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Abstract 

Intratumoral heterogeneity is a hallmark of all cancers and functions as the major barrier against 
effective cancer therapy. In contrast to genetic mutations, the role of epigenetic modifications in 
the generation and maintenance of heterogeneous cancer cells remains largely undetermined. This 
study was performed to evaluate the epigenetic mechanisms involved in the tumor cell 
heterogeneity using side population (SP) and non-SP cells isolated from a human malignant 
mesothelioma (HMM) cell line. The subpopulations of cancer cells were analyzed by methylated 
DNA immunoprecipitation combined with high-throughput sequencing (MeDIP-seq) and RNA-seq 
methodology. The RNA-seq data were analyzed with the MeDIP-seq data in an integrated way to 
identify the epigenetically modified genes that defined the SP. Concomitant changes in mRNA 
expression and DNA methylation were found in 122 genes, including 118 down-regulated genes 
with hypermethylation and 4 up-regulated genes with hypomethylation. Gene ontology revealed 
that a large portion of the genes belonged to the groups of biological processes such as stem cell 
maintenance, stem cell development, stem cell differentiation, and the negative regulation of the 
developmental process. Among these genes, BNC1, RPS6KA3, TWSG1 and DUSP15 contained 
aberrant methylation in the CpG islands of the promoter region, indicating that the genes 
regulated by DNA methylation characterized a distinct subpopulation of HMM cells. The present 
study provided valuable information to shed light on the epigenetic contributions to the generation 
and maintenance of tumor cell heterogeneity. 
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Introduction 
Intratumoral heterogeneity refers to a mixture of 

phenotypically, functionally, and genetically different 
cancer cells with various cellular hierarchies or 
differentiation statuses within a tumor [1]. It is a 
common feature of almost all cancer types [1]. Tumor 
cell heterogeneity has been considered to be the major 
obstacle for effective cancer therapy, as heterogeneous 
cancer cells differ in their sensitivity to cancer therapy 

[2]. To date, studies have focused on genetic 
alterations as an underlying mechanism for the 
generation and maintenance of the tumor cell 
heterogeneity [3]. However, an increasing body of 
evidence supports the role of epigenetic modifications 
in the emergence of tumor heterogeneity. The 
formation of considerably heterogenetic spheres in 
vitro from a single cell, altered gene expression 
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without genetic changes in many cancers, and the 
reversible changes in acquired drug resistance 
support epigenetic involvement in tumor 
heterogeneity [4, 5]. Nevertheless, limited information 
is available about the function of epigenetic 
modifications in intratumoral heterogeneity. 

Epigenetic modifications are heritable and stable 
alterations of genes that do not change the DNA 
sequence and include DNA methylation, histone 
modification, and non-coding RNA interference [6]. 
DNA methylation has been extensively investigated 
regarding cancer development and progression [7]. 
While hypermethylation in the promoter of the 
cancer-related genes induces the silencing or 
down-regulation of tumor suppressor genes or DNA 
repair genes, global DNA hypomethylation drives 
oncogene activation and genomic instability [8]. 
Emerging evidence has suggested that aberrant DNA 
methylation may play a critical role in the generation 
of cancer cell heterogeneity [4]. Recent studies 
illustrated that epigenetic alterations, including 
aberrant DNA methylation, promote the 
heterogeneity of cancer stem cells (CSCs), preceding 
and/or predisposing to genetic changes [5, 9, 10].  

Methylated DNA immunoprecipitation-based 
high throughput sequencing technology (MeDIP-seq) 
is the next generation sequencing (NGS) approach to 
analyze the DNA methylome [11]. MeDIP-seq is a 
useful tool for the rapid and efficient genome-wide 
assessment of DNA methylation in cancer epigenetics 
[11, 12]. For transcriptomic profiling, RNA-seq has 
been increasingly adopted to investigate the 
transcription profile in cells, tissues, and organisms 
because of its higher resolution relative to 
microarray-based methodology [13]. An integrated 
analysis of gene expression data with epigenetic 
profiling could be an effective approach to uncover 
the role of epigenetic modifications in cancer 
development and progression. 

Human malignant mesothelioma (HMM) is an 
invariably fatal tumor arising from serosal surfaces of 
body cavities [14]. Many factors, including asbestos 
fibers and simian virus 40, are known to be closely 
associated with HMM tumorigenesis [15]. The annual 
incidence of HMM is relatively low, estimated to 
range from 0.6 to 30/1,000,000, but the global 
occurrence is expected to increase continuously in the 
coming decades [16]. HMM is extremely 
heterogeneous in its morphology and molecular 
phenotypes [17]. Using side population (SP) assays 
based on fluorescence-activated cell sorting (FACS), it 
has been shown that the SP fraction is enriched for 
more aggressive cells in HMM cell lines [18]. The 
prognosis of HMM is generally poor, with a median 
survival of 12 months from the diagnosis [19]. Despite 

progress in the understanding of its molecular 
carcinogenesis, the mechanisms underlying the 
resistance of HMMs to anticancer therapy remain 
unclear.  

