layers are found in a variety of materials, such as graphene, transi-

tion metal dichalcogenides, hexagonal boron and carbon nitrides, black phosphorus, clays, metal oxides,

metal-organic frameworks, and organic polymers (Nicolosi et al., 2013; Pumera et al., 2014; Cong et al.,

2014; Ma and Sasaki, 2015; Zhuang et al., 2015; Mendoza-Sánchez and Gogotsi, 2016; Tan et al., 2017; Zhang

et al., 2018; Rao and Peamoda, 2019; Timmerman et al., 2020; Li et al., 2020; Wang et al., 2020; Oaki, 2021). The

characteristic properties originating from the 2D anisotropy and ultrathin nanostructures, such as high specific

surface area, quantum-size effect, and flexibility, have potentials for their diverse applications (Nicolosi et al.,

2013; Pumera et al., 2014; Cong et al., 2014; Ma and Sasaki, 2015; Zhuang et al., 2015; Mendoza-Sánchez and

Gogotsi, 2016; Tan et al., 2017; Zhang et al., 2018; Rao and Peamoda, 2019; Timmerman et al., 2020; Li et al.,

2020; Oaki, 2020, 2021; Wang et al., 2012; Ariga et al., 2018; Ganter and Lotsch, 2019; Xiong et al., 2020; Wang

et al., 2020; Oaki, 2020). Pristine layered compounds are classified into the two types depending on the inter-

layer interaction, such as van der Waals and electrostatic interactions (Oaki, 2020). In general, 2D materials are

obtained by liquid-phase exfoliation of layered compounds based on van derWaals interaction under sonicat-

ion, i.e. mechanical exfoliation, triggered by shear stress. Although 2D materials are regarded as a family of

recent promising nanostructures, the size control, such as the lateral size and thickness, is not easily achieved

only by changes in the experimental conditions. The unpredictable downsizing processes including exfoliation

and fracture in vertical and lateral directions form the nanosheets with the random sizes, respectively. In partic-

ular, the control of the thickness, i.e. the layer number, is a significant remaining challenge. If the thickness of

the nanosheets is predicted and controlled, a variety of the size-dependent properties (Suk et al., 2010; 2020;

Backes, 2014; ten Elshof, 2017; Rahmanian and Malekfar, 2017; Liu et al., 2017; Mori et al., 2018; Miao et al.,

2019), such as bandgap energy, specific surface area, and flexibility, can be tuned for their applications.

In addition to the unpredictable processes, the time- and effort-consuming analytical processes deter the

researchers from the study on the thickness. In general, thickness of nanosheets is measured by atomic

force microscopy (AFM) and summarized in the histogram. Although the high-throughput estimation of

the thickness was studied by microscopy images with an assistance of machine learning (Ni et al., 2007;

Nolen et al., 2011; Li et al., 2013; Backes et al., 2016a, 2016b; Masubuchi et al., 2018; Masubuchi and

Machida, 2019; Han et al., 2020), the method was applied to the limited types of the layered materials.

New methods and insights are required to selective syntheses of thin and thick nanosheets. The changes

1Department of Applied
Chemistry, Faculty of Science
and Technology, Keio
University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-
8522, Japan

2Lead contact

*Correspondence:
oakiyuya@applc.keio.ac.jp

https://doi.org/10.1016/j.isci.
2022.104933

iScience 25, 104933, September 16, 2022 ª 2022 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

ll
OPEN ACCESS

mailto:oakiyuya@applc.keio.ac.jp
https://doi.org/10.1016/j.isci.2022.104933
https://doi.org/10.1016/j.isci.2022.104933
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.104933&domain=pdf
http://creativecommons.org/licenses/by/4.0/


in the thickness were observed depending on the experimental conditions, such as the exfoliation time and

types of the applied stimuli (Miyamoto and Nakato, 2004; Varrla et al., 2015; Tayyebi et al., 2020; Qi et al.,