 The present study was carried out to elucidate 
the molecular mechanism involved in the tumor cell 
heterogeneity using genome-wide analysis of SP and 
NSP cells isolated from a HMM cell line. Integrated 
analysis of the data from the MeDIP-seq and RNA-seq 
revealed that epigenetically regulated genes defined 
cancer cell subpopulations and their biological 
characteristics. To the best of our knowledge, this is 
the first genome-wide analysis of DNA methylation 
and transcriptomes in HMM cell subpopulations that 
sought to elucidate the molecular mechanisms 
underlying the development of intratumoral 
heterogeneity.  

Materials and methods  
Cell line and culture 

A HMM cell line, MS-1, was kindly provided by 
Dr. Jablons (University of California San Francisco, 
USA). The cell line was cultured in RPMI 1640 
medium (Mediatech Inc., Manassas, VA, USA) 
supplemented with 10% fetal bovine serum (FBS; 
Mediatech Inc.), 10 mM HEPES (Sigma-Aldrich, St. 
Louis, MO, USA), 1.5 g/L sodium bicarbonate 
(Sigma-Aldrich), 1 mM sodium pyruvate 
(Sigma-Aldrich), and 100 U/100 μg/mL 
penicillin/streptomycin (Gibco-Life Technology, 
Gaithersburg, MD, USA) at 37◦C in a humidified 
atmosphere containing 5% CO2.  

SP analysis  
Cancer cell subpopulations were analyzed and 

isolated using an SP assay composed of Hoechst 33342 
dye staining and subsequent flow cytometric analysis 
as described by Kai et al. [18]. Briefly, cultured cells 
were washed with phosphate-buffered saline (PBS), 
trypsinized and resuspended at 106 cells/mL in 
pre-warmed RPMI containing 2% FBS and 10 mM 
HEPES. The cells were incubated with Hoechst 33342 
dye (5 μg/mL final concentration; Sigma–Aldrich, St. 
Louis, MO, USA) for 90 min at 37◦C with intermittent 
mixing. At the end of incubation, cells were spun 
down at 480 × g for 5 min and washed in cold PBS 
containing 2% FBS at 4◦C. Hoechst 33342 staining was 
detected using a flow cytometer sorter 
(Becton-Dickinson FACS Aria III, Becton-Dickinson, 
San Jose, CA, USA), exciting at 355 nm and detecting 
Hoechst Blue with a 450/50 broad pass filter and 
Hoechst Red with a 675/30 broad pass filter. At least 
50,000 events within the live gate were examined to 
define an SP region, and an SP gate was identified 
using 50 μM verapamil hydrochloride, which blocks 
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Hoechst 33342 dye efflux. SP and NSP cells were 
collected by a flow cytometry assisted cell sorter 
(FACS) based on the intensities of fluorescence and 
subjected to further analyses. 

DNA preparation, library construction and 
MeDIP-seq 

The DNA library was constructed as described 
[20]. Briefly, genomic DNAs were extracted from the 
sorted SP and NSP cells by an Exgene Genomic DNA 
Micro Kit (GeneAll Biotechnology Co. Ltd., Seoul, The 
Republic of Korea) according to the manufacturer’s 
recommendations. The concentration and purity of 
the DNA were measured using Nanodrop (Nanodrop 
Technologies, Wilmington, DE, USA). The high 
quality of total DNA was subjected to MeDIP-seq 
analysis performed at Theragen Bio Institute 
(Suwon-city, Gyeonggi-do, The Republic of Korea). 
The qualified library was directly sequenced using an 
Illumina HiSeq 2000 sequencer (Illumina Inc, San 
Diego, CA, USA) according to the manufacturer’s 
protocol.  

Identification of differential DNA methylation 
regions (DMRs) 

Detailed analysis of the MeDIP-seq data was 
performed as described [20]. Briefly, the high quality 
of clean reads was mapped to a human reference 
genome (hg19) using an alignment program, the Short 
Oligonucleotide Analysis Package software (SOAP, 
http://soap.genomics.org.cn). Whole genome peak 
scanning was performed using the Model-based 
Analysis of ChIP-seq (MACS: Software version-1.4.0). 
Dynamic Poisson distribution was used to calculate 
the p-value of a specific region based on the number 
of unique mapped reads. The region with a p-value of 
less than 10e-5 was defined as a peak. The distribution 
of peaks was analyzed in the upstream 2k, 5’ UTR, 
exon, intron, 3’ UTR, downstream 2k, and repeat 
element regions and in each class of repetitive 
elements. CpG islands and the gene body were 
divided into 40 equal regions. The upstream and 
downstream 2 kb regions were divided into 20 equal 
regions. For each region, the normalized number of 
reads was calculated. Peaks of MeDIP-seq data from 
SP and NSP cells were merged to find candidate 
DMRs. Then, numbers of the reads were assessed by 
chi-square statistics and false discovery rate statistics 
to obtain true DMRs. The p-value of the filtering 
standard was 0.05, and a 2-fold change in the 
difference of read numbers was used as a criterion for 
the DMRs. The methylation status of the NSP sample 
was utilized as a reference for the up- or 
down-regulation of DNA methylation in the SP 
fraction.  

MeDIP-seq data validation by bisulfite 
sequencing 

 To verify differentially methylated genes 
between SP and NSP cells, 500 ng of genomic DNA 
from each SP and NSP sample was treated with 
sodium bisulfite using the EZ DNA Methylation-Gold 
kit (Zymo Research, Orange, CA, USA). Methylated 
and unmethylated primer sets were designed in 
MethyPrimer-Design (http://www.urogene.org/ 
methprimer). Primer sequences for the genes selected 
for validation are documented in Table S3. 

RNA isolation and RNA-seq 
The RNA library was constructed as described 

[21]. Briefly, total RNAs from the sorted SP and NSP 
cells were isolated using a phenol-chloroform method 
with Trizol reagent (Invitrogen, Carlsbad, CA, USA) 
according to the manufacturer’s instructions. The 
quality and quantity of the total RNAs were 
determined using Nanodrop (Nanodrop 
Technologies). Total RNAs with high quality were 
subjected to NGS assay performed at the DNA Link 
Incorporation (Songpa-gu, Seoul, The Republic of 
Korea). Sequencing libraries of mRNAs were 
prepared using an Illumina TruSeq RNA Prep kit v2 
(Illumina Inc.) according to the manufacturer’s 
instructions. The quality of the amplified libraries was 
verified using an Agilent Technologies 2100 
Bioanalyzer (Agilent Technologies, Palo Alto, CA, 
USA). Cluster generation was carried out in the flow 
cells on the cBot automated cluster generation system 
(Illumina Inc.), and then the flow cells were loaded on 
a HiSeq 2000 sequencing system (Illumina Inc.) with 
200 bps paired-end reads. 

Identification of differentially expressed genes 
(DEGs)  

Detailed analysis of the RNA-seq data was 
performed as described [21]. Briefly, the high quality 
of clean reads was mapped to the hg19 with TopHat 
(ver. 2.0.9). The Bam file was used as the output to 
store a list of read alignments and was added to the 
Cufflinks software package (ver. 2.0.2) to predict 
transcript structures and compare transcriptome 
profiles based on the RNA-Seq data [22]. To compare 
the expression level of a gene across samples, read 
counts obtained from RNA-seq were normalized as 
fragments per kilobase of transcript per million 
mapped fragments (FPKM) [23]. The FPKM was used 
to identify DEGs in SP and NSP subpopulations, and 
then the FPKM in each sample was compared and 
transformed to the Log2 ratio (log2(number of SP 
reads) – log2(number of NSP reads)). The gene 
expression of the NSP subpopulation was used as 
control data for the up- or down-regulation of gene 
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expression in SP cells. Genes with a p-value of < 0.05 
and a log2-transformed value smaller than -1 or 
greater than 1 were considered to be statistically 
significant DEGs. 

Validation of RNA-seq data by quantitative 
real-time RT-PCR 

 The total RNA 400 ng was used to synthesize 
cDNA using QuantiTect Reverse Transcription Kit 
(Qiagen, Valencia, CA, USA). Quantitative real-time 
PCR was performed using the Rotor-Gene SYBR 
Green RT-PCR Kit (Qiagen). The PCR conditions were 
as follows: 95◦C for 5 min followed by 45 cycles of 95◦C 
for 10 seconds and ending at 60◦C for 30 seconds. 
Expression levels of each target gene were normalized 
to the endogenous GAPDH level. The relative gene 
expression was analyzed as described [24]. Primer 
sequences for the target genes selected for validation 
are documented in Table S4. 

Integrated analysis of DMGs and DEGs  
MeDIP-seq and RNA-seq data were interpreted 

in an integrated way to identify epigenetically 
regulated genes that define SP subpopulations. DEGs 
that retain DMRs in the regulatory areas were selected 
as candidate genes. A fold change > 2 and p-value < 
0.05 were used as filtering criteria. DEGs containing 
both differentially hypermethylated and 
hypomethylated genomic regions were excluded from 
the candidates. To investigate whether the 
epigenetically regulated DEGs have CpG islands, the 
genome browser embedded in the UCSC Genome 
Bioinformatics software (Santa Cruz, CA, USA; 
http://genome.ucsc.edu/cgi-bin/hgGateway) was 
performed using a WIG file of MeDIP-seq signals. All 
analyses were based on hg18. 