2021; Chacham et al., 2020). The nanosheets with the specified thickness and lateral size were collected by

tuning the purification conditions of the dispersion liquids during centrifugation and electrophoresis (Khan

et al., 2012; Backes et al., 2016a, 2016b; Tay et al., 2018; Alzakia et al., 2020). The designed layeredmaterials

provided the nanosheets with the specified layer numbers (Miyamoto et al., 2002; Maluangnont et al., 2013;

Kimura et al., 2014; Nakada et al., 2018; Lee et al., 2019; Singha Mahapatra et al., 2020). These previous

works mainly focused on the effects of the experimental parameters on the thickness (Miyamoto and Na-

kato, 2004; Varrla et al., 2015; Tayyebi et al., 2020; Qi et al., 2021; Chacham et al., 2020; Khan et al., 2012;

Backes et al., 2016a, 2016b; Tay et al., 2018; Alzakia et al., 2020; Miyamoto et al., 2002; Maluangnont et al.,

2013; Kimura et al., 2014; Nakada et al., 2018; Lee et al., 2019; Singha Mahapatra et al., 2020). If the rele-

vance of the chemical and/or structural factors to the thickness is elucidated, the selective syntheses of

thick and thin nanosheets can be achieved efficiently. Here, we found the correlation between the thickness

and lateral size distribution of the exfoliated nanosheets based on transition metal oxides (Figures 1A–1C).

This model case can be applied to the other exfoliation systems.

Figure 1. Schematic illustrations of the correlation between the thickness and lateral size distribution on the

exfoliated nanosheets

(A) Layered composites of host transition metal oxides and guest organic molecules and their exfoliation into the thick

and thin nanosheets with the dispersion in organic media.

(B) Thick and thin nanosheets with the monodispersed and polydispersed lateral size, respectively.

(C) Monodispersed (left) and polydispersed (right) lateral sizes correlated with the thickness.

(D) Size-distribution prediction model, constructed by an assistance of machine learning (Haraguchi et al., 2021),

applicable to the thickness-selective syntheses of the nanosheets (red arrows).
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Layered transitionmetal oxides consist of negatively charged host layers and positively charged guest ions.

The layered composites are prepared by intercalation of the cationic organic guests. Our group has stud-

ied that the surface-functionalized nanosheets are obtained by exfoliation of the layered composites in

organic dispersion media (Figures 1A and 1B) (Oaki, 2021; Honda et al., 2014). As the exfoliation behavior

is tuned by the host-guest-medium combinations, this exfoliation system is preferable to study the factors

for control of the thickness. The predictionmodels of the yield, lateral size, and lateral size distribution were

constructed by combination of machine learning and chemical insights (Haraguchi et al., 2021; Nakada

et al., 2019; Noda et al., 2020, 2021; Mizuguchi et al., 2021). The prediction models using the physicochem-

ical parameters of the host, guest, and medium were applied to the selective syntheses in a limited number

of the exfoliation experiments. However, the factors correlated with the thickness have not been found in

the previous works. Our intention here is to study the factors correlated with the thickness and to demon-

strate the selective syntheses of the thick and thin nanosheets. We found the relationship between the

lateral size distribution and thickness (Figures 1B and 1C). Moreover, the prediction model of the size dis-

tribution was applied to selective synthesis of the thick and thin nanosheets in a limited number of the ex-

periments (Figures 1C and 1D). The correlation can be applied to thickness control for the other layered

compounds.

RESULTS

The precursor layered composites were prepared and characterized according to our previous works (Har-

aguchi et al., 2021; Honda et al., 2014; Nakada et al., 2019; Noda et al., 2020, 2021; Mizuguchi et al., 2021).

The following layered metal oxides were used as the negatively charged hosts: layered titanate, manga-

nate, and niobate. The cationic organic guests, such as alkyl amines and benzyl amines, were intercalated

in the interlayer space. Cobalt hydroxide as the positively charged host accommodated the anionic guests,

such as carboxylates. In addition, stacked graphene oxide (GO) was used as another layeredmaterial with a

different type of interlayer interaction via van der Waals. These precursor layered materials were dispersed

in organic dispersion media, such as ethanol and formamide, under mild conditions for 5 days at 60�C with

stirring at 300 rpm (Figure 1A). After the unexfoliated bulky particles were removed by filtration, the disper-

sion liquids containing the exfoliated nanosheets were obtained.