Gene ontology (GO) analysis  
To determine the key regulatory components 

and functional relationships of genes, gene products 
or gene-product groups from the high-throughput 
sequencing data, GO analysis was performed [25]. 
The web-based software toolkit for gene ontology 
enrichment analysis (GOEAST, 
http://omicslab.genetics.ac.cn/GOEAST) was used 
to visualize the biological process, molecular function, 
and cellular component terms for the target genes. 
Using the MeDIP-integrated RNA-seq data, GO 
enrichment revealed the biological implications of the 
list of genes showing epigenetically concomitant 
changes in aberrant DNA methylation and gene 
expression. GO terms with a fold change > 2 and 
p-value of less than 0.05 were considered functionally 
relevant. 

Results  
Isolation of DNA and RNA from the 
subpopulations of HMM cells 

 MS1 cells were subjected to SP analysis, which 
consisted of Hoechst 33342 dye staining and 
subsequent flow cytometry. A small subset of SP cells, 
ranging from 0.2% to 3.2% of the total cells, was 
identified in the MS1 cells as a distinct tail in the flow 
cytometry plot (Figure 1A). The SP fraction was 
decreased by treatment with 50 μM verapamil 
hydrochloride (Figure 1B). The quality of RNA 
samples from the sorted SP and NSP cells of MS1 cells 
was assessed by gel electrophoresis and absorbance at 
a A260/280 ratio by Agilent’s 2100 Bioanalyzer and 
Nanodrop. RNAs with a A260/280 ratio greater than 
1.8 and an RNA Integrity Number (RIN) value greater 
than 8 were subjected to the further analysis.  

 

 
Figure 1. Identification of side population (SP) phenotypes in the MS1 cell line. (A) Side population assay revealed that the MS1 cell line contained a 
distinct region of SP cells indicated by a trapezoid on each panel. (B) Note the reduced fraction of SP cells with treatment with verapamil. 
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Figure 2. Distribution of MeDIP-seq reads with the DNA methylation pattern in CpG islands and the coding gene region. (A) Circle plot showing 
chromosomal locations of Medip-seq reads obtained by NGS for SP and NSP cells. The outside circle depicts the chromosome ideogram in a clockwise rotation. The 
next track contains red and green colors, indicating genome-wide methylated regions in SP cells and NSP cells, respectively. The height of the histogram bins indicates 
the density of methylated regions. The innermost circle includes the differentially methylated regions indicated by log2 values between MeDIP-seq reads of SP cells. 
(B) Proportion of MeDIP-seq reads in SP and NSP cells. The x-axis indicates different genome regions. For each region, the normalized number of reads was 
calculated. The y-axis indicates the proportion of reads in a specific gene element. (C) The DNA methylation level of SP cells was particularly higher than that of NSP 
cells in CpG islands. (D) SP cells showed a generally increased level of DNA methylation in gene flanking and intragenic regions than that of NSP cells. 

 

Global mapping of DNA methylation 
After data cleaning as described in the Materials 

and Methods section, a total of 48,979,592 reads were 
obtained by MeDIP-seq analysis of the SP and NSP 
cells. Approximately 92% of the total reads from each 
sample were aligned to the reference genome, and 
consequently, 68.26% and 71.90% of the reads from 
the SP and NSP samples were mapped to the human 
genome, respectively (Table S1). The MeDIP-seq reads 
were distributed across most human chromosomes 
with variable densities (Figure 2A). Most reads in 
both samples were concentrated in the repeat and 
intron regions, and a relatively small portion of reads 
was allocated to the other genomic elements (Figure 
2B). The distribution of MeDIP-seq reads around CpG 
islands was further investigated because aberrant 
DNA methylation in CpG islands has been known to 
induce changes in gene expression more than other 
genomic regions. The levels of DNA methylation in 
the CpG islands and in the upstream 2 kb and 
downstream 2 kb regions of the CpG islands were 

significantly higher in SP cells than in NSP cells. The 
DNA methylation level of SP cells was progressively 
increased in the upstream 2k regions, markedly 
decreased at the beginning of the CpG islands, and 
dramatically increased at the end of the CpG islands 
(Figure 2C). On the other hand, the methylation level 
around the gene body was generally higher in SP cells 
than in NSP cells (Figure 2D).  

MACS, a peak scanning software, revealed 
194,781 peaks and 177,650 peaks in SP and NSP cells, 
respectively, accounting for approximately 6% of the 
peak coverage rate in the whole genome (Table S2). By 
merging the peaks of methylation, 18,154 
differentially hypermethylated peaks and 8,577 
differentially hypomethylated peaks were identified 
with various genomic contexts in SP cells compared to 
NSP cells. Distribution of the peaks was analyzed in 
upstream 2k, 5’ UTR, exon, intron, 3’ UTR and 
downstream 2k regions. A large proportion of peaks 
were found in the intron region, followed by CDS, 
upstream 2k, downstream 2k, 3’ UTR, and 5’ UTR in 
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SP and NSP cells (Figure S1). To evaluate the general 
methylation level of each gene element, the coverage 
of peaks that equaled the length of the peak 
occupying region divided by the total length of the 
corresponding element was measured. In contrast to 
the distribution of peak reads, the peak coverage of 
introns was the lowest among other genomic elements 
(Figure S1).  

Differentially methylated genes (DMGs) and 
the validation of MeDIP-seq data using bisulfite 
sequencing 

The distribution of differentially methylated 
genes between SP and NSP cells in different genomic 
contexts was determined (Table S5). A total of 6,400 
genes were differentially hypermethylated, and 3,483 
genes were differentially hypomethylated in SP cells 
compared to NSP cells, containing a total of 2,161 
DMGs of simultaneous hypermethylated and 
hypomethylated regions. The sequencing data of the 
methylome in the present study are available in the 
National Center for Biotechnology Information 
Sequence Read Archive (http://www.ncbi.nlm. 
nih.gov/Traces/sra/) under accession numbers 

SRR2062225 and SRR2062224. 
To validate the MeDIP-seq data, 

methylation-specific PCR (MSP) was performed for 4 
selected DMGs: ATPase, Class VI, Type 11 (ATP11A), 
zinc finger, DHHC-type containing 20 (ZDHHC20), 
twisted gastrulation BMP signaling modulator 1 
(TWSG1), and secreted frizzled-related protein 1 
(SFRP1) (Figure 3). MSP results confirmed the data 
from the MeDIP-seq analysis. 

Mapping of the RNA-seq library sequencing 
data 

After removing poor quality sequences during 
the quality control steps, approximately 85 million 
clean reads were generated from SP and NSP samples 
and subsequently mapped to the hg18 using a TopHat 
aligner. A total of 73,888,650 and 72,799,414 RNA-seq 
reads were mapped to the hg18, with 96.32% and 
96.10% of the mapping rate in SP and NSP samples, 
respectively (Table S6). The quality score across all 
bases represented high accuracy based on the 
base-calling process using Illumina pipeline software. 

 

 
Figure 3. Validation of MeDIP-seq data using methylation-specific PCR (MSP). (A) Relative gene expression level of DMGs. The DMGs in NSP cells were 
used as a reference for the up- or down-regulation of DNA methylation in the SP fraction. (B) DNA methylation patterns of four selected DMGs. 
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Identification of DEGs and the validation of 
RNA-seq data using quantitative real-time 
RT-PCR 

 Differentially expressed genes (DEGs) were 
analyzed from the Bam file, a standard file of the 
resulting read alignments. The Cuffdiff program was 
employed to find potential genes that showed 
significant differences in expression levels. Among 
the total genes and transcripts, Cuffdiff filtered a 
small portion of inadequate reads, including too 
complex or shallowly sequenced alignments and too 
short or too numerous fragments in the locus. By 
comparing the RNA-seq data of SP and NSP, the 
differential expression of 1,130 genes from a total of 
17,122 mRNAs was identified. Among these genes, 
795 DEGs were significantly up-regulated and 335 
DEGs were down-regulated in the SP cells compared 
to the NSP cells. The sequencing data of the 
transcriptome in the present study are available in the 
National Center for Biotechnology Information 
Sequence Read Archive (http://www.ncbi.nlm. 
nih.gov/Traces/sra/) under accession number 
SRR2062223 and SRR2064655. 

To validate the expression level of differentially 
regulated genes in RNA-seq data, real-time RT-PCR 
was performed for 6 selected DEGs: immediate early 
response 3 (IER3), argininosuccinate synthase 1 
(ASS1), dual specificity phosphatase 15 (DUSP15), slit 
homolog 2-(Drosophila) (SLIT2), protein tyrosine 
phosphatase, non-receptor type 13 (PTPN13), and 
FAT atypical cadherin 1 (FAT1). The RT-PCR results 
were generally concordant with RNA-seq data, 
although there was a small difference in the degree of 
fold changes (Figure 4A and 4B). 