The lateral size distribution of the exfoliated nanosheets was measured by dynamic light scattering (DLS) of

the dispersion liquid (Figures 1B and 1C). DLS was used to achieve high-throughput estimation of the

lateral size (Haraguchi et al., 2021; Mizuguchi et al., 2021), even though the accurate size of the anisotropic

objects was not measured. The correlation of the lateral size between the DLS measurement and micro-

scopy analysis was studied in the previous works (Haraguchi et al., 2021; Mizuguchi et al., 2021; Lotya

et al., 2013; Yano et al., 2019). The parameter of the lateral size distribution was defined as the coefficient

of the variation (LCV = s/Lave), where Lave and s are the average size and its standard deviation measured by

DLS, respectively (Haraguchi et al., 2021). The correlation of the size distribution between the DLS analysis

and TEM measurement was studied in our previous work (Haraguchi et al., 2021). The thickness (t) of the

nanosheets measured by AFM was summarized in the histogram. As t is not simply compared with the

different combinations of the hosts and guests, t is converted to the layer numbers (N) on the assumption

that the interlayer distance estimated from the XRD analysis corresponds to the thickness of the monolayer

(Figure S1).

Correlation between lateral size distribution and thickness

The thick and thin nanosheets had the monodispersed and polydispersed size distributions, respectively

(Figure 2). According to our previous work (Haraguchi et al., 2021), layered titanate with the intercalation

of 4-aminobenzylamine (NH2-BA) and octadecylamine (C18-NH2) provided the (NH2-BA)-titanate nano-

sheets in 2-butanol and (C18-NH2)-titanate nanosheets in benzaldehyde, respectively. The lateral size dis-

tribution was summarized in Figures 2A and 2D. The (NH2-BA)-titanate and (C18-NH2)-titanate nanosheets

showed themonodispersity with LCV = 0.077 and polydispersity with LCV = 0.627 using DLS analysis, respec-

tively (Figures 2A and 2D). The anisotropic nanosheets were observed on the AFM images (Figures 2B and

2E). The LCV values based on the transmission electron microscopy (TEM) images (LCV,TEM) were LCV,TEM =

0.246 for the (NH2-BA)-titanate nanosheets and 0.679 for the (C18-NH2)-titanate nanosheets (Figures 2A and

2D). In general, DLS analysis assumes colloidal dispersion of three-dimensionally isotropic spheres. On the

other hand, the nanosheets have 2D anisotropic shape. The size of the nanosheets is approximated to the

diameter of the circumscribed sphere in DLS analysis. The lateral size of the nanosheets corresponds to be

the length of the longitudinal axis. DLS analysis shows the approximated average size in the colloidal state.
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On the other hand, TEM images show a limited number of the nanosheets in the local area in the dried

state. The LCV values estimated from DLS and TEM analyses have slight differences because of the differ-

ences in the sample states and methods. As the correlation was studied in our previous work (Haraguchi

et al., 2021; Lotya et al., 2013; Yano et al., 2019), LCV estimated from DLS analysis was used as a metric

of the size distribution. The thickness was measured by AFM and the data were summarized in the histo-

gram (Figures 2B–2F). In the present work, the nanosheets with N % 20 are used for the further statistical

analysis because the thicker objects have influence on the average values. The average thickness (tave) with

its standard deviation (tsd) and average layer number (Nave) with its standard deviation (Nsd) were tave G

tsd = 15.1 G 7.6 nm and Nave G Nsd = 9.4 G 4.7 for the monodispersed (NH2-BA)-titanate nanosheets

(the number of samples (n) = 89, n for N % 20 (nN % 20) = 67) and tave G tsd = 15.9 G 15.8 nm and

Nave G Nsd = 4.7 G 4.6 for the (C18-NH2)-titanate nanosheets (n = 135, nN % 20 = 126) (Figures 2C and

2F). Nave with its 95% confidence interval (95% CI) (Nave + NCI, Nave � NCI) was 9.4 (8.2, 10.6) for the mono-

dispersed (NH2-BA)-titanate nanosheets and 4.7 (3.9, 5.5) for the polydispersed (C18-NH2)-titanate nano-

sheets. AsNave with its 95% CI was not overlapped in these two groups, the statistical evaluation supported

the significant difference in the layer numbers. An unpaired t-test was conducted to validate the differences

in the thickness between the monodispersed (NH2-BA)-titanate nanosheets and the polydispersed

(C18-NH2)-titanate nanosheets. As p value was less than 0.05 (degree of freedom (df) = 132, t = 6.646,

p < 0.001), the significant differences in the thickness were verified in the monodispersed and polydis-

persed conditions. The smaller and larger LCV provide the larger and smallerNave, respectively. The results

imply that the thick and thin nanosheets are selectively obtained under the monodispersed and polydis-

persed conditions, respectively.

Selective syntheses of thick and thin nanosheets

The selective syntheses of the thick and thin exfoliated nanosheets were demonstrated on the assumption

of the correlation between the thickness and lateral size distribution (Figure 3). The guest-medium

Figure 2. Lateral size distribution and thickness of the (NH2-BA)-titanate nanosheets in 2-butanol (A–C) and

(C18-NH2)-titanate nanosheets in benzaldehyde (D–F)

(A–D) Lateral size distribution estimated from DLS (black) and TEM (colored) analyses. (B–E) AFM images and their height

profiles. (C–F) Histogram of the thickness based on the AFM images.
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combinations were selected to achieve the thickness-selective syntheses in a limited number of the exper-

iments. The LCV prediction model in our previous work assisted the selection of the guest-medium combi-

nations providing larger and smaller LCV values for the different host layers (Table 1). In addition, edge-

oxidized GO with the layered structures (Wei et al., 2013; Park et al., 2017), a different precursor, was

used for the exfoliation (Figure S2 and Table S2). As GO contains no interlayer organic guest, the dispersion

media providing the large and small LCV values are calculated using the LCV prediction model on the

assumption that the simplified partial structure of GO was regarded as the guest (Figure S2). Table 1 sum-

marizes the predicted guest-medium combinations for the selective syntheses of the thick and thin nano-

sheets based on the LCV predictor.

The LCV values were significantly different for the recommended monodispersed and polydispersed con-

ditions guided by the LCV prediction model (Table 1 and Figures 3A, 4A, 4D, and S3–S6). The tave G tsd
and Nave G NCI for each sample were measured and summarized in Table 1 and Figure 3B. Nave (Nave +

NCI,Nave �NCI) on the monodispersed conditions was 13.4 (16.4, 10.4) for titanate, 8.6 (9.8, 7.5) for manga-

nate, 11.4 (12.6, 10.2) for niobate, 10.0 (11.6, 8.5) for cobalt hydroxide, and 17.6 (18.1, 17.1) for GO

(Figures 3B, 4A–4C, and S3–S6). On the other hand,Nave (Nave +NCI,Nave�NCI) on the polydispersed con-

ditions was 6.9 (7.8, 6.0) for titanate, 5.5 (6.1, 5.0) for manganate, 8.3 (9.3, 7.3) for niobate, 3.0 (3.7, 2.3) for

cobalt hydroxide, and 6.0 (6.7, 5.3) for GO (Figures 3B, 4D–4F, and S3–S6).Nave (Nave +NCI,Nave�NCI) of all

the monodispersed and polydispersed nanosheets was 11.8 (12.5, 11.1) and 5.7 (6.0, 5.3), respectively.

Nave G NCI between the monodispersed and polydispersed conditions had no overlap of the error bar

based on 95% CI (Figure 3B). Moreover, t-test with p < 0.05 for each host material indicates that the signif-

icant differences in the thickness were verified in the monodispersed and polydispersed conditions for all

the layered materials (marked with * in Figure 3B and Table S3).