Integrated analysis of DMGs and DEGs 
Data from MeDIP-seq and RNA-seq were 

analyzed in an integrated manner to identify a subset 
of genes that were regulated by DNA methylation. 
The comprehensive distribution pattern of the genes 
with both differential methylation and expression 
levels were illustrated (Figure 5A). After merging 
overlapping DMGs containing DMRs with different 
gene elements into the unitary DMG, a total of 7722 
DMGs, including 2,161 simultaneously 
hypermethylated and hypomethylated DMGs, were 
identified. Among the many unique DMGs, 512 
DMGs with 89 up-regulated and 423 down-regulated 
genes were found to be significantly regulated in SP 
cells compared to NSP cells. Their bidirectional gene 
expression patterns were located in the various 
genomic regions (Figure 5B and 5C). The DMGs 
showing the opposite expression relative to their 
corresponding methylation status or simultaneously 
containing at least two regions of differential 
hypermethylation and hypomethylation were 
excluded from the subsequent integrated analysis. 
Consequently, a total of 122 DEGs were considered as 
potential candidate genes regulated by aberrant DNA 
methylation, including 118 hypermethylated genes 
showing simultaneous down-expression and 4 
hypomethylated genes showing concurrent 
up-expression (Table S7). Among those genes, DMGs 
containing methylated sequences in the upstream 2k 
region were further investigated using the UCSC 
genome browser to determine whether differentially 
methylated sequences included CpG islands. This 
analysis revealed that a total of 10 DMGs exhibited 
altered methylation in CpG islands (Table 1 and 
Figure S2). In particular, TWSG1, BNC1, RPS6KA3 
and DUSP15 exhibited differential methylation in the 
CpG islands of the promoter region. 

 

 
Figure 4. Validation of RNA-seq data using quantitative real-time PCR. (A) Correlation in the expression of differentially regulated genes between 
RNA-seq and real-time RT-PCR. Log2 values were calculated by comparing read counts in SP cells to NSP cells. RT-PCR results showed general consistency with 
RNA-seq data. (B) Relative mRNA level of differentially up or down-regulated genes found by RNA-seq. GAPDH was used as the housekeeping gene. Relative gene 
expression was generated according to the 2−Δ ΔCt method. *p-value <0.05, **p-value <0.01; Student’s t-test. 



 Journal of Cancer 2016, Vol. 7 

 
http://www.jcancer.org 

1675 

 
Figure 5. Integrated analysis of MeDIP-seq and RNA-seq data. (A) Venn diagram of DEGs and DMGs. Each group was divided into up-regulated and 
down-regulated subgroups. The number of genes is given in the middle of each figure section. (B) Bidirectional expression patterns of differentially hypermethylated 
genes with various genomic elements. (C) Differentially hypomethylated genes with various genomic elements. The number of genes is given at the top of each graph 
bar. 

 

Table 1. Differentially methylated and regulated genes with methylation profiles in CpG islands. 

Gene ID Chromosome Genomic context Methylated region Fold change 
(MeDIP-seq) 

p-value Fold change 
(RNA-seq) 

p-value 

ATP11A chr13 Intron 112398122-112400894 2.590 3.40E-34 -9.298 0.0105 
  Intron 112503894-112504883 3.263 8.69E-30   
NDST1 chr5 Intron 149895060-149895861 13.727 1.63E-164 -5.134 0.04435 
  CDS 149895060-149895861 13.727 1.63E-164   
  CDS 149886968-149888651 2.462 9.89E-49   
MTMR1 chrX Intron 149681001-149682087 4.667 2.55E-47 -6.905 0.02025 
  Intron 149661398-149662354 2.778 1.21E-19   
  CDS 149681001-149682087 4.667 2.55E-47   
  3'-UTR 149681001-149682087 4.667 2.55E-47   
BNC1 chr15 Upstream 2k 81744675-81745352 2.929 1.16E-17 -6.420 0.03335 
EGR3 chr8 CDS 22602725-22605431 4.278 3.35E-48 -9.350 0.03775 
TWSG1 chr18 Upstream 2k 9323013-9324201 3.867 1.62E-33 -6.409 0.02105 
  Intron 9352211-9352680 2.739 5.38E-24   
ZDHHC20 chr13 Intron 20849079-20850389 9.308 1.26E-117 -5.174 0.03855 
  Intron 20876367-20877118 2.238 9.14E-13   
RPS6KA3 chrX Upstream 2k 20195426-20197844 2.115 4.33E-13 -7.811 0.0116 
ZZEF1 chr17 Intron 3906929-3908389 2.139 5.17E-35 -4.842 0.04695 
  Downstream 2k 3852723-3855666 2.055 9.06E-24   
  CDS 3906929-3908389 2.139 5.17E-35   
DUSP15 chr20 Upstream2k 29922261-29922719 0.426 3.524E-26 21.024 0.0438 
The methylation and expression statuses of the NSP samples were utilized as references for those in the SP samples. 
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GO analysis of the epigenetically regulated 
DEGs 