Figure 4 shows the selectively synthesized thick and thin nanosheets based on niobate as a representative

case. The layered niobate with the intercalation of diethylamine (DEA) and 4-(aminomethyl)benzonitrile

(CN-BA) was exfoliated into the monodispersed and polydispersed nanosheets in 2-methoxyethanol

and water, respectively (Table 1). DLS analysis showed Lave G s = 729 G 69.1 nm and LCV = 0.095 for the

Figure 3. Summary of the measured LCV andNave GNCI for the nanosheets derived from the different host layers

(titanate, manganate, niobate, cobalt hydroxide, GO) and their average (All)

(A) LCV and its standard deviation of the monodispersed and polydispersed nanosheets synthesized in the predicted

conditions.

(B)Nave GNCI of the monodispersed and polydispersed nanosheets synthesized in the predicted conditions. The asterisk

means the significant difference based on the t-test with p < 0.05 (Table S3).
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(DEA)-niobate nanosheets and Lave G s = 1492 G 476 nm and LCV = 0.319 for the (CN-BA)-niobate nano-

sheets, respectively (Figures 4A and 4D). The monodispersed and polydispersed nanosheets were ob-

tained on the recommended conditions by the LCV-prediction model. The anisotropic 2D nanostructures

were observed on the AFM images (Figures 4B and 4E). The histogram of the thickness indicates formation

of the thick (DEA)-niobate nanosheets and thin (CN-BA)-niobate nanosheets (Figures 4C and 4F). The thick

and thin nanosheets were similarly observed by AFM on the other host materials (Table 1 and Figures S3–

S6). In this way, we initially found the correlation between the thickness and size distribution in the exfoli-

ation of the layered composites based on titanate (Figure 2). The hypothesis was verified not only the other

layered composites based on manganate, niobate, and cobalt hydroxide but also GO with the different

interlayer interaction (Figures 3, 4, and S3–S6).

DISCUSSION

Figure 5A summarizes the correlation between the measured LCV and Nave in Table 1. The thickness-selec-

tive syntheses of the nanosheets are achieved by an assistance of the LCV-prediction model (Equation 1)

(Haraguchi et al., 2021), where x7 is viscosity of the dispersion media, x9 is surface tension of the dispersion

media, x20 is dipole moment of the guests, x28 is hydrogen bonding term of Hansen-solubility (similarity)

parameter of the guests, x37 is size of the precursor layered composites, and LCV,pred is the predicted

LCV value.

LCV;pred = � 0:0599x7 + 0:0802x9 + 0:0699x20 � 0:0681x28 � 0:0623x37 + 0:266. (Equation 1)

The descriptors were extracted from xn (n = 1–37) by sparse modeling and our chemical insights in the pre-

vious work (Haraguchi et al., 2021). The contribution of the descriptors to LCV,pred is compared by the co-

efficients in (Equation 1), because the descriptors xn are converted to the normalized frequency distribution

such that the mean is 0 and standard deviation is 1. The contribution of each descriptor to LCV andNave was

analyzed using the correlation coefficients (Figure 5B). The positive and negative of the correlation coeffi-

cients to LCV were same as those of the coefficients in the LCV prediction model (Equation 1). As LCV and

Nave have the negative correlation (Figure 5A), the positive and negative of the correlation coefficients

become opposite. The correlation of the descriptors x7, x9, x20, and x28 to LCV was actually opposite in

Table 1. Lateral size distribution and thickness of the exfoliated nanosheets for the different host layered materials

Host layer Guest Medium Measured LCV/– Yield/% tave G tsd/nm Nave G NCI/– n/– nN % 20/–

Monodispersed

Titanate a DEA Ethanol 0.027 24.2 10.3 G 6.4 10.1 G 2.2 91 33

Manganate b OMe-BA 2-propanol 0.107 8.5 15.1 G 8.9 8.6 G 1.1 92 80

Niobate DEA h MEA 0.095 78.7 15.9 G 9.8 7.8 G 1.0 123 95

Cobalt hydroxide c HA 2-propanol 0.126 29.0 21.1 G 12.0 9.7 G 1.4 103 63

GO – 1-pentanol 0.071 3.9 5.9 G 0.7 17.6 G 0.5 141 60

Average 0.085 16.4 14.3 G 10.1 10.4 G 0.6 110 66

Polydispersed

Titanate d F-BA Water 0.281 43.4 10.8 G 7.4 6.1 G 0.8 125 116

Manganate e API Formamide 0.283 7.2 4.5 G 2.6 5.5 G 0.6 131 122

Niobate f CN-BA Water 0.319 29.9 13.1 G 10.5 4.8 G 0.7 131 130

Cobalt hydroxide g AQ-S Water 0.279 2.4 8.7 G 11.1 3.0 G 0.7 120 116

GO – Water 0.496 5.6 1.7 G 1.0 5.0 G 0.7 124 69

Average 0.332 17.7 8.4 G 8.9 4.9 G 0.3 126 111

aDEA: diethylamine.
bOMeBA: 4-methoxybenzylamine.
cHA: heptanoic acid.
dF-BA: 4-fluorobenzylamine.
eAPI: 1-(3-aminopropyl)imidazole.
fCN-BA: 4-(aminomethyl)benzonitrile hydrochloride.
gAQ-S: sodium anthraquinone-2-sulfonate monohydrate.
hMEA: 2-methoxyethanol. The source data was in Figures 4 and S3–S6.
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that to Nave with the similar correlation coefficients (Figure 5B). In this manner, the statistical analysis also

supported the negative correlation between the measured LCV and Nave in Figure 3.

The thin nanosheets promote frequent random fracture in the lateral direction leading to the polydispersed

lateral size. On the other hand, the monodispersed lateral size is achieved by the thick nanosheets without

the fracture. The frequency of the exfoliation is related to the thickness and polydispersity. The positive and

negative correlations of the descriptors represent the frequency of the exfoliation originating from the types

of the guests and dispersion media. The exfoliation proceeds with the intercalation of the dispersion media

in the interlayer space containing the guests. The subsequent swelling induces the exfoliation into the nano-

sheets. The positive correlation of x7 and negative correlation of x9 to Nave imply that the dispersion media

with lower viscosity and higher surface tension promotes the exfoliation of the precursor layered materials

into the thinner nanosheets. The dispersionmedia with low viscosity induce the smooth intercalation in the inter-

layer space. In addition, thedispersionmediawith high surface tension are not spread in the interlayer spacewith

wetting but rather clustered to expand the interlayer space with swelling. As shown in Table 1, water and form-

amide are actually listed as the dispersion media providing the polydispersed thin nanosheets. The guest

molecules show the negative correlation of x20 and positive correlation of x28 to Nave. The more polar guests

with low hydrogen-bonding ability form the thin nanosheets with the polydispersity. The polar guests accommo-

date the aforementioned polar dispersion media to promote the swelling and exfoliation. If hydrogen-bonding

of the guest-guest and guest-medium is formed in the interlayer space, the dispersion media are not smoothly

intercalated. The guests with low hydrogen-bonding ability are preferred to intercalation and swelling with

dispersion media. In this manner, the smooth intercalation of the dispersion media in the interlayer space pro-

motes the exfoliation into the thin nanosheets. As the thin nanosheets are easily fractured into the smaller flakes

because of the instability, the polydispersed lateral size distribution is achieved in the thin nanosheets. The po-

tential four descriptors ofNave can be applied to explore the appropriate layers and/or dispersionmedia for the

selective syntheses of thick and thin nanosheets in a variety of layeredmaterials. As top-down processes include

Figure 4. Lateral size distribution and thickness of the (DEA)-niobate nanosheets in 2-methoxyethanol (A–C) and

(CN-BA)-niobate nanosheets in water (D–F)

(A–D) Lateral size distribution estimated from DLS analyses.

(B–E) AFM images and their height profiles.

(C–F) Histogram of the thickness based on the AFM images. The same data for the other nanosheets were summarized in

Figures S3–S6. Data are represented as mean +/� standard deviation (A) and mean +/� 95% CI (B).
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the exfoliation in the vertical direction and fracture in the lateral direction, the monodispersed nanosheets are

not easily obtained. On the other hand, a recent paper shows bottom-up synthesis of magnesium hydroxide

nanosheets with an assistance of ligands (Muramatsu et al., 2021). If monodispersed and thin nanosheets are

required, bottom-up synthesis can be a potential route rather than top-down exfoliation.