 To determine biologically functional 
relationships among epigenetically regulated DEGs, 
GO analysis was performed. A total of 122 DEGs, 
including 118 down-regulated genes with 
hypermethylation and 4 up-regulated genes with 
hypomethylation, were subjected to GO analysis. In 
total, 102 GO terms were enriched in the integrated 
epigenome data, including 7 enriched GO terms 
under the cellular component category, 46 enriched 
GO terms under the molecular function category, and 
49 enriched GO terms under the biological process 
category. Statistically significant profiles of GO terms 
with a p-value less than 0.05 in the 3 categories were 
determined (Table S8). It was noteworthy that the 3 
most significantly enriched GO terms in the biological 
process were stem cell maintenance, stem cell 
development, and stem cell differentiation. GO terms 
could not be acquired for hypomethylated DEGs due 
to the insufficient number of the submitted genes. 

Discussion 
In the present study, integrated analysis of 

MeDIP-seq and RNA-seq data from distinct cancer 
cell subpopulations in a HMM cell line revealed a set 
of 122 differentially regulated genes, including 118 
down-regulated genes with hypermethylation and 4 
up-regulated genes with hypomethylation. The 
results indicated that genes defining the 
subpopulations of HMM cells could be regulated 
epigenetically. Although the use of additional HMM 
cell lines or human disease samples would solidify the 
conclusion, the data obtained from the present study 
clarify clearly suggests that DNA methylation may 
play a pivotal role in the genesis of intratumoral 
heterogeneity, possibly by regulating the more 
aggressive properties of CSCs. 

Clonal evolution from a single cancer cell 
through genetic alterations has been conceptually 
believed to be a driving force for intratumoral 
heterogeneity, providing new properties favorable for 
survival and expansion [3]. However, emerging 
evidence suggests that tumor heterogeneity arises 
from epigenetic modifications of tumor cells 
independent of genetic mutations [4, 5, 26]. In a 
support of this notion, Feinberg and colleagues [5] 
demonstrated that epigenetic alterations in cancer 
progenitor cells drive intratumoral heterogeneity 
during the exacerbation of tumor progression. In solid 
tumors, CSCs exhibited more heterogeneous patterns 
of DNA methylation than their differentiated progeny 
and contributed to the generation of population 
heterogeneity [27]. It is evident that the dysregulation 

of DNA methylation as an early molecular event 
promotes the expression of malignant phenotypes in 
cancers [28].  

HMM was selected as a paradigmatic model for 
the present study about intratumoral heterogeneity 
because HMM is extremely heterogeneous with 
regard to tumor cell morphology and molecular 
phenotypes [17] and contains distinct cancer cell 
subpopulations [18, 29]. HMM harbors fewer 
mutations than other cancers [30]. This feature is quite 
advantageous for the study of the potential 
involvement of non-genetic mechanisms relative to 
genetic alterations in the tumor heterogeneity of 
HMM. 

Altered gene expression has been extensively 
investigated in HMM, and epigenetic deregulation 
leading to changes in the gene expression has been a 
constant finding in HMMs [31]. Altered DNA 
methylation, which is one of the most extensively 
studied epigenetic modifications, has been reported to 
play a key role in HMM tumorigenesis and the 
acquisition of malignant potentials during mesothelial 
transformation [28, 30]. Methylated CpG islands have 
been shown to affect a wide range of oncogenic 
processes in HMM, including uncontrolled cell 
proliferation, differentiation, apoptosis, and invasion. 
For example, asbestos fibers increase the prevalence of 
aberrant promoter methylation in the cell cycle 
control genes APC and RASSF1 [32, 33]. The survival 
of HMM cells has been attributed to promoter 
methylation and the silencing of genes, including 
SFRP4, SFRP5, FHIT, and SLC6A20 [30]. In cancers 
such as HMM, tumor heterogeneity is mainly 
controlled by the differentiation status of the tumor 
cells, which depends on the balance between 
self-renewal and the differentiation of tumorigenic 
CSCs into their progeny cells [9, 17]. Additionally, it is 
evident that DNA methylation is required for the 
maintenance of CSCs [34]. Thus, it is conceivable that 
deregulated DNA methylation not only confers CSCs 
better properties among heterogeneous populations 
but also facilitates the genesis of intratumoral 
heterogeneity. In the present study, epigenetically 
regulated genes are mainly attributed to the biological 
processes of not only stem cell maintenance, 
development, and differentiation (NOTCH2, STAG2, 
YAP1, and ZCCHC11) but also the negative 
regulation of differentiation and developmental 
processes (ROCK1, ROCK2, GTF2I, ITGB3, MED1, 
NOTCH2, PKP2, STAG2, THBS1, TWSG1, YAP1, 
ZCCHC11). The GO terms enriched for the candidate 
genes indicate that putative CSCs regulate stem cell 
properties epigenetically by modulating the DNA 
methylation status and, at least in part, by regulating 
the potency of differentiation. Of the aberrantly 
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methylated genes, YAP1 (yes-associated protein 1) 
was shown to play a pivotal role in the differentiation 
of stem cells. It is highly expressed in mammalian 
undifferentiated pluripotent cells and known to 
expand stem cell populations upon up-regulation, 
whereas the inactivation of YAP1 generates more 
differentiated progeny [35]. YAP1 is also involved in 
the tumorigenesis of mesothelioma by improving the 
proliferative capacity of the cancer cells [36]. 
Hypermethylation in the 3’ UTR region and the 
down-regulation of YAP1 observed in the present 
study may indicate that YAP1 promotes the 
differentiation of CSCs, recapitulating the 
heterogeneity of HMM cells. Methylation in the 
terminal exon of YAP1 is related to RNA stability and 
subcellular localization as well as translation 
regulation [37], which warrants further studies. 