In summary, the surface-modified nanosheets were obtained from the layered composites based on tran-

sition metal oxides and interlayer guests in organic dispersion media. As the exfoliation behavior is tuned

by the host-guest-medium combination, this system is suitable to study the structural and chemical factors

related to the thickness. The thickness of the exfoliated nanosheets (Nave) had a correlation with the lateral

size distribution (LCV). According to the prediction model of the lateral size distribution, the thick and thin

nanosheets were selectively obtained on the monodispersed and polydispersed conditions, respectively.

Moreover, the selective syntheses based on the correlation were applied to exfoliation of GO with a

different type of the interlayer interaction. The statistical study supported the correlation between the

thickness and size distribution, i.e. the negative correlation between LCV and Nave. The descriptors of

the size-distribution prediction also had correlations with the thickness. The descriptors and their correla-

tions imply the factors related to the thickness based on the chemical insight. The thin nanosheets with the

polydispersed lateral size distribution are selectively obtained by the smooth intercalation of the disper-

sion media in the polar interlayer space through the frequent exfoliation in the vertical direction and frac-

ture in the lateral direction. Our results can be applied to achieve thickness-selective syntheses of a variety

of the exfoliated nanosheets using the prediction model of the lateral size distribution.

Limitations of the study

The model and concept are now applied only to layered transition metal oxides. The further study is

needed to generalize the relationship between the thickness and lateral size distribution in a variety of

2D materials.

Figure 5. Correlation between LCV and Nave (A) and their correlation analysis (B)

(A) Relationship between the measured LCV and Nave for the data in Table 1 and Figure 3.

(B) Colorimetrically represented correlation coefficients of each descriptor x7, x9, x20 x28, and x37, as used in the LCV
prediction model, to LCV and Nave.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Yuya Oaki (oakiyuya@applc.keio.ac.jp).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Data reported in this paper will be shared by the lead contact upon request.

This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Graphene oxide (GO) Sigma-Aldrich CAS#796034

Graphite FUJIFILM Wako Pure Chemical Corp. CAS#7782-42-5

2-Propanol Kanto Chemical Co., Inc. CAS#71-23-8

2-Butanol Kanto Chemical Co., Inc. CAS#78-92-2

1-Decanol Kanto Chemical Co., Inc. CAS#112-30-1

1-Octanol Junsei Chemical Co., Ltd. CAS#11-87-5

1-Pentanol Tokyo Chemical Industry Co., Ltd. CAS#71-41-0

Formamide Kanto Chemical Co., Inc. CAS#75-12-7

Nitrobenzene Kanto Chemical Co., Inc. CAS#98-95-3

Dimethyl sulfoxide (DMSO) Kanto Chemical Co., Inc. CAS#67-68-5

1,1,2,2-Tetrabromoethane Tokyo Chemical Industry Co., Ltd. CAS#79-27-6

Software and algorithms

Python ver.3.7 Python Software Foundation https://www.python.org

Gaussian09 Gaussian https://gaussian.com

Hansen Solubility Parameters in Practice

(HSPiP)

HSP and HSPiP https://www.hansen-solubility.com/

ChemDraw 20.0 and Chem3D 20.0 PerkinElmer https://www.perkinelmer.com

Other

X-ray diffraction with Cu-Ka radiation (XRD, D8

Advance)

Bruker https://www.bruker.com/ja/products-and-

solutions/diffractometers-and-scattering-

systems/x-ray-diffractometers/d8-advance-

family/d8-advance.html

Dynamic light scattering (DLS, ELSZ-2000ZS) Otsuka Electronics https://www.otsukael.jp/product/detail/

productid/92

Atomic force microscopy (AFM, SPM-9700HT) Shimadzu https://www.an.shimadzu.co.jp/surface/spm/

spm/index.htm
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METHOD DETAILS

Exfoliation of the precursor layered composites

Synthesis and characterization of the precursor layered materials were reported in our previous work (Har-

aguchi et al., 2021; Nakada et al., 2019; Noda et al., 2020; Mizuguchi et al., 2021). The exfoliation experi-

ments of the host-guest-medium combinations in Table 1 were performed in our previous work (Haraguchi

et al., 2021). In the present work, their thickness data were newly collected by AFMmeasurements. In addi-

tion, exfoliation of GO was performed. The layered composites were dispersed in organic dispersion for

5 days at 60�C with stirring at 300 rpm (Figure 1A). The dispersion liquids containing the exfoliated nano-

sheets were obtained after the removal of the unexfoliated bulky particles using filter or cotton depending

on the size of the precursors (Haraguchi et al., 2021). The yield was measured on the basis of the weight of

the nanosheets collected by membrane filter with the pore size 0.1 mm to the weight of the precursor

layered materials (Noda et al., 2020). The dispersion liquid containing the nanosheets was drop-casted

on a silicon (Si) substrate. Si substrate was cleaned with immersion in a mixture of hydrochloric acid

(HCl) and acetone (1/1 by volume) for 1 h and then in sulfuric acid (H2SO4) for 1 h. Then, the substrate

was rinsed by purified water and then dried with nitrogen flow. The nanosheets were observed by AFM (Shi-

madzu, SPM-9700HT).

Exfoliation of GO and its characterization

Exfoliation of GO was performed in the present work (Figure S2 and Table S2). Edge-oxidized graphene

oxide (Aldrich, Graphene oxide powder, 4–10% oxidized) was used as purchased without purification.

Graphite (Fujifilm-Wako, Graphite powder, 98%, Particle size (pass 45 mm)) was used as a reference. GO

powder (30 mg) was dispersed in 12 cm3 of 2-propanol (Kanto, 99.7%), 2-butanol (Kanto, 99.0%),

1-decanol (Kanto, 95.0%), 1-octanol (Junsei, 98.0%), 1-pentanol (TCI, 99.0%), purified water, formamide

(Kanto, 98.0%), nitrobenzene (Kanto, 99.5%), dimethyl sulfoxide (DMSO, Kanto, 99.0%), and 1,1,2,2-tetra-

bromoethane (TCI, 98.0%) for 5 days at 60�C with stirring at 300 rpm. The dispersion liquid was filtered

to remove the unexfoliated precursors. The detailed characterization of the GO nanosheets was described

in Figure S2 and Table S2. The layered structures were analyzed by X-ray diffraction with Cu-Ka radiation

(XRD, Bruker D8 Advance). The particle-size distribution of the nanosheet colloid was measured by dy-

namic light scattering (DLS, Otsuka Electronics, ELSZ-2000ZS).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistic validations

Welch’s t-test, namely unpaired t-test between two independent groups with the different variances, was

carried out using Python (ver. 3.7.4) and excel. The results were used to verify the difference in Nave of the

nanosheets in the monodispersed and polydispersed conditions. Significance level alpha (a) was set at 0.05

in the t-test. The null hypothesis was ‘‘Nave of nanosheets synthesized in the different guest-medium com-

binations has no significant differences.’’ The p value indicates the possibility of the null hypothesis is true.

The lower p values indicate the significant differences in Nave. The data used in the t-test and the results

were summarized in Tables 1 and S3, respectively. In addition, 95% CI was used to verify the difference be-

tween two average values. 95% CI means The average value of the population is found to be in the range of

the interval with a 95% possibility. The Nave and NCI were displayed in Figure 3B with ‘‘*’’ if the p value was

smaller than 0.05 in the t-test.

Data-scientific analysis

The heatmap was prepared by Python to calculate the correlation coefficients (Figure 5B). The positive and

negative correlation coefficients were calculated and converted into a red to blue colors, respectively. The

data for 12 thickness measurements in Figures 2, 4, and S3–S6 were set as the objective variable. The de-

scriptors of the LCV-prediction model, namely x7, x9, x20, x28, and x37, were used as the explanatory

variables.
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