Aberrant methylation of CpG islands is closely 
associated with the disturbances of gene expression 
that result in the transformation of normal 
mesothelium [30]. Thus, attention has focused on the 
aberrant methylation of CpG islands in the promoter. 
The present study revealed 4 genes with differential 
methylation in the CpG islands of promoters in SP 
cells compared to NSP cells. These genes include 
hypermethylated basonuclin 1 (BNC1), ribosomal 
protein S6 kinase (90 kDa), polypeptide 3 (RPS6KA3), 
twisted gastrulation bone morphogenetic protein 
(BMP) signaling modulator 1 (TWSG1), and 
hypomethylated dual specificity phosphatases 15 
(DUSP15).  

BNC1 is a transcription factor that participates in 
the mitosis of actively dividing keratinocytes and 
germ cells of the testis and ovary [38]. Previous 
studies have revealed that it is commonly 
hypermethylated and silenced in many human 
malignancies, including solid tumors and 
hematopoietic neoplasms [39, 40], implicating its 
potential role as a tumor suppressor. Similarly, 
promoter hypermethylation of RPS6KA3 may cause a 
decrease in cell division. Hsu et al. [41] reported that 
RPS6KA3 is an important gene defining CSCs in 
triple-negative breast cancer, the most heterogeneous 
subtype of breast cancers. A breast cancer methylome 
showed that the expression of RPS6KA3 was 
regulated via the hypermethylation of CpG islands 
[42]. These previous studies indicate that the 
hypermethylation of BNC1 and RPS6KA3 could be 
potentially associated with the quiescent status of 
CSCs and the heterogeneity of cancer cells. As an 
inherent feature of CSCs, slowly growing or quiescent 
stem cell populations in cancer are primarily 
attributable to the resistance to chemotherapy [43]. 
Thus, the perturbed hypermethylation and 
consequent inactivation of BNC1 and RPS6KA3 may 

be a key strategy for putative CSCs to repopulate 
tumor cell progenies and promote the heterogeneity 
of HMM; however, the suggested biological functions 
of these genes require further study. On the other 
hand, TWSG1, a secreted cysteine-rich protein that 
regulates the extracellular cell-to-cell BMP signaling 
involved in normal embryogenesis [44], is required 
for myoepithelial differentiation during the postnatal 
development of the mammary gland, and its 
dysregulation induces apoptotic defects, leading to 
ductal proliferation [45]. In human blood leukocytes, 
exposure to environmental contaminants increases 
the systemic DNA methylation level in 92 genes, 
including TWSG1 [46]. When cancer cells are exposed 
to hostile microenvironments, DUSP15 is related to 
aberrant methylation [4747, 48]. Although the precise 
roles of DUSP15 and TWSG1 in the response of CSCs 
to cellular and environmental stresses remains to be 
determined, the aberrant methylation of CpG islands 
in their promoter region may promote tumor cell 
viability or differentiation when exposed to 
unfavorable conditions, ultimately contributing to 
tumor heterogeneity in HMM. Further studies may be 
necessary to investigate the functional correlation of 
aberrant methylation in the promoter regulatory 
regions and biological properties of a number of 
epigenetically regulated genes. 

Intratumoral heterogeneity has been studied 
with different perspectives, including genetic 
alterations, environmental differences, stochastic 
processes, cell and tissue plasticity, and the presence 
or absence of a cellular hierarchy [2, 9, 10]. Previous 
investigations about epigenetic mechanisms in HMM 
were limited by the lack of a genome-wide assay in 
DNA methylation profiles and focused on 
methylation profile in the CpG islands of selected 
genes. To the best of our knowledge, for the first time, 
the present study demonstrated the epigenetic 
heterogeneity of cancer cells using an integrated 
analysis of the DNA methylome and transcriptome. In 
the future, these findings may promote the 
development of novel diagnostic and therapeutic 
measures for cancers, including HMMs.  
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